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Abstract

In the present thesis we investigate the quantum dynamics of bosonic cold dilute atoms
loaded in a one-dimensional optical lattice. A quantum ratchet effect has been obtained
after breaking the spatiotemporal symmetries present in the system. This has been done
via a time-periodic space-dependent hopping, the influence of an alternating oscillatory
potential and introducing a phase shift among them both.

As a result an asymptotic unidirectional transport of particles is retrieved by means of
numerical calculations using a Runge-Kutta method.

In the framework of Gross-Pitaevskii theory, we study the asymptotic current as a function
of the driving frequency and use the Floquet theory to explain the eigenfrequencies within
a perturbative limit. Additionally, the role of the time-reversal symmetry is quantified in
terms of the relative phase shift .

Finally, leaving the limit of weak interactions and considering stronger strengths, the sys-
tem dynamics reveals a sharp transition between a regular regime and a chaotic behaviour.

Zusammenfassung

In der vorliegenden Bachelorarbeit untersuchen wir die Quantendynamik von bosonischen
kalten Atomen, die in einem eindimensionalen optischen Gitter gefangen sind. Es wurde
nach der Brechung von örtlichen und zeitlichen Symmetrien des Systems ein Quanten-
Ratchet-Effekt erreicht. Dies wurde über ein zeitlich periodisches Quanten-Hopping, ein
oszillierendes alternierendes Potential und einen eingeführten Phasenunterschied zwischen
beiden realisiert.

Als Ergebnis wurde ein gerichteter Transport von Teilchen mit Hilfe von numerischen
Berechnungen in Form eines Runge-Kutta-Verfahrens erhalten.

Wir beschreiben den asymptotischen Strom weiter im Rahmen der Gross-Pitaevskii-Theorie
als Funktion der treibenden Frequenz des Systems und benutzen die Floquet-Theorie um
die Eigenfrequenzen im perturbativen Grenzfall zu erklären. Zusätzlich wird die Rolle der
Zeit-Umkehr-Symmetrie in Bezug auf die Phasendifferenz quantifiziert.

Schliesslich verlassen wir den Bereich der schwachen Wechselwirkungen und betrachten
starke Teilchen-Teilchen-Interaktionen. Dabei zeigt sich ein scharfer Übergang zwischen
einem regulären Regime und einem chaotischen Verhalten.
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1 Introduction

Cold atoms trapped in optical lattices offer a wide range of possibilities for both experimen-
tal and theoretical access to many-body quantum systems. The high degree of tunability
of the lattice parameters, due to the relative arrangement of counter-propagating lasers,
allows us to easily manipulate potential parameters in space and time. Moreover, the in-
teraction strength between the trapped particles can be varied with the use of magnetically
tunable Fleshbach resonances [1].

The unidirectional transport in absence of a bias force has been subject to many studies in
the last decades. This is interesting both, in a classical as well as in a quantum consider-
ation. For instance, thermal noise can evoke a directed motion by transcending potential
barriers, which are known as Brownian motors [2]. The idea consists in generating work at
a microscopic scale. This effect has also been used to describe molecular engines in asym-
metric environments with non-Gaussian [3] as well as Gaussian noise[4]. In the present
work we discuss Hamiltonian quantum ratchet effect, which lacks dissipative effects.

It has been shown, that in order to generate a finite asymptotic current the breaking of
time-reversal symmetry in combination with a broken spatial symmetry is sufficient and
essential [5]. Our goal is to maximize the outcoming current by systematic study of the
system parameters.

Moreover, the role of interactions has captured the interest of the community. Contradic-
tory studies have been published in the frame of non-interacting and weakly interacting
systems [6][5]. Ref [6] states that a directed current occurs only if the interaction exceeds
a critical value, while in ref [5] a finite net-transport of atoms can be retrieved even in the
absence of interactions when the relevant symmetries are broken. Therefore, the use of
interactions as a quantum analogon to Brownian motion in classical ratchets is still a very
attractive topic.

