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Abstract

In 2009, a new magnetic order was observed in manganese silicide (MnSi) for specific
temperatures and magnetic fields by Mühlbauer et al [1]. The study of these skyrmions,
which are topologically stable whirls in fields, has proved to be particularly rewarding, as
the coupling of the magnetic structure to electric currents is remarkably efficient.

In this Bachelor Thesis, we study the interplay of magnetism and electric current by
considering the effects of a one-dimensional, non-collinear magnetic structure with a time-
dependence on a passing electron moving on a ring. When an electron moves through a
skyrmionic magnetic structure, its spin precesses around the direction of the local magnetic
field, which leads to a change in the quantum mechanical state of the electron, expressed
in the acquisition of a Berry Phase. This Berry Phase can be interpreted as a phase arising
from emergent electric and magnetic fields.

In the first part of this Thesis, adiabaticity and the Berry phase are briefly introduced.
We review that the Berry phase is a gauge-invariant geometric phase factor. Secondly,
we compute the exact wave function of a particle moving through a non-collinear time-
dependent magnetic field, which is the product of a time-dependent and an angle-dependent
function.

In the next part of this Thesis, we confirm that the motion of a spin-1
2
-electron through

the chosen magnetic field is an adiabatic problem by showing that the exact eigenenergies
in the limit of an infinite radius of the ring are in accordance with the eigenenergies
emerging from an adiabatic ansatz. We then discuss Berry phase physics and find that
for a time-dependence of the position of the electron, there are no emergent electric fields
since the undisturbed Hamiltonian may be mapped onto a time-independent one by unitary
transformations.

Finally, we allow for defects in our set-up by introducing a magnetic impurity into the
system, thus breaking Galilei invariance and energy conservation. We investigate the spin-
flip-rate and energy transitions of an incoming particle wave resulting from the scattering
by the potential for different choices of parameters, e.g. reviewing that for large radius R,
the system shows adiabatic behaviour.
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Zusammenfassung

In 2009 gelang es Mühlbauer et al [1] in Mangan-Silizium (MnSi) für Temperaturen und
Magnetfelder innerhalb eines bestimmten Wertebereiches eine neue magnetische Ordnung
nachzuweisen. Das Studium dieser Skyrmionen, die, kurz gesagt, topologisch stabile Wirbel
in Feldern sind, hat sich als besonders lohnenswert herausgestellt. Dies hängt vor allem
mit der bemerkenswert starken Kopplung der magnetischen Struktur an elektrische Ströme
zusammen.

In dieser Bachelorarbeit werden wir das Zusammenspiel von Magnetismus und elek-
trischen Strömen anhand eines eindimensionalen Modells näher untersuchen: Wir sind an
den Effekten einer nicht-kollinearen magnetischen Struktur mit einer Zeitabhängigkeit auf
ein bewegtes Elektron interessiert, das sich auf einem Ring bewegt. Bewegt sich ein Elek-
tron durch eine magnetische Struktur, z.B. ein Skyrmion, so präzediert sein Spin um die
Richtung des lokalen magnetischen Feldes, was zu einer Änderung des Quantenzustands
des Elektrons führt, ausgedrückt durch die Aufnahme einer Berry-Phase. Diese Phase kann
als Ergebnis emergenter elektrischer und magnetischer Felder interpretiert werden.

Im ersten Teil dieser Arbeit werden das adiabatische Theorem und die Berry-Phase
kurz eingeführt. Wir überprüfen, dass die Berry-Phase invariant unter bestimmten Eich-
transformationen ist und ein rein geometrischer Phasenfaktor ist. Im zweiten Teil werden
wir die exakte Wellenfuntion eines Teilchens, das sich durch ein nicht-kollineares zeitab-
hängiges Magnetfeld bewegt, analytisch ermitteln. Diese ist ein Produkt aus einer rein
zeitabhängigen und einer rein winkelabhängigen Funktion.

Im nächsten Teil dieser Arbeit werden wir überprüfen, dass die Bewegung eines Spin-1
2
-

Elektrons durch das gewählte magnetische Feld ein adiabatisches Problem ist, indem wir
zeigen, dass die exakten Eigenenergien im Grenzfall eines unendlich großen Radius des
Rings mit den Eigenenergien, die sich aus einem rein adiabatischen Ansatz ergeben, übere-
instimmen. Wir werden dann die spezifische Berry-Phase berechnen und interpretieren
und erkennen, dass für die gewählte Zeitabhängigkeit der Position des Elektrons sich keine
emergenten elektrischen Felder ergeben. Dies hängt damit zusammen, dass das zeitab-
hängige Problem durch unitäre Transformationen der Schrödingergleichung auf ein zeitun-
abhängiges Problem abgebildet werden kann.

Im letzten Teil der Bachelorarbeit werden wir Defekte in unserem System zulassen,
indem wir durch eine magnetische Störstelle die Galilei-Invarianz und Energieerhaltung
brechen. Für verschiedene Parameter untersuchen wir die Spin-Flip-Rate und die En-
ergieübergangsrate für eine einlaufende Materiewelle, die durch die Streuung an dem Po-
tential gegeben ist. So werden wir auch nochmals bestätigen, dass sich das System für
große Radien adiabatisch verhält.
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1 INTRODUCTION

1 Introduction

Magnetism may result from either a moving electric charge, i.e. electric current, or intrinsic
magnetic moments. The orientation of magnetic moments, i.e. the magnetic anisotropy,
arises from the coupling between the spin and the orbital angular momentum of the ele-
mentary particles in addition to the overlap of electron wave functions.

An overview of different types of magnetic order is given in figure 1. Magnetic effects
can be induced by an external magnetic field. Paramagnetic and diamagnetic materials
are unique, because they lack a magnetic order in the absence of a magnetic field. The
resulting magnetic field inside the material is small compared to the external magnetic
field. A characteristic entity is the magnetic susceptibility χ, i.e. the capability of the
material to be magnetized by an external field. For diamagnetic materials, χ is negative
(the diamagnet is repelled by an external field), for paramagnetic materials χ is positive.
Spontaneous magnetic effects may result from exchange interaction, i.e. the overlap of
electron wave functions, as it is the case with ferro- and anti-ferromagnetic structures,
which posses relatively large magnetic moments.

A particularly interesting form of magnetic order is present in chiral magnets. These are

paramagnetic 
structure 

diamagnetic 
structure 

ferromagnetic 
structure 

anti-ferromagn. 
structure 

chiral magnetic 
structure 

Simple Examples of Magnetic Order 

Bext Bext 

Bi Bi Bi Bi Bi 

(a) (b) (c) (d) (e) 

Figure 1: (a) Paramagnets have intrinsic magnetic moments which align themselves in the direc-
tion of an externally applied magnetic field. As a result, the overall magnetic field is reinforced.
(b) For diamagnets it is most energy-efficient for magnetic moments to align themselves antipar-
allel to the external magnetic field. The resulting magnetic field is weakened. (c) Ferromagnets
show a spontaneous magnetization, a net magnetic moment, resulting from the spin and orbital
movement of an electron from a partially filled shell. As the dipoles align spontaneously and ten-
dentially parallel to each other, there is a magnetization even when no external magnetic field is
applied. (d) In an antiferromagnet, neighbouring electrons are inclined to point in opposite direc-
tions, i.e. the total magnetization vanishes. If, however, a magnetic field is applied, one observes
a net magnetization different from zero. (e) Chiral magnetic structures emerge from asymmetric
spin-interactions. Their mirrored image cannot be converted to the original by simple rotations
or translations. Thus, they possess the attribute of handedness [2].
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1 INTRODUCTION

magnetic structures, whose mirrored image cannot be converted to the original by simple
rotations or translations and thus have an additional attribute: handedness. Where locally
the order of the atoms in the solid possesses no center of inversion, spin-orbit coupling can
lead to asymmetric components of interactions and electronic properties (although much
weaker than normal exchange-interaction) [3].

An intriguing example emerging from asymmetric spin-interactions are skyrmion lattices.
1989 Alexey Bogdanov predicted that for anisotropic chiral magnets there is a new magnetic
order consisting of topologically stable spin whirls, named skyrmions after the English
particle physicist Tony Skyrme, who showed that localized solutions to non-linear quantum
field theories may be interpreted as elementary particles. Briefly speaking, skyrmions are
topologically stable whirls in fields.

In 2009, a new magnetic order was observed in manganese silicide (MnSi) for specific
temperatures and magnetic fields by Mühlbauer et al [1]. Evidence for the existence of
skyrmions has been provided using neutron scattering by the experimental research group
of Christian Pfleiderer in collaboration with the theory group of Achim Rosch [4]. Since
2009, the skyrmion lattice has been further studied and methods of detecting this magnetic
order have been extended. Not only has the skyrmion lattice been observed in metals
such as MnSi, but it has recently also been observed in semiconductors and insulating
materials [5–8].

When an electron moves through a skyrmionic magnetic structure, its spin precesses around
the direction of the local magnetic field, which leads to a change in the quantum mechanic
state of the electron, expressed in the acquisition of a Berry Phase (cf. figure 2). This Berry
Phase may be interpreted as a phase arising from emergent electric and magnetic fields
when assuming the electron moves through a uniform magnetic field [9–12]. Investigating
these emergent electric and magnetic fields of an interacting electron and a skyrmion lattice
is particularly rewarding for numerous reasons. For example, in conventional magnets, the
winding number W per magnetic unit cell is equal to zero, while in a skyrmion lattice
W is finite and quantized, W = −1. As a result, the emergent magnetic fields (or, more
specifically, the emergent flux) are also quantized.

The physics of an electron moving through the magnetic field can be analyzed from two
different points of view:
From the point of view of the electron, i.e. considering the problem in terms of emergent
electic and magnetic fields, the change in spin orientation is equal to an effective Lorentz
force acting on the electron, which is perpendicular to its motion [13]. As a result, the
magnetic field induces a deflection of the electron, which can be measured by making use
of the topological Hall-effect [14]. Because of the electron carrying an electric charge,
a potential may be measured perpendicular to the direction of the current. Since the
magnetic structure of the Skyrmion lattice is very smooth, the adjustment of the spin of
the electron to the magnetization of the skyrmion lattice can be considered an adiabatic
process.
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1 INTRODUCTION

On the other hand, there must be a cor-
responding counter-force acting on the
skyrmion. This force, arising from the
transfer of angular momentum from the
conduction electrons to the local mag-
netic structure (cf. [15]), can for example
result in a drift of the domains of the lat-
tice.

Skyrmions are exceptionally suitable
structures when studying the interplay
of electric currents and magnetization, a
subject from the field of spintronics, as
they are particularly sensitive to current
densities of about 106 A/m2, which is far
below the magnitude needed to induce
similar effects in other magnetic textures
such as domain walls [16,17].

A 1D model of an electron passing over a
static magnetic field has previously been
investigated in the Bachelor thesis of M.
Baedorf [18].

Figure 2: When an electron moves through a
non-collinear magnetic field, it acquires a quan-
tum mechanical phase, the Berry Phase, which
results from the adiabatic adaptation of the spin
to the magnetic structure. The change of spin
orientation results in an effective Lorentz force
deflecting the electron. From [13].

In this thesis, we investigate the effects of a one dimensional, non-collinear magnetic struc-
ture with a translational linear time-dependence on a passing electron moving on a ring.
In particular, we are interested in observing emergent electrodynamics and whether the
interaction of the spin of the particle with the underlying time-dependent magnetic field
leads to emergent electric fields.

Firstly, adiabaticity and the Berry phase are concisely introduced (Section 2). Secondly,
in Section 3 we will compute the exact wave function of a particle moving through a
non-collinear time-dependent magnetic field.

In the subsequent part, we will establish that the motion of a spin-1
2
-electron through the

chosen magnetic field is an adiabatic problem by comparing the exact eigenenergies in the
limit of an infinite radius of the ring with the eigenenergies emerging from an adiabatic
ansatz. Section 5 will then explore possible Berry phase physics and investigate whether
there are emergent electric and magnetic fields. In order to investigate the relevance of
our choice of time-dependence for the emergence of new physics, we will consider Galilean
invariance in Section 6.