The work on this thesis gave me the opportunity to become familiar with the use of
numerical methods in the context of modern physical problems and also enabled me to
gain experience with fundamental theoretical concepts, which are widely used in state-of-
the-art research. That is an additional reasons why I consider it worth concentrating on
quantum ratchets.

Since this thesis is based on a variety of theoretical ideas, we will give a short review of
the central used elements in the following chapter.
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1.1 Fundamentals of solid-state-physics

1.1 Fundamentals of solid-state-physics

The purpose of the present thesis is to analyse the ratchet effect, presented by identical
atoms loaded in a periodic optical lattice. We will start reviewing some fundamental princi-
ples of solid state physics. A lattice is defined as an infinite periodic array of discrete points
[7], which in d dimensions is generated by a set of linear independent vectors ~a1,~a2, ... ,~ad.
A lattice point ~R can be reached by a linear combination of these base-vectors with integer
coefficients n1, n2, ... , nd,

~R = n1~a1 + n2~a2 + ... + nd~ad. (1.1)

1.1.1 Bloch theory and band-structure

In a solid, the atoms are associated to the lattice points and the electrons are described
as particles in the periodic potential formed by the atoms with periodicity ~R, so that
V (~r) = V (~r+ ~R). This spatial periodicity of the problem allows us to use Bloch’s theorem

ψk(~r) = ei
~k~ruk(~r), where uk(~r) = uk(~r + ~R). (1.2)

The wave-functions ψk(~r) are referred to as Bloch waves. All wave vectors ~k can be reduced
to the first Brillouin zone, so that the functions ψ~k+ ~Gn

are solutions for the Schrödinger
equation as well as ψ~k. For this reason there exist multiple energy values for a given ~k. The
energy depends continuously from ~k, so that there are diverse continuous functions En(~k)
which are regarded as bands. As a convention the different possibilities are numbered with
regard to their energies,

E(~k) = En(~k), E1(~k) ≤ E2(~k) ≤ ... . (1.3)

In the case of a symmetric periodic potential V (~r) = V (−~r) the energy dependence on ~k
is also symmetric. From this follows, that the propagation velocity ∂~kE(~k) vanishes at the
border of the Brillouin zone. Furthermore the energy-range of every band is limited to a
certain interval. These different intervals are separated from each other by the so called
gaps.

For the electrons in the lattice one can consider two cases. First the treatment of the
electrons as quasi-free particles with the kinetic energy much greater than the poten-
tial (~2k2

2m � V ) and second the Tight-Binding-Approximation with the opposite property
(~2k2

2m � V ) as shown in figure (1.1). The latter is suitable to study in the present work,

2



1.1.2 Tight-binding model and Wannier-function

therefore this topic is explained in more detail in section (1.1.2).

1.1.2 Tight-binding model and Wannier-function

Since the kinetic energy of the electrons is much lower than the confining potential, a
Bloch wave which describes quasi-free particles, is not longer appropriate[8]. Instead, a

energy-level of an electron

V(x)

Figure 1.1: Tight-binding approximation for ~2k2

2m � V

more suitable way is, to consider the electrons as bounded to the atoms or the lattice points,
so that their wave-function is associated with the atomic function. For this purpose the well
localized Wannier functions are widely used. They are constructed by a linear combination
of Bloch functions and form an orthonormalized set

wj(~r − ~Rj) = 1√
N

∑
k

e−i
~k ~Rjψ~k(~r). (1.4)

1.2 Floquet theory

The Floquet theory is the analogous to the Bloch theory to study periodically time-
dependent systems. The main advantage is that it allows us to transform the original
time-periodic system to a time-independent one, where it is needed to solve an eigenvalue
problem. Hence the Floquet theory is very important in the study of dynamical systems
in the present thesis it is used to explain the eigenfrequencies of the ratchet system.

The Bloch theorem, as it was already introduced, states that the wave function of a system
in a periodic potential may be written as superposition of plane waves modulated by a
function uk(~r) (eq. 1.2) that has the same period as the potential. The same underlying
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1.2 Floquet theory

ideas have been introduced in the context of time-periodic problems by Floquet (1883).
As a result there is a common language among these two theories.