In Section 7, we will allow for defects in our set-up by introducing a magnetic impurity into
the system. We will investigate the spin-flip-rate and energy transitions of an incoming
particle wave resulting from the scattering by the potential.
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2 THE BERRY PHASE

2 The Berry Phase
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Figure 3: The geometric analogon to the
Berry phase is a parallel transport of a vec-
tor, e.g. on the surphace of a sphere: When
a vector in the tangent space to the mani-
fold is transported parallely along a smooth,
closed curve in a manifold, e.g. on the sur-
face of a sphere, the resulting angle γ be-
tween the initial and the final vector is pro-
portional to the area enclosed by the curve.

The Berry Phase was first described by Sir
Michael Berry in 1984. In this section we
will revise the essentials of his derivations
which can also be found in his original pa-
per (cf. [19]) and further detail their impli-
cations as well as their relations to the adia-
batic theorem. The Berry Phase is a gauge-
invariant geometric phase, which is gathered
by the wave function when tracing out a
closed curve in parameter space provided the
change is adiabatic. We denote the set of
parameters as r(t), i.e. a closed curve corre-
sponds to the condition r(t0) = r(t0 + T ).

Adiabatic processes constitute the limiting
case between statics and dynamics. Gener-
ally, adiabatic processes are processes which
occur extremely slowly (over a long period
of time). More precisely, adiabatic change in
quantum mechanics can be defined as a pro-
cess in which no transitions between different
eigenstates occur [20].

The Berry Phase is, as we will later deter-
mine, purely geometrical, i.e. does not de-
pend on the velocity with which the cycle is
performed.

2.1 The Adiabatic Theorem of Quantum Mechanics

Consider a time-dependent Hamiltonian in a parameter space varying with time, H =
H(r(t)), and a corresponding discrete and non-degenerate spectrum of eigenenergies:

H(r(t)) |n(r(t))〉 = En(r(t)) |n(r(t))〉.

where En(r(t)) is the time-evolved eigenenergy corresponding to H.

We are concerned with investigating the motion of the particle along a closed path C in
parameter space where H is periodic in time, i.e. H(r(t0)) = H(r(t0 +T )). As an example,
we might consider a free particle whose energy might vary depending on its time-dependent
position r(t) = (x(t), y(t), z(t))
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2 THE BERRY PHASE
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t 

Figure 4: Initially, let the system be in an eigenstate of the Hamiltonian H. When change occurs
adiabatically, the system does not perform any transitions into any other fundamental eigenstate,
although the evolved eigenenergy (or the amplitude of the wave function) may vary with time.

Assume a system initially is in the n-th eigenstate of the Hamiltonian H, | ψ(r(0))〉=
|n(r(0))〉. The adiabatic theorem states that if H changes adiabatically, |ψ(r(t))〉 stays in
the time-evolved n-th eigenstate of H. The system does not perform any transitions into
other eigenstates, although the eigenenergy may vary with time, compare figure 4.

Slow evolvement of H allows the ansatz |ψn(t)〉 = cn(t) |n(r(t))〉, where cn(t) are time-
dependent prefactors. Plugging this ansatz into the Schroedinger equation and projecting
the result onto the eigenstate 〈n(r(t)) | yields:

〈n(r(t)) | i~ d
dt

[cn(t) |n(r(t))〉] =〈n(r(t)) |
(
i~
d

dt
cn(t)

)
|n(r(t))〉+ 〈n(r(t)) |cn(t)i~

d

dt
|n(r(t))〉

=i~
d

dt
cn(t) + 〈n(r(t)) | i~ d

dt
|n(r(t))〉cn(t)

!
= En(t) · cn(t)

⇒ ċn(t) =

(
−〈n(r(t)) | d

dt
|n(r(t))〉 − i

~
En(r(t))

)
cn(t), where ċn =

d

dt
cn

=

(
−〈n(r(t)) |∇r |n(r(t))〉ṙ(t)− i

~
En(r(t))

)
cn(t)

The time-dependent prefactors may now be written as

cn(t) = exp

− i
~

t∫
t0

{En(r(t′))− i~〈n(r(t)) |∇r |n(r(t))〉ṙ(t)} dt′
 (1)

where exp

(
− i

~

t∫
t0

En(r(t′))dt′
)

is known as the dynamic phase factor and

γn(t) = i

∮
C

〈n(r(t)) |∇r |n(r(t))〉dr (2)

is the Berry Phase.
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2 THE BERRY PHASE

Consequently, the time evolved wave function is given by

|ψ(t)〉 = exp
(
− i
~

∫ t

0

En(r(t′))dt′
)
eiγn(t) |n(r(t))〉

where eiγn(t) is the geometric phase factor.

Until 1984, this additional phase factor was neglected, because it vanishes under gauge-
transformations under certain conditions. However, when considering the motion of a
particle along a closed loop in parameter space, the Berry phase can no longer be neglected
and non-negligible quantum physical attributes emerge.

2.2 Characteristics of the Berry Phase

Clearly, Berry’s Phase is a purely geometric phase, i.e. it is only path-dependent, while
impervious to the velocity with which the path is traced out adiabatically.
Rewriting the Berry Phase, we can define the following additional interdependent physical
entities (cf. [21]):

γn(t) =i

∮
C

〈n(r(t)) |∇r |n(r(t))〉dr

=

∮
C

An(r)︸ ︷︷ ︸
≡ Berry Connection

dr =

∫
S

∇× An(r)︸ ︷︷ ︸
≡ Berry Curvature

dS = i

∫
S

∇× 〈n |∇|n〉 dS

The Berry phase γn(t) is a real number, because

〈n |n〉 = 1 (normalized)⇒〈n |∇|n〉+ 〈∇n |n〉 = 0

⇒〈∇n |n〉 = −〈n |∇|n〉 = −〈∇n |n〉 ⇒ 〈n |∇|n〉 ∈ iR

As mentioned above, the Berry-Phase is gauge-invariant under the transformation

|n〉 −→| ñ〉 = eiγn(r) |n〉.

This can be proven by considering the Berry connection.
The transformation |n〉 −→| ñ〉 results in a transformation

An(r) −→ Ãn(r) = i〈n |e−iγn(r)∇re
iγn(r) |n〉

=∇rγn(r) + i〈n |∇r |n〉 = ∇rγn(r) + An(r)

and thus the Berry phase moves on to

γn(t) −→ γ̃n(t) =

∫
S

(∇× Ãn(r))dS =

∫
S

(∇× An(r))dS = γn(t)

6



2 THE BERRY PHASE

where in the last line we have made use of the fact that the rotation of a gradient of a
scalar function vanishes, ∇× (∇φ) = 0.

The physical implications of the Berry phase can be understood when considering its
interpretation as a gauge potential. We will further elaborate on these properties in Section
4.2.1.
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3 Spin-1
2-Particle in a Time-Dependent Magnetic Field

3.1 Set-Up

The Berry Phase may be observed in many different contexts of quantum mechanics. In
the following, we will study the behaviour of a spin-1

2
particle, more specifically an electron

with mass me, when passing through a magnetic field with a fixed strength B0. We restrict
the motion of a particle to a one-dimensional wire, or rather a ring with radius R, thus
assuming periodic boundary conditions. In particular, we will focus on magnetic fields
evolving adiabatically in time. Figure 5 shows the intellectual set-up. We express the
magnetic field as a function of angles φ and θ, i.e. only the direction of the magnetic field
vectors change while the strength B0 is kept fixed. φ sets the position where the particular
magnetic field is measured. At every position φ on the border of the circle we attach
an imaginary 3D-sphere which determines the direction of the field vector. In effect, the
magnetic field is constituted by mere spherical coordinates. In addition, we allow variation
of both angles φ and θ in time with a frequency of ω1 and ω2 respectively.

ϕ 

Θ= π/2  

R

y 

x 
z 

~ 

Figure 5: For θ̃ = π/2, the magnetic field is
cylindrically symmetrical

B(r, t) = B0n̂(φ, θ, t)

= B0

 sin(θ − ω2t) cos(φ− ω1t)
sin(θ − ω2t) sin(φ− ω1t)

cos(θ − ω2t)


= B0

 sin(θ̃) cos(φ̃)

sin(θ̃) sin(φ̃)

cos(θ̃)

 (3)

where φ̃ = φ− ω1t and θ̃ = θ − ω2t.

As an example, an angle θ̃ = 0 means that the magnetic field vectors all point out of the
paper plane, B = B0(0, 0, 1)T , corresponding to a ferromagnetic structure. Figure 5 shows
the situation for an angle of θ = π/2, where B = B0(cos(φ̃), sin(φ̃), 0)T .

The Hamiltonian is made up of a kinetic part and a part arising from the interaction of
the particle with the magnetic field:

H0(r, t) =
p̂2

2me

+ B(r, t) · gS |µB|
~

S, where |µB|=
|e|~
2me

(4)
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The spin operator S is proportional to the vector of pauli matrices σ:

S =
~
2
σ, σ = (σx,σy,σz), σx =

(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
(5)

as a result, considering that for an electron gS = 2, we may write

H0(r, t) =
p̂2

2me

+ |µB|B(r, t) · σ (6)

We will be denoting the wave function of the particle as

ψ(r, t) =

(
u1(r, t)
u2(r, t)

)
(7)

3.2 Generating Rotational and Translational Invariance

We will now simplify the calculation of eigenfunctions of H0 and eigenenergies by deter-
mining eigenfunctions of an operator which commutes with H0 and, at the same time,
determine the associated law of conservation.

Note that an observable A satisfies the law of conservation if

t〈ψ |A |ψ〉t = const. ⇔ [A,H] = 0 ⇔ e
i
~AαHe−

i
~Aα = H (8)

i.e. A is constant over time and H is invariant under every transformation generated by
the observable A, see [22].

In order to find an operator which might be suitable to commute with our Hamiltonian
H0, we ask ourselves which operator A satisfies t〈ψ |A|ψ〉t = const. (and thus [A,H] = 0).
This must be an operator which generates rotational and translational invariance, i.e. which
reverses a combination of a translational shift and a rotation of the spinor.

Translate by Δs = R Δϕ, rotate spinor by an angle α 

 Δs  
 α 

Figure 6: A change of position corresponds to a combination of a translational shift ∆s = R∆φ
and a rotation of the spinor by an angle α
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Translations in position-space by ∆s:

A translation operator T̂∆s is trivially expected to cause a translation ∆s in position-space,
so that

ψ̃(r) = T̂∆sψ(r) = ψ(r−∆s) (9)
Taylor expanding this expression for small ∆s around ∆s = 0 yields:

ψ(r−∆s) = ψ(r)−∆s · ∇ψ(r) +O(∆s 2)

⇒ T̂∆s = 1−∆s · ∇ = 1−∆s
i

~
p, with p =

~
i
∇ =

~
iR
∂φ̃

When considering consecutive infinitesimal translational shifts, we get

T̂∆s = lim
N→∞

(T̂∆s/N)N = lim
N→∞

(1− ∆s
N

i

~
p)N = e−

i
~∆s·p (10)

where we have made use of the identity limN→∞(1− x
N

)N = e−x.
Consequently, we have reviewed that p = ~

i
∇ generates a translation by ∆s.

Rotation of a spinor by an angle α:

We will now find the representation of an operator generating the rotation of a spinor by
an angle α. To this end, consider the form assumed by a vector (x, y) when rotated by an
angle α to a position (x′, y′).

α 
γ 

(x‘,y‘) 

(x,y) 

x = R cos(γ) 
y = R sin(γ) 

Figure 7: Rotation of the spinor (x, y)
by an angle α yields the vector (x′, y′)

(
x′

y′

)
=

(
R · cos(α + γ)
R · sin(α + γ)

)
=

(
R(cosα cos γ − sinα sin γ)
R(sinα cos γ + cosα sin γ)

)
=

(
cosα − sinα
sinα cosα

)(
x
y

)
≈

α�1

(
1 −α
α 1

)(
x
y

)
=

(
x− yα
y + xα

)

Let us now consider the effect of a rotation operator Âα,z on the wave function:

ψ̃(r) = Âα,zψ(r) = ψ(x− αy, y + αx, z) (11)
≈ ψ(r)− αy∂xψ(r) + αx∂yψ(r) (for α� 1) (12)

= (1 +
i

~
αSz) ψ(r), where Lz =

~
iR
x∂y −

~
iR
y∂x = xpy − ypx (13)

10
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This is the operator generating rotations in position space. However, we are interested in ro-

tations in spin space which is generated by the orthonormal basis
{
| ↑〉 '

(
1
0

)
, | ↓〉 '

(
0
1

)}
,

so that a general state is given by
(
a1

a2

)
= a1 | ↑〉 + a2 | ↓〉. The spin momentum operator

Sz is defined as the very operator which generates these spinor rotations so that

Sz | ↑〉 =
~

2R
| ↑〉, Sz | ↓〉 = − ~

2R
| ↓〉 where Sz =

~
2R
σz (14)

Consecutive application of many infinitesimal rotational shifts produces:

Âα,z = e−
i
~αSz (15)

Note that for a general rotation about the axis α
α
we have Âα = e−

i
~αS, where

S = (Sx,Sy,Sz) and Si = ~
2
σi [22].

Thus we have reviewed that Sz generates a rotation in spin space by an angle α about the
z-axis.

Result:

Combining the operators generating the translation and the rotation gives

g = −i~ ∂
∂s
1 +

~
2R
σz = −i~

R

∂

∂φ̃
1 +

~
2R
σz, g̃ = −i ∂

∂φ̃
1 +

σz
2

= p̃1 +
σz
2

(16)

where g̃ is a rescaled version of g (please note that, in the following, identity matrices will
be left out where appropriate for the purpose of simplifying the notation).
The resulting operator generates translational and rotational invariance combined, i.e.

ψ̃(r) = T̂∆sÂα,zψ(r) = e−
i
~∆s·pe−

i
~αSzψ(r) !

= const. · ψ(r) (17)

Consider

H0(r, t) =
p̂2

2m
+ B(r, t) · gS |µB|

~
S (18)

We confine ourselves to the xy-plane, with the real space parameter θ = π
2
and R kept

fixed. The nabla-operator can in this case be simplified to be:

∇ = êr
∂

∂r
+ êθ

1

R

∂

∂θ̃
+ êφ̃

1

R sin θ

∂

∂φ̃
⇒ ∇2 =

(
1

R

∂

∂φ̃

)2

(19)

11
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Thus we can rewrite the Hamiltonian H0 as

H0 = − ~2

2mR2

(
∂

∂φ̃

)2

+ |µB|B0(r, t)σ (20)

=
~2

mR2

−1

2

(
∂

∂φ̃

)2

+
|µB|B0

~2/mR2︸ ︷︷ ︸
=:α

n̂σ

 (21)

=
~2

mR2

(
−1

2

(
∂

∂φ̃

)2

+ αn̂σ

)
=

~2

mR2
H̃0 (22)

We can prove that, as intended by our careful construction of g, H̃0 and g̃ and consequently
H0 and g do indeed commute.[

H̃0, g̃
]

=

[
−1

2

(
∂

∂φ̃

)2

+ αn̂σ,−i ∂
∂φ̃

+
σz
2

]
(23)

=

[
−1

2

(
∂

∂φ̃

)2

,−i ∂
∂φ̃

]
+

[
αn̂σ,−i ∂

∂φ̃

]
+

[
−1

2

(
∂

∂φ̃

)2

,
σz
2

]
+
[
αn̂σ,

σz
2

]
(24)

= iα

(
∂

∂φ̃
n̂σ
)

+
αn̂
2

([σx,σz], [σy,σz], [σz,σz]) (25)

with [σi,σj] = 2iεijkσk (26)

= iα

(
∂

∂φ̃
(sin θ̃ cos φ̃ σx + sin θ̃ sin φ̃ σy + cos θ̃ σz)

)
+ iαn̂(−σy,σx, 0) (27)

= iα(− sin θ̃ sin φ̃ σx + sin θ̃ cos φ̃ σy) + iαn̂(−σy,σx, 0) (28)
= 0 (29)

We have thus shown that H̃0 and g̃ possess the same system of eigenfunctions. Moreover,
according to equation (8), the sum of momentum and angular momentum is a conserved
quantity. In the following, we will regard g̃ as a generalized momentum operator.

3.3 Solution to the Momentum-Operator

We will now establish the eigenfunctions of g̃ solving the eigensystem(
−i ∂
∂φ̃

1 +
σz
2

)
|ψ〉 = K |ψ〉 (30)

−i ∂
∂φ̃

1 |ψ〉 =
(
K − σz

2

)
|ψ〉 =

(
(K − 1

2
) 0

0 (K + 1
2
)

)
|ψ〉 (31)

12



3 SPIN-1
2
-PARTICLE IN A TIME-DEPENDENT MAGNETIC FIELD

with eigenvalues

λ1/2 = (K ∓ 1

2
) (32)

and respective eigenfunctions

|ψ1〉 =

(
1
0

)
ei(K−

1
2

)φ =

(
ψ1

0

)
(33)

|ψ2〉 =

(
0
1

)
ei(K+ 1

2
)φ =

(
0
ψ2

)
(34)

As we study the motion of a particle on a ring, we require|ψ(φ)〉 to fulfill periodic boundary
conditions:

|ψ(φ̃)〉 = |ψ(φ̃+ 2π)〉 ⇒ ei(K∓
1
2

)2π = 1⇒ K = n+
1

2
, n ∈ Z (35)

This means that the momentum is quantized.
The general solution to equation (30) is a linear combination of both eigenfunctions:

|ψ〉 = c1(t) |ψ1〉+ c2(t) |ψ2〉 =

(
c1(t)ψ1

c2(t)ψ2

)
(36)

where c1(t) and c2(t) do not depend on φ.

3.4 Solution to the Time-Dependent Hamiltonian

Ultimately, we are interested in computing the time-dependent coefficients c1(t) and c2(t)
in order to receive a full solution of the Schroedinger equation. When solving the time-
dependent Schroedinger equation, we may employ the solution to the momentum operator
in order to simplify the eigensystem associated with H̃ as follows.

i~∂t |ψ〉 = H0|ψ〉 =
~2

mR2

(
−1

2

(
∂

∂φ̃

)2

1 + αn̂σ

)
|ψ〉 (37)

=
~2

mR2

 −1
2

(
∂
∂φ̃

)2

+ α cos θ̃ α sin θ̃e−iφ̃

α sin θ̃eiφ̃ −1
2

(
∂
∂φ̃

)2

− α cos θ̃

 |ψ〉
=

~2

mR2

(
1
2

(
K − 1

2

)2
+ α cos θ̃ α sin θ̃e−iφ̃

α sin θ̃eiφ̃ 1
2

(
K + 1

2

)2 − α cos θ̃

)
︸ ︷︷ ︸

≡ H0,K,φ̃(t)

|ψ〉 (38)

where φ̃ = φ− ω1t and θ̃ = θ − ω2t and where H0,K,φ̃(t) is defined by the last equation.
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Setting up the Schroedinger equation for the time-dependent coefficients

Our objective is to set up the Schroedinger equation for the time-dependent coefficients
c1(t), c2(t), which we do by appropriately transforming the Schroedinger equation for |ψ〉:

i~∂t
(
c1(t)ψ1

c2(t)ψ2

)
= H0(t)

(
c1(t)ψ1

c2(t)ψ2

)
(39)

⇔ i~∂t
(

c1(t)
c2(t)ψ2/ψ1

)
= H0(t)

(
c1(t)

c2(t)ψ2/ψ1

)
Employing the formerly computed solution to the momentum operator, we know that
ψ2/ψ1 = eiφ and may write

i~∂t
(

c1(t)
c2(t)eiφ

)
=

~2

mR2

 (
1
2
(K − 1

2
)2 + α cos θ̃

)
c1(t) + α sin θ̃e−iφ̃c2(t)eiφ

α sin θ̃eiφ̃c1(t) +
(

1
2
(K + 1

2
)2 − α cos θ̃

)
c2(t)eiφ



⇔ i~∂t
(
c1(t)
c2(t)

)
=

~2

mR2

(
1
2
(K − 1

2
)2 + α cos θ̃ α sin θ̃eiω1t

α sin θ̃e−iω1t 1
2
(K + 1

2
)2 − α cos θ̃

)
︸ ︷︷ ︸

≡ H0,K,ω(t)

(
c1(t)
c2(t)

)
(40)

where H0,K,ω(t) is defined by the last equation.

Moving into a rotating coordinate system

To solve the eigensystem, we transform H0,K,ω(t) by changing into a coordinate system
rotating clockwise with a frequency ω = ω1:(

c̃1(t)
c̃2(t)

)
= e−

i
~Szωt

(
c1(t)
c2(t)

)
= e−

i
2
σzωt

(
c1(t)
c2(t)

)
(41)

To put it another way, we have(
c1(t)
c2(t)

)
= e

i
2
σzωt

(
c̃1(t)
c̃2(t)

)
(42)

where

e
i
2
σzωt =

∑
n

(
i
2
σzωt

)n
n!

=
∑
n

(
i
2
ωt
)n

n!

(
1n 0
0 (−1)n

)

=


∑
n

( i2ωt)
n

n!
0

0
∑
n

(− i
2
ωt)

n

n!

 =

(
e
i
2
ωt 0

0 e−
i
2
ωt

)

14
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Implementation of equation (42) in equation (40) gives:

i~∂t

(
e
i
2
ωt 0

0 e−
i
2
ωt

)(
c̃1(t)
c̃2(t)

)
= H0,K,ω

(
e
i
2
ωt 0

0 e−
i
2
ωt

)(
c̃1(t)
c̃2(t)

)
Transformation of the left-hand side yields:

e−
i
2
σzt × L.H.S. =

(
e−

i
2
ωt 0

0 e
i
2
ωt

)(
e
i
2
ωt
(
−~ω

2
+ i~∂t

)
0

0 e−
i
2
ωt
(~ω

2
+ i~∂t

) )( c̃1(t)
c̃2(t)

)
=

(
−~ω

2
0

0 ~ω̃
2

)(
c̃1(t)
c̃2(t)

)
+ i~∂t

(
c̃1(t)
c̃2(t)

)
Considering the right-hand side gives:

e−
i
2
σzt ×R.H.S. =

(
e−

i
2
ωt 0

0 e
i
2
ωt

)
H̃K

(
e
i
2
ωt 0

0 e−
i
2
ωt

)(
c̃1(t)
c̃2(t)

)
=

(
1
2
(K − 1

2
)2 + α cos θ̃ α sin θ̃

α sin θ̃ 1
2
(K + 1

2
)2 − α cos θ̃

)(
c̃1(t)
c̃2(t)

)
As a consequence, we have

i~∂t
(
c̃1(t)
c̃2(t)

)
=

~2

mR2

(
1
2
(K − 1

2
)2 + α cos θ̃ + ωmR2

2~ α sin θ̃

α sin θ̃ 1
2
(K + 1

2
)2 − α cos θ̃ − ωmR2

2~

)
︸ ︷︷ ︸

≡C

(
c̃1(t)
c̃2(t)

)
(43)

Comparing equation (43) with the corresponding static Schroedinger equation for time-
independent coefficients, one observes that C is the Hamiltonian one receives when consid-

ering a static magnetic field (cf. [18]) combined with an additional matrix
(

ωmR2

2~ 0

0 −ωmR2

2~

)
.

In the following, we will deal with time-independent θ̃ and time-dependent φ̃, so that
θ̃ = θ = const. As eigenvalues of the operator C we get:

E± =
~2

mR2

K2 + 1
4

2
±

√
(K − ωmR2

~ )2

4
− α(K − ωmR2

~
) cos θ + α2

 (44)

which correspond to the energies of the lower and the upper band. E− corresponds to a
magnetic moment which is parallel to the magnetic field. As we consider a time-dependent
problem, the concept of eigenergies is not applicable without restrictions. In this case, we
name the above mentioned eigenvalues eigenenergies as we will find they resurface in the
solutions to the initial Schroedinger equation in the form of a dynamic phase factor.
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Determining the rotated time-dependent coefficients c̃1(t), c̃2(t)

Our aim now is to determine the solution to equation (43), i.e. find a representation of the
rotated time-dependent coefficients c̃1(t), c̃2(t). An equation of the form

i~∂t
(
c̃1(t)
c̃2(t)

)
= C

(
c̃1(t)
c̃2(t)

)
can immediately be found to have the solutions(

c̃1,+(t)
c̃2,+(t)

)
=e−iE+tx+ (45)(

c̃1,−(t)
c̃2,−(t)

)
=e−iE−tx− (46)

where E+, E− and x+,x− are the eigenvalues and the corresponding normalized eigenvec-
tors of the matrix C, respectively. More precisely, the latter are found to be

x± =

(
x1,±
x2,±

)
=

1

N±

( ~2
mR2

(
−1

2
(K + 1

2
)2 + α cos θ

)
+ ~ω

2
+ E±

~2
mR2α sin θ

)
(47)

with a normalization factor

N2
± =

(
~2

mR2

(
−1

2

(
K +

1

2

)2

+ α cos θ

)
+

~ω
2

+ E±

)2

+ (α sin θ)2 (48)

Remark:
This solution for c̃1(t), c̃2(t) can also be found in a more meticulous way by making use of the
matrix C being diagonalizable. This enables one to write

D = S−1CS =

(
E+ 0
0 E−

)
and C = SDS−1 = S

(
E+ 0
0 E−

)
S−1

where S is an invertible unitary and time-independent matrix which consists of the column vectors
corresponding to the normalized eigenvectors of C. As, with foresight to Section 6, where we
discuss the scattering of an incoming wavefunction with energy E+, we are interested in the
solutions to the separate eigenenergies E+ and E− rather than a combined solution of both, we
consider c̃i+(t) and c̃i−(t) separately. Consider c̃i+(t).