The starting point is the time-dependent Schrödinger equation with periodic Hamiltonian
Ĥ(t) = Ĥ(t+ T ) [9]. To express the wave function |ψ(t)〉 the Floquet theorem

|ψ(t)〉 = e−iεαt|φα(t)〉, where |φα(t)〉 = |φα(t+ T )〉, (1.5)

is used. Arranging the terms one has [10]

0 =
(
Ĥ(t)− i∂t

)
e−iεαt|φα(t)〉

= e−iεtĤ(t)|φα(t)〉 − i
[
−iεαe−iεαt|φα(t)〉+ e−iεαt∂t|φα(t)〉

]
=⇒ εα|φα(t)〉 =

(
Ĥ(t)− i∂t

)
︸ ︷︷ ︸

≡ĤF

|φα(t)〉. (1.6)

The operator ĤF is denoted as the Floquet Hamiltonian, its eigenvalues are the so called
quasi-energies εα and its eigenvectors are the Floquet states |φα(t)〉 which form a complete
basis. A Fourier-transformation gives of the time-dependent Floquet states gives

|φα(t)〉 =
∑
n

e−inωt|φα,n〉. (1.7)

Plugging this into equation (1.6) leads to a shift for the quasi energy

(εα + nω)|φα,n〉 =
∑
m

(HF )nm |φα,m〉. (1.8)

The time-evolution operator
Û(t) = e−i

∫
Ĥdt (1.9)

can be expressed, as a function of the Floquet Hamiltonian ĤF instead of Ĥ, therefore the
Floquet states |φ〉 diagonalize U(t) with eigenvalues e−iεαt.

Finally the time-evolved state |ψ(t)〉 can be computed by

|ψ(t)〉 = Û(t)|ψ(0)〉 = Û(t)
∑
α

|φα(t)〉 〈φα(t)|ψ(0)〉︸ ︷︷ ︸
≡uα,0

=
∑
α

uα,0e
−iεαt|φα(t)〉

=
∑
α

e−iεαt
∑
n

uα,0e
−inωt|φα,n〉. (1.10)
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For this reason it is equivalent to solve the time-dependent Schrödinger equation. The diffi-
culty in this eigensystem is implied by its dimension because the index n in equation (1.10)
runs from −∞ to ∞, so that the eigensystem is infinite. To reduce the time-independent
basis {φα} the concept of a Floquet-Brillouin zone must be introduced [11]. Nevertheless
the Floquet approach is very useful and gives in our application a good addition to our
numerical results.

1.3 Cold atoms

One of the milestones of modern physics was the possibility to cool atoms down to tem-
peratures close to the absolute zero point of 0K. The process involves several experimental
cooling and trapping techniques like Laser-cooling [12] or evaporative cooling [13], for which
Cohen-Tannoudji, Phillips and Chu were awarded with the nobel prize in 1997.
At this very low temperatures the quantum properties of the atoms prevail over the clas-
sical character. The DeBroglie wavelength is very long, so that it reaches the order of the
interatomic distance and the system can reach the quantum degenerate state which for
bosons is known as the Bose-Einstein condensation (BEC)[13]. Due to the big impact of
the BEC achievement, Ketterle, Cornell and Wieman received the nobel prize in 2001.

1.3.1 Optical lattices

An optical lattice consists of two counter-propagating laser beams, which create a standing
wave with spatially fixed intensity maxima and minima. There are two possible ways of
laser field-particle interaction: First via a dissipative force, which arises from the momen-
tum transfer in the absorption and emission of photons by the atoms[14]. This is the basic
effect in the laser cooling technique. Secondly via a conservative force, which is originated
by the atomic dipole moment induced by the laser field [14], being the basis for the creation
of an optical lattice. To guarantee that only conservative processes are involved the lattice
is ramped up after the cooling process and the laser frequency needs to be highly detuned
from the transition frequency of the trapped atoms. The dipole moment of the atoms,
induced by the electric field is defined over the polarisability α,

~d = α(ω) ~E, where ω is the laser frequency. (1.11)

5



1.3 Cold atoms

Since the intensity is proportional to the electric field I ∝ |E|2, the dipole potential is
given by

Vdipole = −1
2〈
~d ~E(~r)〉 ∝ <(α)I(~r). (1.12)

Considered the dependency of the decay rate Γ and the frequency difference ∆ = ω − ω0,
where ω0 is the transition frequency, the dipole potential is rewritten as

Vdipole ∝
Γ
∆I. (1.13)

So, depending on the direction of the detuning, the potential in the optical lattice is
repulsive (V > 0, ω � ω0) or attractive (V < 0, ω � ω0). Furthermore spatial and
temporal potentials can be created by modulation of the intensity of the laser beam. For
instance a potential of the form V (x) = V0 sin(kx), producing a one-dimensional lattice,
can be generated. In practise this is done with a spatial limitation of the laser beam in
y- and z-direction by two more lasers with gaussian intensity profile, perpendicular to the
first one and to each other [15][14]. The Gaussian profile can be approximated as harmonic
up to second order

V (x) = V0 sin2(kx) + 1
2(ω2

yy
2 + ω2

zz
2). (1.14)

Higher dimensional lattices can be realized by a modulation of the lasers in y- and z-
direction. A two-dimensional example is shown in figure (1.2). The great advantage of

Figure 1.2: Optical lattice in 2 dimensions (Source: [16])

optical lattices is that the parameters of the system, like potential depth, lattice geome-
try and interatomic interaction strengths [17] are highly tunable, opening a new field for
theoretical and experimental investigations.
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1.4 Many-body-Schrödinger-equation

Since we are interested in the time evolution of a many-body system, we use the Schrödinger
equation to model the problem. More precisely we are dealing with an ensemble of N in-
distinguishable non-relativistic weakly interacting bosons. The Hamiltonian of the system
is of the form

Ĥ =
N∑
i=1

T̂i +
N∑
i=1

V̂i + 1
2

N∑
i,j=1
i 6=j

Ûij, (1.15)

where T̂i is the kinetic energy, V̂i the external trapping potential and Ûij the interaction.
The indices i and j denote the lattice position of the particles. We make use of the
theoretical concept of second quantisation, which simplifies the formulation of the problem
enormously and allows us to describe a many-body system in a transparent way in contrast
to the first quantisation formulation. Due to the complexity of the problem, it is necessary
to solve the problem numerically. The details about the numerical methods used in this
thesis are illustrated in Chapter 2.

1.4.1 Second quantisation

The derivation and statements in this section are mainly following the description in [18]
and [19].

The formalism of second quantisation [18] is based on the creation and annihilation oper-
ators b̂† and b̂ respectively in the linear harmonic oscillator. These two operators act on
a Hilbert space of states which here are expressed in the basis of the occupation number
states or Fock states. The Fockspace H is defined as the direct sum of the Hilbert spaces
HN [19] with a given number N of particles,

H = H0 ⊕H1 ⊕ . . .⊕Hi ⊕ . . . =
∞⊕
N=0

HN . (1.16)

This allows us to examine systems with fluctuating total number of particles. A suitable
and useful representation is given by the Basis B with the non-negative integers ni which
mark the occupation of the ith state and are eigenvalues of the so called number operator
n̂i,

B = {|n1, n2, . . . , ni, . . .〉}. (1.17)

The numbers ni can take every arbitrary non-negative integer value for bosons and because
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1.4 Many-body-Schrödinger-equation

of the Pauli exclusion principle either 0 or 1 for fermions. Henceforth we concentrate
exclusively on the bosonic case. The definition of the number operator is done in terms
of the above mentioned creation and annihilation operators. The operator b̂i annihilates
a particle in state i, while b̂†i , which is the Hermitian conjugate of b̂i, creates a particle in
the state i. So in case of ni 6= 0,

b̂i|n1, n2, . . . , ni, . . .〉 ∝ |n1, n2, . . . , ni − 1, . . .〉, (1.18)
b̂†i |n1, n2, . . . , ni, . . .〉 ∝ |n1, n2, . . . , ni + 1, . . .〉. (1.19)