∂t

(
c̃1,+(t)
c̃2,+(t)

)
= S

(
E+/i~ 0

0 0

)
S−1

(
c̃1,+(t)
c̃2,+(t)

)
⇔ S−1∂t

(
c̃1,+(t)
c̃2,+(t)

)
= 1

(
E+/i~ 0

0 0

)
S−1

(
c̃1,+(t)
c̃2,+(t)

)
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Substituting S−1∂t

(
c̃1,+(t)
c̃2,+(t)

)
=

(
ġ1,+(t)
ġ2,+(t)

)
we establish a simple system of differential equa-

tions (
ġ1,+(t)
ġ2,+(t)

)
=

(
E+/i~ 0

0 0

)(
g1,+(t)
g2,+(t)

)
=⇒

(
g1,+(t)
g2,+(t)

)
=

(
const. · e−

i
~E+t

0

)

We now normalize the arbitrary vector and substitute back, i.e. set(
c̃1,+(t)
c̃2,+(t)

)
= S

(
g1,+(t)
g2,+(t)

)
=

(
x1,+ x1,−
x2,+ x2,−

)(
g1,+(t)
g2,+(t)

)
= e−

i
~E+t

(
x1,+

x2,+

)
In an analogous manner, one finds that(

c̃1,−(t)
c̃2,−(t)

)
= e−

i
~E−t

(
x1,−
x2,−

)

Establishing the solutions to the initial Schroedinger equation, equation (38)

Combining equation (45) and equation (46) with the already computed static parts of the
wave function equation (33) and equation (34), as well multiplying the respective compo-
nents with a factor which sets the wave-function back into a non-rotating coordinate system
(see equation (42)), we receive the exact solutions to the initial Schroedinger equation (38).

|ψ〉K,+ =e−iE+t

(
x1,+ ei(K−

1
2

)φ e
iω
2
t

x2,+ ei(K+ 1
2

)φ e−
iω
2
t

)
, +,K〈ψ |ψ〉K,+ = 1 (49)

|ψ〉K,− =e−iE−t

(
x1,− e

i(K− 1
2

)φ e
iω
2
t

x2,− e
i(K+ 1

2
)φ e−

iω
2
t

)
, −,K〈ψ |ψ〉K,− = 1 (50)

These solutions specific to energies E− and E+ (and respective bands + and −) correspond
to solutions to one particular K, hence the indices.
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4 Adiabatic Behaviour

4.1 Approximate Solution to E± for R→∞

In the following, we will determine the approximate solution to E± concerning H0. As
we want to investigate adiabatic behaviour, i.e. a situation where the transition energy
between an ↑-state and ↓-state is large compared to ~ω = ~vF

R
, there are two possible

limits which can be considered: (a) α → ∞ or (b) R → ∞. The idea is that these
correspond to (a) a strong coupling of the spin to the underlying magnetic field leading to
a smooth adjustement of the spin or (b) an infinite radius R of the ring, i.e. a magnetic
field which changes infinitely slowly.

We consider the case R→∞ and scale the physical entities accordingly.
K increases linear with R as we require the fermi-energy EF =

~2k2F
2m

to remain the same,
i.e. k2

F =
(

2π
R
n
)2
, n ∈ Z, should be constant. As the quantum number n is proportional

to the momentum K, n ∼ K, K scales linear with R. α scales quadratically with R, as
α ≡ µBB0

~2/(mR2)
∼ R2. One expects the rate of change of φ, ω, to decrease with increasing

adiabacity. We found that under the condition that we scale ω with 1
R
, this produces

adiabatic bahaviour of the system.

Thus we scale
R −→ λR, K −→ λK, α −→ λ2α, ω −→ ω

λ
(51)

and consider the limit
λ −→∞. (52)

We will later show that in this limit the system evolves adiabatically by comparing the
eigenenergies emerging from the approximation (b) with the eigenenergies determined by
the adiabatic ansatz (see Section 4.2).
The exact solution we have established to be

E± =
~2

mR2

K2 + 1
4

2
±

√
(K − ωmR2

~ )2

4
− α(K − ωmR2

~
) cos θ + α2


Rescaling according to equation (52) yields

E±,λ =
~2

mλ2R2

λ2K2 + 1
4

2
±

√
(λK − λωmR2

~ )2

4
− λ2α

(
λK − λωmR

2

~

)
cos θ + λ4α2


=

~2

mλ2R2

λ2K2 + 1
4

2
± λ2

√√√√ 1

λ2

(
K − ωmR2

~
2

)2

− α

λ

(
K − ωmR2

~

)
cos θ + α2



18
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Next, we Taylor expand the radical term for small s = 1
λ
about s = 0. This gives the

approximate solution to E± for the above limit s→ 0:

E±,s =
~2

mR2

(
K2

2
+ α + s

(
−K

2
cos θ +

ωmR2

2~
cos θ

)
+ O(s2)

)
≡ E±,lim (53)

Up to first order in s, this solution is independent of the rate of change of φ in time, ω.

4.2 Eigenenergies E± Emerging From the Adiabatic Approach

4.2.1 Establishing the Effective Hamiltonian

Our aim is to compare the eigenenergy emerging from an adiabatic ansatz, E±,adiab, and
the exact eigenenergy considered for the limit R → ∞, E±,lim. If they match, we have
convinced ourselves of the fact that the system evolves adiabatically for a large radius
R→∞.

In our set-up, i.e. for a Hamiltonian H0(r, t) = p̂2

2me
+ |µB |B(r, t) · σ, consider a wave

function for an electron at position φ in its local ground state (spin in direction of the
magnetic field).

Adiabaticity justifies the ansatz

|ψ(φ, t)〉 = ψ̃(φ, t) |u(φ, t)〉 (54)

where ψ̃(φ, t) is the amplitude accompanying the ground state |u(φ, t)〉 of H0. Let

|u(φ, t)〉 =

(
u1(φ, t)
u2(φ, t)

)
(55)

be the spin in the direction of the magnetic field B(φ, t).

We will now establish an effective Hamiltonian, expressing the magnetic field in terms of
emergent electric and magnetic fields acting on the momentum of the particle.

Projecting the Schroedinger equation onto the local ground state yields:

Left-Hand Side:

〈u(φ, t) | i~∂t
(
ψ̃(φ, t) |u(φ, t)〉

)
= 〈u(φ, t) |

(
i~∂tψ̃(φ, t)

)
|u(φ, t)〉+ 〈u(φ, t) | ψ̃(φ, t)i~∂t |u(φ, t)〉

= i~∂tψ̃(φ, t) + i~ψ̃(φ, t)〈u(φ, t) |∂t |u(φ, t)〉
= (i~∂t + Φeff(φ, t)) ψ̃(φ, t) (56)

where Φeff(φ, t) = i~〈u |∂t |u〉 (57)

where we have used the shorthand |u〉 ≡ |u(φ, t)〉.
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Right-Hand Side:

Ĥ =
p̂2

2m
+
µBgS
~

B(φ, t)S =
(−i~∇)2

2m
+ µBBσ =

~2

mR2

(
−1

2

(
∂φ̃
)2

+ αn̂σ
)

First, let us consider the kinetic energy.

Kψ̃ =〈u |
(
− ~2

2mR2
(∂φ)2 ψ̃(φ, t)

)
|u〉 = − ~2

2mR2
〈u |∂φ

(
∂φψ̃ |u〉+ ψ̃∂φ |u〉

)
=− ~2

2mR2

(
〈u |
(

(∂φ)2ψ̃
)
|u〉+ 2 ·

(
∂φψ̃

)
(∂φ |u〉) + ψ̃(∂φ)2 |u〉

)
=− ~2

2mR2

(
(∂φ)2ψ̃ + 2 ·

(
∂φψ̃

)
〈u |∂φ |u〉+ 〈u | ψ̃(∂φ)2 |u〉

)
(58)

Our goal is to rewrite Kψ̃ as

Kψ̃ =

(
(p1− Aeff)2

2m
+ Veff

)
ψ̃

=

(
p2

2m
− 1

2m
(p · Aeff)− 1

2m
(Aeff · p) +

AeffAeff

2m
+ Veff

)
ψ̃

with Aeff =
i~
R
〈u |∂φ |u〉 and Veff given below (59)

=− ~2

2mR2

(
∂2
φψ̃ + ∂φ〈u |∂φ |u〉ψ̃ + 〈u |∂φ |u〉∂φψ̃ + | 〈u |∂φ |u〉 |2 ψ̃

)
+ Veff ψ̃ (60)

where ∂φ〈u |∂φ |u〉ψ̃ = 〈∂φu |∂φu〉ψ̃ + 〈u |∂2
φ |u〉+ 〈u |∂φ |u〉∂φψ̃

Comparison of (58) and (60) yields

Veff =
~2

2mR2
(〈∂φu |∂φu〉 − 〈u |∂φ |u〉〈u |∂φ |u〉) (61)

Combining the left- and the right-hand side of the projected Schroedinger equation, we get

i~∂tψ̃ = Heff ψ̃ where Heff =
(p− Aeff)2

2m
− Φeff + Veff +

~2

2mR2
α (62)

where one would have received a (−) sign in front of the last term if one had chosen a spin
directed in the opposite direction with respect to the magnetic field.

As a consequence, comparing the form of the effective vector potential Aeff and equation
(2), the Berry Phase can be said to manifest itself as a vector potential in the effective
Hamiltonian and to induce similar physical properties. The emerging equations of motion
also make clear that, when considering the problem from the point of view of the electron,
the latter is influenced by a Lorentz force FL = −|e|(E+∇×Aeff), with e as the elementary
charge and E as the emergent electric field linked to Φeff and Aeff, in addition to a force
resulting from the effective potential (Feff = −∇Veff).
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4 ADIABATIC BEHAVIOUR

Remark:

A common example for a vector potential proving to show physical effects is the Aharanov-
Bohm effect, where an isolated magnetic field influences a passing particle as a result of
the presence of its vector potential. This influence is observable in the diffraction pattern
on the screen, as it is displayed in figure 8.

+ + 
+ + 

slit 1 

slit 2 
source 

screen 

solenoid 

magnetic 
field potential 

barrier 

Figure 8: The Aharanov-Bohm effect is the most commonly quoted occurence where the influence
of a vector potential on the physics of a wave function is conceivable. Consider a solenoid, i.e.
a coil wound up in a helix, with a homogenous and time-independent magnetic field inside the
cylinder and isolated with respect to the outside by a potential barrier. Despite the isolation of
the interior magnetic field B = ∇× A, the presence of the vector potential A causes a phase-shift
in the wave function of the particle. Its effects can be perceived in the diffraction pattern on the
screen, compare [22].

4.2.2 Determining the Quantized Energies En Corresponding to Heff

Adiabaticity requires that
αn̂σ |u〉 = α |u〉 (63)

i.e. the spin should remain locally aligned with respect to the underlying magnetic field at
all times. For simplicity reasons, we will restrict ourselves to the case of constant θ̃ = θ in
the following and vary only φ̃ in time.

Equation (63) is solved by

| û〉 =
1√

2 + 2 cos θ

(
cos θ + 1

eiφ̃ sin θ

)
=

(
e−iφ̃ cos θ

2

sin θ
2

)
(64)

For the purpose of comparing the eigenenergies which are obtained from the different
ansatzes, it is essential to rewrite the wave function of the ground state so that it resembles
the wave function determined by the exact solution of the Schroedinger equation. It is
necessary that the prefactors in the exponents of the exponential functions before the time
parameter are the same in the respective vector components. Thus, we redefine

|u〉 =

(
e−iφe+iω

2
t cos θ

2

e−i
ω
2
t sin θ

2

)
(65)
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4 ADIABATIC BEHAVIOUR

In order to acquire the complete wave function, we have yet to determine the amplitude ψ̃
of the eigenfunction and therefore construct equation (62).

Aeff =
i~
R
〈u |∂φ |u〉 =

i~
R

(
eiφe−i

ω
2
t cos θ

2

ei
ω
2
t sin θ

2

)(
(−i)e−iφeiω2 t cos θ

2

0

)
=

~
R

cos2 θ

2

(p− Aeff)2

2m
=

1

2m

(
−i~
R
∂φ −

~
R

cos2 θ

2

)2

=
~2

2mR2

(
−∂2

φ + 2i cos2 θ

2
∂φ + cos4 θ

2

)
Φeff =i~〈u |∂t |u〉 = i~

(
eiφe−i

ω
2
t cos θ

2

ei
ω
2
t sin θ

2

)(
(iω

2
)e−iφei

ω
2
t cos θ

2

(−iω
2
)e−i

ω
2
t sin θ

2

)
=− ~ω

2

(
cos2 θ

2
− sin2 θ

2

)
= −~ω

2
cos θ

Veff =
~2

2mR2

(
〈∂φu |∂φu〉 − (〈u |∂φ |u〉)2

)
=

~2

2mR2

((
ieiφe−i

ω
2
t cos θ2

0

)(
−ie−iφei

ω
2
t cos θ2

0

)
−
((
eiφe−i

ω
2
t cos θ2

sin θ
2

)(
−ie−iφei

ω
2
t cos θ2

0

))2
)

=
~2

2mR2

(
cos2 θ

2
+ cos4 θ

2

)
Plugging the expressions above into equation (62) yields the equation

⇒ i~∂tψ̃ =
~2

2mR2

((
−∂2

φ + 2i cos2 θ

2
∂φ + 2 cos4 θ

2

)
+
ωmR2

~
cos θ + cos2 θ

2
+ 2α

)
ψ̃ (66)

⇒ ∂tψ̃ = − i~
2mR2

((
−∂2

φ + 2i cos2 θ

2
∂φ + 2 cos4 θ

2

)
+
ωmR2

~
cos θ + cos2 θ

2
+ 2α

)
ψ̃ (67)

As we expect ψ̃(φ, t) to be a product of an angle-independent and a time-independent
function (we have already found the exact solution, which did have this form), we make
the product ansatz ψ̃(φ, t) = f(t)g(φ).

⇒ ∂tf(t)

f(t)︸ ︷︷ ︸
≡− i

~En=const.

=
(a∂2

φ + b∂φ + c)g(φ)

g(φ)︸ ︷︷ ︸
≡− i

~En=const.

We can readily deduce that

f(t) = A1 · e−
i
~Ent, where A1 ∈ C

Making use of the periodic boundary condition g(φ) = g(φ+ 2π), we know that

g(φ) = A2 · einφ, where A2 ∈ C, n = K − 1

2
∈ Z
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As a result, we have

ψ̃(φ, t) = A · exp
(
inφ− i

~
Ent

)
, where A ∈ C, n ∈ Z (68)

and En =
~2

2mR2

(
n2 − 2n cos2 θ

2
+ 2 cos4 θ

2
+
ωmR2

~
cos θ + cos2 θ

2
+ 2α

)
In order to be able to verify that the energy evolving from this strict adiabatic ansatz is in
accordance with the approximation for R→∞ we have made in the previous section, we
have to bear in mind that there may be possible shifts in the parameter K. Comparison
of the wave functions shows that K is indeed shifted, i.e. n = K + 1

2
. This yields

En =
~2

mR2

(
K2

2
+
K

2
+

1

8
−
(
K +

1

2

)
cos2 θ

2
+ cos4 θ

2
+
ωmR2

2~
cos θ +

1

2
cos2 θ

2
+ α

)
=

~2

mR2

(
K2

2
+

1

8
− K

2
cos θ + cos4 θ

2
+
ωmR2

2~
cos θ + α

)
In order to check if the solution for the adiabtic ansatz is consistent with the exact solution
in the limit of R→∞, we apply the same scaling as in equation (52) so that

En =
~2

mλ2R2

(
λ2K2

2
+

1

8
− λK

2
cos θ + cos4 θ

2
+
λωmR2

2~
cos θ + λ2α

)
=

~2

mR2

(
K2

2
+ α + s

(
−K

2
cos θ +

ωmR2

2~
cos θ

)
+ s2

(
1

8
+ cos4 θ

2

))
≡ E±,adiab

(69)

This result is in perfect accordance to linear order in s with equation (53) for a spin in the
direction of the magnetic field B. In a similar way, we can show that for a spin antiparallel
with respect to B, we achieve equally compatible results.

As the approximate solution for R→∞ and the one evolving from the adiabatic approach
match, we have convinced ourselves that in the limit of R → ∞, our system does indeed
behave adiabatically.
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5 Berry Phase Physics in a Time-Dependent Magnetic
Field

5.1 Determining the Berry Phase

We will now compute the Berry phase of a wave function in our time-dependent magnetic
field.

In particular, we should carefully take into account the time dependence of the wave
function, which leads to a slightly more complex representation of the phase compared to
the case of a static magnetic field. The Berry phase is specific for the parameter space of
the Hamiltonian, which in our case is a space-time continuum, so when integrating over a
closed loop in parameter space we must not neglect the time component.

In the following, we shall simplify expressions by choosing units such that ~ = R = 1, i.e.

γ = i

2π∫
0

〈u(φ̃(φ, t)) |∂φ̃ |u(φ̃(φ, t))〉dφ̃ (70)

The total differential dφ̃, where φ̃ = φ− ωt, takes the following form:

dφ̃ =
∂φ̃

∂φ
dφ+

∂φ̃

∂t
dt = dφ− ωdt (71)

Plugging equation (71) into equation (70) above, one has

γ = i

2π∫
0

〈u |∂φ |u〉dφ− iω
2π/ω∫
0

〈u |∂φ |u〉dt (72)

For aesthetic purposes, one may consider that

∂φ̃

∂t
= −ω ⇒ ∂

∂φ̃
= − 1

ω

∂

∂t

and, consequently, one may rewrite equation (72):

γ = i

2π∫
0

〈u |∂φ |u〉dφ+ i

2π/ω∫
0

〈u |∂t |u〉dt (73)

As a result, we find that the Berry Phase is the sum of the Berry Phase for a time-
independent parameter space and an additional part which stems from the extra time
parameter.
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Spin in Magnetic Field

We consider the particular case of a particle whose spin points in the direction of the
externally applied magnetic field, which varies in time. We have already shown that the
wave function is given by:

|u〉− =

(
e−iφ̃ cos θ

2

sin θ
2

)
There are three important limiting cases which may be investigated more closely.

Firstly, consider a static system which is entirely time-independent. In this case, we have

∂t |u〉 = 0 and the Berry phase is γ− = i
2π∫
0

〈u |∂φ |u〉dφ = 2π cos2 θ
2
. Alternatively, one may

take a different point of view and contemplate the system at a fixed place, ∂φ |u〉 = 0, so

that the Berry phase is γ− = i
2π/ω∫

0

〈u | ∂t | u〉dt = 2π cos2 θ
2
. As expected, both points of

view yield the same physical results.

Thirdly, we are interested in a system in which the observer moves with the change of the
system so that the motion of the particle and the alteration in the magnetic field cancel
each other out exactly, i.e. −ω = 2π

T
. This gives

γ− = i

2π∫
0

〈u |∂φ |u〉dφ+ i

2π/ω∫
0

〈u |∂t |u〉dt = 0 (74)

i.e. there would be no change of the wave function.

In an analogous way, we may determine the Berry phase for a spin pointing in the opposite
direction, i.e.

|u〉+ =

(
−e−iφ̃ sin θ

2

cos θ
2

)
. (75)

For either of the two first limiting cases we have:

γ− =2π cos2 θ

2
(76)

γ+ =2π sin2 θ

2
(77)

so that γ− + γ+ is independent of θ.
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5.2 Interpretation of Berry’s Phase

We will now investigate possible interpretations of Berry’s phase. When introducing the
Berry phase, we already discussed the possible geometric analogon of parallel transport,
in which the discerning ’phase’ is related to the solid angle trespassed on the sphere, see
figure 3. We will now follow this thought and examine the relation between the Berry
phase and the area trespassed on a sphere.

θ2 

θ1 
φ1 

φ2 

θ 

φ 

r=
1 dΩ 

Figure 9: An infinitesimal solid angle is given by dΩ = dA
r2

= sin θ dθ dφ. For the infinitesimal
area approaching one of the poles, sin θ approaches zero, so that the solid angle becomes smaller.

An infinitesimal area on the sphere is given by (see figure 9):

dA = (r sin θ dθ)(r dφ)

and thus the solid angle is

dΩ =
dA

r2
= sin θ dθ dφ

Calculating the solid angle enclosed by the path of the particle is then straightforward:

Ω =

∫
dΩ =

2π∫
0

θ∫
0

sin θ dφ dθ = 2π(1− cos θ) (78)

Comparing this result with equation (76) and equation (77), we find that

γ− =2π cos2 θ

2
= −Ω

2
+ 2π (79)

γ+ =2π sin2 θ

2
=

Ω

2
(80)
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In effect, considering that e2πi = 1, we have found γ± = ±Ω
2
which is defined up to mod2π.

We conclude that the Berry phase corresponds to half of the solid angle Ω which is de-
termined by the motion of the particle on the surface of the sphere. The factor two hints
at the fact that a spin is only converted into its identity after a rotation of 720◦ degrees,
a rotation about 360◦ yields a sign. Consequently, after crossing a solid angle of 2π, the
Berry phase of a spin-1

2
-particle is ±π so that |ψ(t = T )〉 ∼ e±iπ |u〉± = −|u〉±.

Emergent Electrodynamics

We can now compute the effective vector field which arises from the effective vector po-
tential Aeff.

Beff = rot A = ∇×
(
~
R

cos2 θ

2
êφ

)
To evaluate the magnetic field, the physical entity to consider is the magnetic flux density,
which proves to be different from zero and which assumes the same form as the Berry
phase (for ~ = 1).

Φmag =

∫
A

Beff dA =

∫
A

∇×Aeff dA =

∮
C

Aeff ds

=R

2π∫
0

Aφ dφ =

2π∫
0

~ cos2 θ

2
dφ = 2π~ cos2 θ

2

As a consequence, we may conclude that the physical effect of the Berry phase corresponds
to an effective magnetic flux passing through the surface enclosed by the trajectory of the
particle with a spin on the ring. The magnetic flux acts on the particle, more specifically it
is an orbital magnetic effect, which results from a coupling of the momentum to an effective
vector potential. This is opposed to the Zeeman effect, which is related to the coupling of
the spin to the orbital momentum.

We are interested in whether the time-dependence of φ̃ = φ − ωt leads to an emergent
electric field or not. No such electric field emerges, as

Eeff = −∇Φeff −
∂Aeff

∂t
= −∂φΦeff = 0

This stems from the fact that the time-dependent problem can be mapped onto a time-
independent problem by Galilei-transformations. For this problem we know that there are
no emergent electric fields, see also [18]. The Galilean invariance of the problem is further
investigated in section 5.3.

However, we expect to find a non-vanishing emergent electric field Eeff 6= 0 for time-
dependent θ̃ = θ − ω2t.
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5.3 Galilean Invariance

The problem of a time-dependent magnetic field of the form B = B(φ̃ = φ − ωt) does
not give rise to a substantial change in the physical observables, i.e. no electric field
emerges from the time-dependence. This is reflected in the possibility of reversing the
time-dependence by a Galilean transformation.