The number operator is then defined by n̂i ≡ b̂†i b̂i and fulfils for bosons the commutator
relations

[bi, b†j] = δij1, [bi, bj] = [b†i , b
†
j] = 0, [n̂i, b̂i] = −b̂i, [n̂i, b̂†i ] = b̂†i . (1.20)

So the normalisation of the states b̂i|n1, n2, . . . , ni, . . .〉 and b̂†i |n1, n2, . . . , ni, . . .〉 leads to
the following equalities for the bosonic creation and annihilation operators

b̂i|n1, n2, . . . , ni, . . .〉 = √ni |n1, n2, . . . , ni − 1, . . .〉, (1.21)
b̂†i |n1, n2, . . . , ni, . . .〉 =

√
ni + 1 |n1, n2, . . . , ni + 1, . . .〉. (1.22)

The criterion of the normability of b̂i|ψ〉 is satisfied for a normalised state |ψ〉 if the absolute
value 〈ψ|b̂†i b̂i|ψ〉 = ni is greater or equal to zero. As a result of that the lowest possible
value for ni so that b̂i|ψ〉 ∈H is 0,

ni ∈ {0, 1, 2, . . .}. (1.23)

1.4.2 Operators in second quantisation

In a many-body problem it is possibly to describe the total state |ψ〉 of the system by a
direct product of one-particle states |ψi〉 . A given operator Â which acts on the jth particle
can be expressed by

Â|ψ〉 = |ψ1〉 ⊗ . . .⊗ Â(j)|ψj〉 ⊗ . . . |ψN〉 (1.24)
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1.4.3 Time-evolution of field-operators (Heisenberg picture)

For instance considering the operator Â(j) = |α〉〈β|, the result of applying it on the state
|ψ〉 is given by

Â|ψ〉 = |ψ1〉o× . . .⊗ |ψj−1〉 ⊗ |α〉 ⊗ . . . |ψN〉〈β|ψj〉. (1.25)

This technique already looks very similar to the concept of second quantisation. In fact the
operator Â can be rewritten by using ladder operators, creating a particles b̂α|vac〉 = |α〉
in the vacuum and annihilating a particle in dependence of β so that Â = b̂†αb̂β. With this
property and the use of the completeness relation of the basis {|α〉} and {|β〉} the operator
is expressed by [19]

Â(j) =
∑
α,β

|α〉〈α|A(j)|β〉〈β| −→ Â =
∑
α,β

b̂†α〈α|A|β〉b̂β. (1.26)

An operator that involves more than one-particle operators, like an operator describing an
interaction between two particles can be represented as followed,

B̂ = 1
2

∑
α,β,α′,β′

b̂†α′b
†
β′〈α, β|B|α, β〉b̂αb̂β. (1.27)

1.4.3 Time-evolution of field-operators (Heisenberg picture)

We introduce the field operators as a linear combination of the ladder operators as follows,

ψ̂(~r) =
∑
i

ψi(~r)b̂i, (1.28)

ψ̂†(~r) =
∑
i

ψi(~r)b̂†i , (1.29)

where the coefficients ψi(~r) are the single particle wave functions for the quantum number
i and the summation goes over the complete associated set of states. The field operators
also satisfy the commutator relations

[
ψ̂(~r), ψ̂†(~r ′)

]
= δ(~r − ~r ′),

[
ψ̂(~r), ψ̂(~r ′)

]
=
[
ψ̂†(~r), ψ̂†(~r ′)

]
= 0. (1.30)