As an example, one may consider a system moving with velocity ω, i.e. producing a
translational shift of φ corresponding to a transformation back into a time-independent
system. For a static system,

i~dtψ(φ, t) = i~∂tψ(φ, t) = Hψ(φ, t) (81)

For a time-dependent system, we let

ψ(φ, t) −→ ψ′(φ′, t′) = ψ′(φ− ωt, t) (82)
t −→ t′ = t (83)

From this transformation one may obtain the Schroedinger equation for the transformed
wave function ψ′(φ′).

i~dtψ′ =i~
∂ψ′

∂φ′
∂φ′

∂t
+ i~

∂ψ′

∂t
= −i~ω∂ψ

′

∂φ′
+ i~

∂ψ′

∂t
= Hψ′

⇒ i~∂tψ′ =
(
H + i~ω

∂

∂φ
1

)
ψ′ (84)

Employing the identity
∂ψ′

∂φ
=

(
−ψ′1 · i2
ψ′2 · i2

)
, (85)

where ψ′1, ψ′2 are the first and the second components of the wavefunctions|ψ〉K,+and|ψ〉K,−
respectively, we obtain

i~∂tψ′ =
(
H +

~ω
2

(
1 0
0 −1

))
ψ′ =

(
H +

~ω
2
σz

)
ψ′

= (H + ωSz)ψ
′ = H′ψ′ (86)

From this we deduce that the problem we consider is Galilean invariant in the way that
the Schroedinger equation of the wave function which has undergone a translational shift
−ωt assumes the same form as the static Schroedinger equation. Put differently, the time-
dependence of the equation may easily be reversed by a Galilean transformation which
leaves the problem invariant.
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Alternative: Unitary Transformations

One can also map the time-dependent problem onto a time-independent problem by making
use of unitary transformations. We rewrite

ψ =Uψ̃

H =U†H̃U

where U = ei
ω
2
tσz is a unitary operator, U†U = 1.

This gives

i~∂tψ = Hψ

⇒i~∂tUψ̃ = i~
(
iω

2
σz

)
Uψ̃ + i~U∂tψ̃

!
= HUψ̃ | · U†

⇔i~∂tψ̃ =

(
H̃ +

~ω
2
σz

)
ψ̃

which yields a simple effective magnetic field in addition to the static Hamiltonian, as
before. We may imagine that the spin simply rotates with the time-dependent magnetic
field. This situation is not even affected by a static potential scatterer, as the resulting
Hamiltonian will still be time-independent. This invariance, however, is not upheld when
considering a magnetic impurity as a disturbance in the Hamiltonian.

In the following chapter, we will consider the latter, i.e. the scattering of a spin-1
2
-particle

by a magnetic impurity, which is a problem where the energy is not conserved.
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6 Scattering of a Spin-1
2-Particle by a Delta-Potential

In the following, we will consider a magnetic impurity as a scatterer of a spin-1
2
-particle in

one dimension. This corresponds for example to a defect in the local magnetic structure
inducing a magnetic field, e.g. as a result of strong spin-orbit coupling. From this set-up,
we expect to observe spin-flipping scattering processes as well as transitions into other
energy bands.

6.1 Turning Back to Eigenenergies

First, let us turn back to the exact eigenenergies we computed in section 3.4, equation
(44). We will consider an incoming wave function with a fixed energy

E+ =
~2

mR2

K2 + 1
4

2
+

√
(K − ωmR2

~ )2

4
− α(K − ωmR2

~
) cos θ + α2

 = const. = ε0

For a fixed energy εn = ε0 + n · ω there are maximal four real solutions for K(n, σ, δ),
which correspond to the propagation directions δ = l, r and the two possible eigenenergies
of the respective wave functions, i.e. the alignment of the spin σ = +,− with respect to
the magnetic field, see figure 10.

E+/-(K) 

K 

E-(K) 

E+(K) 

K-,l 

K+,l 

K-,r 

K+,r 
εn 

Figure 10: Eigenenergies E±(K) plotted versus the momentum eigenvalue K for sample values of
α, ω, θ and x = mR2

~2 . The points of intersectionKi with a fixed energy ε determine the propagation
direction and the spin alignment of the wave function. We set α = 10, ω = 0.1, θ = π

2 and
x = mR2

~2 = 10.
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We introduce the notation

Kn
+,l : wave propagation towards left, spin in direction of magnetic field with energy εn

Kn
+,r : wave propagation towards right, spin in direction of magnetic field with energy εn

Kn
−,l : wave propagation towards left, spin antiparallel to magnetic field with energy εn

Kn
−,r : wave propagation towards right, spin antiparallel to magnetic field with energy εn

Depending on the energy, there are up to four real solutions for K. The energy function
E+(K) lies below the function E−(K) for all specific K, see figure 10. For a fixed energy
below the minimum of E− there are no real solutions. For a fixed energy between both
minima there are two real solutions which correspond to a spin aligned in the direction
of the magnetic field and waves propagating towards the left or the right. For an energy
above two minima there are four real solutions. In this case, both directions of propagation
and both spin orientations occur.

6.2 Setting Up the Matrix Equation

We consider an impurity in the form of a static delta potential in addition to a magnetic
defect, so that

H1 = H0 + (U01+ U1σx)
1

R
δ(φ− φ0) (87)

where H0 is the undisturbed Hamiltonian given in equation (6). The prefactor 1
R

stems
from the fact that the delta function has the property that

δ(x) =

{
0 x 6= 0
∞ x = 0

, and
∞∫

−∞

δ(x)dx = 1 (88)

so that when we create a delta potential at a position s0, δ(s− s0), this corresponds to a
delta potential 1

R
δ(φ− φ0), as

∞∫
−∞

δ(s− s0)ds =

∞∫
−∞

δ (R(φ− φ0))
1

R
dφ =

∞∫
−∞

δ(φ− φ0)
1

R
dφ = 1 (89)

Our ansatz for solving the Schroedinger equation is motivated by Floquet theory, see [23].
The Floquet theorem states that for a Hamiltonian which is periodic in time, H(t) =
H(t + T ), the solutions to the corresponding Schroedinger equation can be written as
|ψ(t)〉 =

∑
α

uα,0e
−iεαt |φα(t)〉, where uα,0 = 〈φα(t) |ψ(0)〉 and α corresponds to the different

possible eigenstates (e.g. up, down). |φα(t)〉 can be written, after fourier transformation,
as |φα(t)〉 =

∑
n

e−inωt |φα,n〉 where |φα,n〉 solves the equation

(εα + nω) |φα,n〉 =
∑
n

(HF )nm |φα,m〉 (90)
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ψin 

ψrefl 

ψtransm 

ϕ<ϕ0 ϕ0 ϕ>ϕ0 

(U0+U1σx)δ(ϕ-ϕ0)/R 

ϕ 

Figure 11: Scattering of a spin-1
2 -particle by a magnetic impurity: The incoming current density

is equal to the sum of the reflected and the transmitted current density.

HF is the Floquet Hamiltonian and the εα,n = εα+nω define quasienergies up to multiples
of nω, for a full derivation see [24]. In our set-up, we consider an incoming wave function
with energy ε0 and allow the incoming particle to gain or lose energy quanta of ~ω, so that
the resulting (Floquet) state is characterized by its energy εn = ε0 + nω. Based on this
idea, we make the following ansatz for solving the Schroedinger equation i~∂tψ = H1ψ:

χ =


ψ0

+,r +
N∑

n=−N
(rn+,lψ

n
+,l + rn−,lψ

n
−,l) : φ < φ0

N∑
n=−N

(tn+,rψ
n
+,r + tn−,rψ

n
−,r) : φ > φ0

(91)

Consequently, we make the ansatz that the wave function on the left hand side and the
right hand side are given by sums of wave functions with energies εn = ε0 + nω, with am-
plitudes rnσ,δ, tnσ,δ which correspond to reflection and transmission coefficients, respectively.
A boundary (leap) condition is imposed by the delta-potential. When integrating

i~∂tχ =
~2

mR2

(
−1

2

(
∂

∂φ̃

)2

1 + αn̂σ +
mR

~2
(U0 + U1σx)δ(φ− φ0)

)
χ (92)

over an ε-environment around φ0 and using
π+ε∫
π−ε

∂2

∂φ2
χ(φ, t)dφ = χ′(π + ε, t)− χ′(π − ε, t).

integration yields

−1

2
(χ′(π + ε)− χ′(π − ε, t))+αn̂σ

∫ π+ε

π−ε
χ(φ, t)dφ︸ ︷︷ ︸
∼O(ε)

+
mR

~2
(U0+U1σx) =

imR2

~
∂t

∫ π+ε

π−ε
χ(φ, t)dφ︸ ︷︷ ︸
∼O(ε)

From the limit ε −→ 0 follows the first boundary condition

χ′(φ+
0 )− χ′(φ−0 ) =

2mR

~2
(U0 + U1σx)χ(φ0, t) (93)
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The renewed integration of equation (92) leads to a second condition, demanding continuity
of the wave function at φ0, i.e.

χ(φ+
0 ) = χ(φ−0 ) (94)

We can determine the reflection and transmission coefficients by setting up a matrix equa-
tion M · a = b, where a is a vector with 4(2N + 1) entries and made up of reflection
and transmission coefficients for different energies εn and M, b are determined by the
boundary conditions. The matrix M is made up of submatrices Mn

0 ,M
n
1 ,M

n
2 sized (4× 4)

corresponding to one particular n. Consequently, M is a (4(2N + 1)× 4(2N + 1))-matrix.
We receive

N∑
n=−N

Mnan =
N∑

n=−N

(
Mn

0e
−inωt + Mn

1e
−i(n+1)ωt + Mn

2e
−i(n−1)ωt

)
an = b0 (95)

where indices n stand for respective energies εn of the wave function.

The (4× 4)-submatrices for specific n are given by

Mn
0 =(mn

0,1,m
n
0,2,m

n
0,3,m

n
0,4)T

where

mn
0,1 =

(
−xn1,+,le

iKn
+,lφ0 , −xn1,−,le

iKn
−,lφ0 , xn1,+,re

iKn
+,rφ0 , xn1,−,re

iKn
−,rφ0

)
mn

0,2 =
(
−xn2,+,le

iKn
+,lφ0 , −xn2,−,le

iKn
−,lφ0 , xn2,+,re

iKn
+,rφ0 , xn2,−,re

iKn
−,rφ0

)
mn

0,3 =

(
−i(Kn

+,l −
1

2
) xn1,+,le

iKn
+,lφ0 , −i(Kn

−,l −
1

2
) xn1,−,le

iKn
−,lφ0 ,(

i(Kn
+,r −

1

2
)− 2mR

~2
U0

)
xn1,+,re

iKn
+,rφ0 ,

(
i(Kn

−,r −
1

2
)− 2mR

~2
U0

)
xn1,−,re

iKn
−,rφ0

)
mn

0,4 =

(
−i(Kn

+,l +
1

2
) xn2,+,le

iKn
+,lφ0 , −i(Kn

−,l +
1

2
) xn2,−,le

iKn
−,lφ0 ,(

i(Kn
+,r +

1

2
)− 2mR

~2
U0

)
xn2,+,re

iKn
+,rφ0 ,

(
i(Kn

−,r +
1

2
)− 2mR

~2
U0

)
xn2,−,re

iKn
−,rφ0

)
and

Mn
1 =


0 0 0 0
0 0 0 0
0 0 −2mR

~2 U1xn2,+,re
iKn

+,rφ0eiφ0 −2mR
~2 U1xn2,−,re

iKn
−,rφ0eiφ0

0 0 0 0



Mn
2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −2mR

~2 U1xn1,+,re
iKn

+,rφ0e−iφ0 −2mR
~2 U1xn1,−,re

iKn
−,rφ0e−iφ0
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Mn
0 is the matrix which is characteristic of the static delta potential, Mn

1 ,M
n
2 represent

off-diagonal terms produced by the magnetic impurity. The vector of coefficients an and
the inhomogenous vector bn are given by

an =


rn+,l
rn−,l
tn+,r
tn−,r

 , bn = δm,0


xm1,+,re

iKm
+,rφ0

xm2,+,re
iKm

+,rφ0

i(Km
+,r − 1

2
)xm1,+,re

iKm
+,rφ0

i(Km
+,r + 1

2
)xm2,+,re

iKm
+,rφ0


In order to cancel out the sum in the matrix problem, we integrate equation (95) over time
and consider the general matrix elements

Amn =

∫
dteimωtAn =

∫
dteimωt(Mn

0e
−inωt + Mn

1e
−i(n+1)ωt + Mn

2e
−i(n−1)ωt) (96)

=2π(Mn
0δm,n + Mn

1δm,n+1 + Mn
2δm,n−1) (97)

and (98)
∞∫

−∞

dtbmδm0e
imωt = 2πδ(mω)bmδm0 = 2πbmδm0 (99)

where we have used the identity

δ(x− α) =
1

2π

∞∫
−∞

eip(x−α)dp (100)

From the form of the general matrix elements it becomes clear that, resulting from the
shift in exponents by ±iωt, secondary diagonal terms emerge in the form of submatrices
Mn

1 ,M
n
2 .

The resulting matrix equation takes the following form:

M−N
0 M−N

2 0 · · · 0
M−N+1

1 M−N+1
0 M−N+1

2 0

0
...

. . .
... 0

0 MN−1
1 MN−1

0 MN−1
2

0 · · · 0 MN
1 MN

0


·



a−N
...

a0

...

aN


=



0
...
0
b0

0
...
0


(101)

The off-diagonal terms are indicative of transitions into other energy bands and are char-
acteristic of the magnetic impurity, as it is clear that they vanish for U1 = 0.

What is more, we expect these off-diagonal terms to decrease with increasing energy E +
n ·ω, so that energy transitions into states with ε0 plus large multiples of ~ω are less likely.
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As a result, we are able to neglect off-diagonal terms for certain |n |> n0. From a technical
point of view, this increasing suppression of matrix entries for growing n becomes apparent
when considering that the Ki increase with higher energies.

We find numerically that physical entities only marginally deviate from each other for
different N as early as for N > N0 = 2. This is why, to allow for a greater range in values
ω, in Section 6.4, most plots have been computed for N = 2.

6.3 Physical Entity Conserved in the Scattering Process

To determine the physical entity conserved in the scattering process, we consider the con-
tinuity equation of quantum mechanics

∇ · j = −∂tρ = 0 (102)

where j is the probability current and ρ =|ψ |2 is the probability density function.

With the objective of determining the exact form of the probability current j, consider the
time-dependent Schroedinger equation for ψ and its hermitian conjugate.

i~∂tψ =− ~2

2m

∂2ψ

∂x2
− µBB0n̂σψ

−i~∂tψ∗ =− ~2

2m

∂2ψ∗

∂x2
− µBB0n̂σψ∗

Subtraction yields:

i~∂t(ψ∗ψ) = i~∂t |ψ |2
!

= − ~2

2m
(ψ∗∂2

xψ −ψ∂2
xψ
∗)

Using equation 102, we may write

∇ · j =
~

2mi
(ψ∗∂2

xψ −ψ∂2
xψ
∗)

and from this follows

j =
~

2mi
(ψ∗ψ′ −ψψ∗′) =

~
m
=(ψ∗ψ′) (103)

We numerically reviewed that the current for a specific wavefunction ψ(K,n) is equal
to the amplitude of the wavefunction multiplied with the derivative of the energy by k
evaluated for the respective K,n.

jKσ,δ =
~
m
=(ψ∗σ,δψ

′
σ,δ) =

~
m
ψ∗σ,δ

[
∂E

∂K

]
Kσ,δ

ψσ,δ (104)

where σ = +,− and δ = l, r.
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E+/-(K) 
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E-(K) 

E+(K) 

K-,l 

K+,l 

K-,r 

K+,r 
ε0 

Figure 12: Eigenenergies E±(K) plotted versus the momentum eigenvalue K for fixed values of
µBB,ω, θ and x = R2 and possible points of intersection Ki with the energy of the incoming wave-
function ε0 = 1. The points of intersection Ki with a fixed energy ε determine the propagation
direction and the spin alignment of the wave function. We set µBB0 = 0.5, ω → 0, θ = π

2 and
x = R2 = 100.

Taking into account the direction of motion of the waves, the law of conservation is

jin =− jrefl. + jtransm. (105)

⇒
∂E0

+r

∂K
=
∑
n

{
−
(
|rn+l |

[
∂E

∂K

]n
+l

+ |rn−l |
[
∂E

∂K

]n
−l

)
+

(
| tn+r |

[
∂E

∂K

]n
+r

+ | tn−r |
[
∂E

∂K

]n
−r

)}
,

which we have also confirmed numerically.

6.4 The Spin-Flip-Rate

In the following, we set m = ~ = 1 and consider an incoming wave function with energy
ε0 = 1. We will scale all other parameters accordingly, using physical units where not
specified otherwise. We are interested only in a regime where there are 4 real solutions Kn

to the equations E± = ε0 +nω, i.e. where the energy εn = ε0 +nω lies above the minimum
of E+(K). Put differently, this corresponds to a system where N ·ω (with N the maximum
quantum number) is smaller than the distance between ε0 and the minimum of E+(K), see
figure 12. As an example, for N = 2 the possible range of ω is limited to approximately
−0.24 < ω < 0.24. We will also be choosing µBB0 < ε0 since the energy gap, when Taylor
expanded around µBB0 = 0 in first order of µBB0, is proportional to 2 cos θµBB0. From
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μBB0 
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ω=0 

ω=0.1 

μBB0 

ω=0 

ω=0.1 

SFR U1=0 U1=4 

Figure 13: The plot shows the spin-flip-rate (SFR) as a function of the amplitude of the underlying
magnetic field, µBB0. As the coupling between the spin of the electron and the magnetization
grows stronger, the spin-flip-rate increases, approaching zero for µBB0 ≈ εF . The blue curve
represents the case of a frequency ω → 0, the green curve has been computed for ω = 0.1. A
magnetic impurity with an amplitude different from zero induces additional spin-flipping (see right
hand side of the figure). We also chose φ0 =0, θ=π/2, x=R2 =100, U0 =2.

a physical point of view, for large µBB0, the spin couples more strongly to the magnetic
structure and is thus less likely to flip. Since we want to find transitions to other spin
states and in order to allow for more discrete energy levels above the minimum of E+, we
choose µBB0 small compared to the fermi energy. The dependence of the spin-flip-rate on
µBB0 is displayed in figure 13.

Particular emphasis will be put on the case of a large radius R, as this is the adiabatic
case, which is why in general we will set R = 10.

In this section, we will further investigate the behaviour of the spin when meeting a mag-
netic potential barrier in the form of a delta potential. We define the spin-flip-rate as the
current induced by all reflected and transmitted waves where the spin is ’up’ (previously
denoted as ’-’), divided by the current induced by the incoming wave (with spin down).

SFR ≡

∑
n

{
−
(
|rn−l |

[
∂E
∂K

]n
−l

)
+
(
| tn−r |

[
∂E
∂K

]n
−r

)}
jin

(106)

When plotting the spin-flip-rate against the radius of the ring, see figure 14, adiabatic
characteristics are observable in the form of a rapid decrease in the spin-flip-rate for growing
R. When the magnetic structure becomes smoother (adiabatic limit), the local magnetic
order is approximately ferromagnetic and the spin becomes less likely to flip. In the limit
of R to infinity, no quantum mechanical phase is acquired and the coupling of the spin to
the magnetic structure is at its maximum.

We are also interested in how the spin-flip-rate changes for different choices of the ampli-
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tudes of the impurities. For both static and magnetic impurities we observe a strong peak
in the spin-flip-rate which corresponds to one particular potential amplitude of order εF ,
see figure 15. Apparently, for a magnetic potential barrier which is about as high as the
non-magnetic potential barrier, spins are most likely to flip. For potentials higher than the
fermi energy, the spin flip rate decreases dramatically and above a value of approximately
20, it stays nearly constant.

When plotting the rate of transmission against the various potentials, one observes total
reflection for U0, U1 > 20: for this height of the potential barrier, which is of far greater
magnitude than ε0, the probability of tunneling vanishes, as one expects.

A distinctive curve emerges when the dependence of the spin-flip-rate on the frequency
ω is plotted, see figure 16. The first observation one makes is that for large µBB0 (one
magnitude smaller than the fermi-energy), the spin-flip-rate stays approximately constant,
whereas for smaller magnetic fields the spin-flip-rate assumes a maximum for values of ω
near zero. For very small magnetic fields the form of the curve resembles a box.

For all magnetic fields, the spin-flip-rate is independent of ω for |ω | larger than a cer-
tain value |ω0 |. When crossing a certain frequency, however, the spin-flip-rate increases
(smoothly for large magnetic fields, more abruptly for very small magnetic fields) to an
astonishingly high value of 0.8, and then rests upon a higher plateau of a nearly constant
spin-flip-rate for a whole region of |ω |<|ω0 |. For small magnetic fields and rotation fre-
quencies ω near zero, the excitation rate of the spin into another spin state is particularly
high.

The width of the peak depends on the choice of the radius R. For increasing R, the width of
the box w decreases, however the respective heights of the plateaus stay the same, see figure
18. The proportionality of the width of the box w and the radius R is linear, w ∼ R−1,
see figure 19. This hints at the fact that high rates of spin-flip are confined to smaller
regions of ω for increasing adiabaticity, i.e. for nearly ferromagnetic structures. The box
width is given by the fermi velocity vF . For ωR = vF , the rim of the box is reached and
the spin-flip-rate decreases rapidly, reaching its new lower level. This is in accordance with
the adiabatic limit that vF/R is small compared to the splitting frequency.

One also observes two peaks at both ends of the box for small magnetic fields. These
are particularly distinct when considering very small magnetic fields approaching zero
(anti-adiabatic limit), when the coupling to the magnetic field vanishes. They result from
effects caused by the magnetic impurity, which becomes clear when considering figure 17.
Their difference in height and thus the break in symmetry of the spin-flip-rate may be the
consequence of our choice of an incoming wave propagating to the right.
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R 

SFR 

Figure 14: The plot shows the spin-flip-rate (SFR) as a function of R (large R correspond to a slow
change of the magnetic structure). When the magnetic structure becomes smoother (adiabatic
limit), the local magnetic order is approximately ferromagnetic and the spin becomes less likely
to flip. We chose µBB0 = 0.5, φ0 =0, θ=π/2, U0 =2, U1 =4.

U0 

SFR 

U1=0 

U1=4 

U1 

SFR 

U0=0 

U0=2 

Figure 15: The plot shows the spin-flip-rate (SFR) as a function of the amplitudes of the static and
magnetic impurities U0, U1. The green curves represent systems where both static and magnetic
impurities are present with given non-zero amplitudes, whereas the blue curves show the spin-flip-
rate for purely static and magnetic impurities, respectively. We chose µBB0 = 0.5, φ0 = 0, x=
R2 =100, θ=π/2.
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SFR μBB0=0.001 
μBB0=0.01 
μBB0=0.05 
μBB0=0.1 
μBB0=0.3 
μBB0=0.5 

ω 

Figure 16: The plot shows the spin-flip-rate (SFR) as a function of the frequency ω with which
the underlying magnetic field varies in time. The SFR remains constant and indifferent to the
frequency for | ω |> 0.15. For small magnetic fields and rotation frequencies ω near zero, the
excitation rate of the spin into another spin state is particularly high. We chose µBB0 as given
in the figure and also set φ0 =0, x=R2 =100, θ=π/2, U0 =2, U1 =4.

ω 

SFR U0=0 
U0=2 

SFR U1=0 
U1=4 

Figure 17: Left-hand side: The plot shows the spin-flip-rate (SFR) as a function of the frequency
ω with which the underlying magnetic field varies in time for a static potential with zero (blue)
and non-zero amplitude (green). The level of the plateaus shifts, but the width of the box is not
affected. We set U1 = 4. Right-hand side: The spin-flip-rate (SFR) is displayed as a function of
the ω for a magnetic impurity with zero (blue) and non-zero amplitude (green). Again, the level
of the plateaus shifts, but the width of the box is not affected. We observe that the peak at the
end of the box seems to stem from effects caused by the magnetic impurity. For a frequency ω
larger than a critical value and for U1 = 0, spin flips no longer occur, the non-magnetic impurity
no longer contributes to the spin-flipping processes. We set U1 = 2. For both plots, we set
µBB0 =0.001, φ0 =0, θ=π/2, R=0.
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R=20 
R=40 
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Figure 18: The plot shows the spin-flip-rate (SFR) as a function of the frequency ω with which
the underlying magnetic field varies in time for different values of the radius R. For increasing R
the width of the box decreases. We set µBB0 =0.001, φ0 =0, θ=π/2, U1 =4, R=0, U0 =0.

Figure 19: The plot shows the spin-flip-rate (SFR) as a function of the product of the frequency
ω with which the underlying magnetic field varies in time and the radius R for different fixed
values of R. The width of the box w in plot 18 decreases linear with R, i.e. for a value of R which
is twice as high, the box is half as wide, w ∼ R−1. The edge of the box in this plot is marked by
the fermi velocity vF . We set µBB0 =0.001, φ0 =0, θ=π/2, U1 =4, U0 =0, so that vF =

√
2.
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6.5 The Rate of Energy Transitions

In this section, we will consider the dependence of the rate of energy transitions on various
parameters. We define the rate of energy transitions as the current induced by wave-
functions with an energy εn = ε0 + nω different from the incoming energy (i.e. n 6= 0)
divided by the current induced by the incoming wave function, which has the energy ε0.

We define the energy transition rate (ETR) as

ETR ≡

∑
n6=0

jn

jin
(107)

where∑
n6=0

jn =
∑
n6=0

{
−
(
|rn+l |

[
∂E

∂K

]n
+l

+ |rn−l |
[
∂E

∂K

]n
−l

)
+

(
| tn+r |

[
∂E

∂K

]n
+r

+ | tn−r |
[
∂E

∂K

]n
−r

)}

Firstly, we are again interested in how the energy-transition-rate changes as a function of
the radius R. We observe that with increasing radius R, the energy-flip-rate decreases,
which is perfectly consistent with our expectations of a system approaching ferromagnetic
order. We also observe that for decreasing |ω| the rate of energy transitions is generally
higher. This is consistent with the observations we made in the previous chapter, namely
that for small ω the spin-flip-rate increases remarkably. In the case of energy transitions,
however, the quantitative significance of these differences is only marginal.

Next, we consider the energy-transition-rate for different choices of the amplitudes of the
impurities. For a purely static potential scatterer, no energy transitions occur. For mag-
netic impurities we observe a high peak in the energy-transition-rate for one particular
amplitude of order 5εF , see figure 21. For a magnetic potential barrier which is about as
high as the non-magnetic potential, spins are most likely to transition into other energy
states. For potentials higher than the fermi energy, the energy-transition-rate decreases
dramatically and above a value of approximately 20[εF ], it stays nearly constant, as we
have observed before for the spin-flip-rate.

The dependence of the energy transition rate (ETR) on the frequency ω bears some re-
semblance to the representation of the spin-flip-rate as a function of ω. For large magnetic
energies, the energy transition rate is nearly constant, whereas for magnetic energies much
smaller than the fermi energy, the energy transition rate has a maximum for small absolute
values of ω. What strikes us is the high peak of the ETR for small magnetic fields, which
is reminiscent of a resonance peak. Unlike the maximum of the spin-flip-rate however, the
maximum peak (and the corresponding ’resonance’ frequency) is shifted to the right with
respect to the origin. It corresponds to the frequency where before we observed peaks at
the margins of the boxes in the STR-plot, see figure 16. In addition, one observes that
for large absolute values of the frequency, the energy-transition-rate is once again almost
oblivious to possible changes inflicted by higher or lower frequencies.

42



6 SCATTERING OF A SPIN-1
2
-PARTICLE BY A DELTA-POTENTIAL
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Figure 20: The plot shows the energy-transition-rate (ETR) as a function of the radius of the
ring, R, for frequencies ω → 0 (blue curve) and ω = 0.05 (green curve) and ω = 0.15 (red curve).
Surprisingly, the energy transition rate is generally higher for ω → 0. We also observe the expected
tendency of a sinking energy transition rate for a system approaching ferromagnetic order. We
chose µBB0 = 0.5, φ0 =0, θ=π/2, U0 =2, U1 =4.
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Figure 21: The plot shows the energy-transition-rate (ETR) as a function of the amplitudes
of the static and magnetic impurities U0, U1. The green curves represent systems where both
static and magnetic impurities are present with given non-zero amplitudes, whereas the blue
curves show the spin-flip-rate for purely static and magnetic impurities, respectively. We chose
ω = 0.05, µBB0 = 0.5, φ0 =0, x=R2 =100, θ=π/2.
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Figure 22: The plot shows the energy-transition-rate (ETR) as a function of the frequency ω
with which the underlying magnetic field varies in time. For very small magnetic fields, the energy
transition rate is largest. One observes a maximum ETR for a frequency of about 0.15. We chose
µBB0 as given in the figure and also set φ0 =0, x=R2 =100, θ=π/2, U0 =2, U1 =4.
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The Average Energy Distance

The average distance in energy covered by a transition into another band can be received
by a simple ansatz. The energy difference of a transition from a state with an energy ε0
into a band with energy En equals n · ~ω. From this we may conclude that the average
energy is nothing less than the sum over all n of n · ~ω weighted with the probability of an
energy transition into a respective band ε0 + n · ~ω, which corresponds to the sum of all
reflection and transmission coefficients with index n. The expectation value of the energy
is then given by

〈∆〉n =
∑
n

( ∑
σ=+,−

∑
δ=l,r

(n · ~ω)(| tnσδ |2 + |rnσδ |2)

)
(108)

where the index n indicates an averaging over all n. We find that for increasing ω, the
average energy distance covered by a transition increases. For the chosen parameters, the
curve finds its maximum for ω ≈ 0.07. It seems surprising that the average energy does
not show symmetry with respect to ω, but steadily decreases for decreasing values of the
frequency. However, as we have mentioned before, the system is generally not symmetric,
as we chose an incoming wave with a specific direction of propagation and a specific spin
state.

<ΔE> 

ω 

Figure 23: Plot of the average energy distance covered by a transition into another band. The
average energy covered has a maximum value for ω ≈ 0.07. We chose µBB0 = 0.5, φ0 = 0, x=
R2 =100, θ=π/2, U0 =2, U1 =4.
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6.6 Transitioning of the Time-Dependent Problem into the Static
Problem

Since we considered a time-dependent magnetic order as a variation of a static problem, it
goes without saying that we are interested in the way the solutions of both systems blend
into one another for ω → 0.

Both problems produce equal results for a non-magnetic impurity, U1 = 0, and when
setting ω → 0. For a magnetic impurity, which produces energy transitions, the case is not
as simple. We have shown that in both cases, we can find the solutions rn+,l, rn−,l, tn+,r, tn−,r
through solving a Matrix equation (compare equation (95)) Ma = b, where M is a sum
of a diagonal matrix M0 and a matrix M̃ representing the terms linear in U1, which is
off-diagonal (diagonal) in the dynamic (static) case.

For small disturbances U1, we may then write

a =(M0 + U1M̃)−1b = (M0(1 + U1M−1
0 M̃))−1b

=(1 + U1M−1
0 M̃)−1M−1

0 b = (M−1
0 − U1M−1

0 M̃M−1
0 )b

where we have used that (1 +x)−1 ≈ 1−x for small x. The term responsible for producing
different results for the static and the dynamic problem, even when letting ω → 0, is
the second part of the inversed matrix, U1M−1

0 M̃M−1
0 . The off-diagonal structure of

M̃dyn, M̃stat result in distinct matrix products.

However, one may achieve comparable results when averaging the static results over an
angle Ω which has the property that it relates the magnetic impurity to the underlying
local magnetic field. The latter should be maximal when perpendicular and minimal when
parallel to the direction of magnetization, respectively. From a physical point of view, this
corresponds to a rotation of the overall magnetic structure by various angles with respect
to the delta potential. We may thus ensure that the direction of the magnetic impurity in
relation to the static magnetic order does not have any unintended influence on the result.

Consider a magnetic field BΩ and a general magnetic impurity proportional to (Sx,Sy)T

which enclose an angle Ω and let ω � vF/R. The magnetic field is then proportional to

BΩ =

(
cos Ω − sin Ω
sin Ω cos Ω

)(
Sx
Sy

)
=

(
cos ΩSx − sin ΩSy
sin ΩSx + cos ΩSy

)

=

 cos Ω
(
S++S−

2

)
+ i sin Ω

(
S+−S−

2

)
sin Ω

(
S++S−

2

)
− i cos Ω

(
S+−S−

2

)  =
1

2

(
S+eiΩ + S−e−iΩ

−i(S+eiΩ + S−e−iΩ)

)

Since we observe the same proportionality S+eiΩ + S−e−iΩ for the offdiagonal matrix el-
ements, it becomes clear that the angle Ω is in fact the location of the delta potential,
φ0.
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6 SCATTERING OF A SPIN-1
2
-PARTICLE BY A DELTA-POTENTIAL

Figure 24: The plot shows the
spin-flip-rate (SFR) as a function
of the angle φ0 for the static prob-
lem, which determines the location
of the impurity, but also indicates
the angle enclosed by the local mag-
netic field and the field induced by
the magnetic impurity. For an an-
gle φ0 = π/2, the spin-flip-rate is
maximal, as the magnetic impurity
is perpendicular to the local magne-
tization. By the same logic, we have
minima of the spin-flip-rate for inte-
gral multiples of π. We also chose
µBB0 = 0.5, θ = π/2, x = R2 =
100, U0 =2, U1 =4.

SFR 

ϕ0 

As a result, by varying φ0, we expect to see minima of the spin-flip-rate for φ0 = nπ,
n ∈ Z, and maxima for multiples of π/2, as can be observed in figure 24. We numerically
confirmed that the transition of the static problem into the dynamic problem for ω → 0
holds true for averaging the results received from the dynamic matrix equation over φ0.
As an example, the spin-flip-rate as a function of U0 is given for both matrix equations
in figure 25. Note that both curves are in accordance with each other, i.e. averaging over
all angles φ0 of the static problem produces the same results as the dynamic problem for
ω → 0.

U0 

SFR 

Figure 25: Spin-flip-rate (SFR) as a function of the amplitude of the static impurity U0 for
U1 6= 0. The red curve corresponds to the data generated by the static matrix equation averaged
over all φ0, whereas the blue curve shows the results for a matrix equation including off-diagonal
terms, where ω → 0. Both curves are, neglecting numerical inaccuracies, in perfect accordance
with each other. We chose µBB0 = 0.5, φ0 =0, x=R2 =100, θ=π/2, U1 =4.
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7 Conclusion and Outlook

In this Bachelor Thesis, we have studied the interplay of magnetism and electric current
by considering the effects of a one-dimensional, non-collinear magnetic structure with a
time-dependence on a passing electron moving on a ring.

We analytically determined the exact wave function of a particle moving through a non-
collinear time-dependent magnetic field, which is the product of a time-dependent and an
angle-dependent function and we computed the eigenvalues of a transformed Hamiltonian,
which may be interpreted as eigenenergies.

We also confirmed that the motion of a spin-1
2
-electron through the chosen magnetic field

is an adiabatic problem by showing that the exact eigenenergies in the limit of an infinite
radius of the ring are in accordance with the eigenenergies emerging from an adiabatic
ansatz. We found that for a time-dependence of the position of the electron, there are no
emergent electric fields since the undisturbed Hamiltonian can be mapped onto a time-
independent one by unitary transformations.

Finally, we investigated the effects of a defect in our set-up by introducing a magnetic
impurity into the system, which breaks Galilei invariance and energy conservation. We
saw that the spin-flip-rate and the rate of energy transitions of an incoming particle wave
resulting from the scattering by the potential decrease for increasing adiabaticity of the
problem. We also found that the magnetic impurity is responsible for most spin-flipping
processes. For small absolute values of ω, both the energy transition rate and the spin-
flip-rate have a maximum and both are relatively indifferent to change of ω outside of that
area of frequencies. We numerically confirmed that the dynamic problem can be mapped
onto the static problem, but only if one averages the static results over all possible angles
φ0 enclosed by the direction of magnetization and the magnetic impurity and considering
the limit of ω → 0.

With a view to future projects, it will be interesting to consider a similar problem where
the parameter determining the direction of magnetization is time-dependent, θ̃ = θ−ωt. In
this case, Galilei transformations of the undisturbed Schroedinger equation will presumably
no longer leave the problem invariant, and electric fields will emerge.
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