The time evolution can be calculated for any arbitrary operator Â in the Heisenberg image
with i d

dt
Â =

[
Â, Ĥ

]
, so that

i
d

dt
ψ̂ =

[
ψ̂, Ĥ

]
. (1.31)
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1.5 Gross-Pitaevskii theory

Now the motivation for the development of second quantisation becomes obvious, since it
is possible to express the Hamiltonian by the use of field operators in an convenient and
intuitive way,

Ĥ =
∫
d~r ψ̂†(~r)

[
− ~2

2m∇
2 + Vext(~r)

]
︸ ︷︷ ︸

≡Ĥ0

ψ̂(~r) + 1
2

∫
d~rd~r′ ψ̂†(~r) ψ̂†(~r′)U(~r − ~r ′) ψ̂(~r) ψ̂(~r′).

(1.32)

1.5 Gross-Pitaevskii theory

1.5.1 Statistical ensembles

The content of this chapter was mainly written with reference to the presentation in Landau
and Lifschitz in [20].

There are several ways to analyse a many-particle system, depending on the conservation
or not-conservation of the extensive quantities. In the case of a monoatomic gas the
extensive quantities are given by the internal energy U , the Volume V of the system and
the total number of particles N . For this set-up there are three common ensembles [20],
called canonical ensembles. The first one is the micro-canonical ensemble. This describes
a closed system where all the extensive quantities U ,V and N are conserved. Especially
the energy HV,N of the micro-states x is fixed. An ensemble, in which the energy fluctuates
but the particle number and the volume are still constant, is referred to as the canonical
ensemble. In the partition function of this ensemble every micro-state x is weighted with
the Boltzmann factor, containing the inverse temperature β = (kBT )−1

ZC =
∫
dxe−βHV,N (x). (1.33)

The last ensemble, the grand-canonical ensemble, additionally allows the exchange of par-
ticles with an external particle reservoir, while the volume is still kept constant. Because
N is a discrete number the partition is expanded with a sum over all N , with the intensive
parameter µ = ∂NU , known as the chemical potential, belonging to the extensive quantity
N

ZGC =
∞∑
N=0

e−βµNZC . (1.34)

The grand-canonical ensemble is very useful in the context of many-body quantum systems
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1.5.2 Bose-Einstein-condensation

like a Bose-Einstein condensation, where the occupation number of different states varies
due to quantum and/or thermal fluctuations. For this reason we use the grand-canonical
ensemble in our later considerations.

1.5.2 Bose-Einstein-condensation

As the later examined systems models a Bose-Einstein condensate of cold atoms trapped
in an optical lattice, we will briefly mention a few characteristics of this state of matter.

The main feature of a Bose-Einstein Condensate (BEC) is, that below a certain critical
temperature TC , a macroscopic number of particles occupies the ground state of the sys-
tem. Because of the Pauli exclusion principle this is achievable only for bosons. The
high occupation of one quantum state generates a single wave function which can extend
macroscopically in the order of a few millimetres [21]. That is a reason why a Bose-Einstein
condensate is a perfect environment to experiment with quantum phenomena.

At first it is useful to investigate the one-body density matrix [22] n(1)(~r, ~r ′) defined by

n(1)(~r, ~r ′) = 〈ψ̂†(~r)ψ̂(~r ′)〉. (1.35)

The density matrix is Hermitian, why there exists a basis of single particle functions in
which n(1)(~r, ~r ′) is diagonal,

n(1)(~r, ~r ′) =
∑
i

niϕ
∗
i (~r)ϕi(~r ′) = N0ϕ

∗
0(~r)ϕ0(~r ′) +

∑
i 6=0

niϕ
∗
i (~r)ϕi(~r ′). (1.36)

As mentioned above, a system undergoes to a BEC if the lowest energy state ϕ0(~r) is
macroscopically occupied. The diagonal elements (~r = ~r ′) of this matrix give us informa-
tion about the number of bosons in the ith state. The off-diagonal elements (~r 6= ~r ′) carry
information of the momentum distribution of the particles.

The ideal non-interacting Bose gas which will be considered in Chapter 3 in the canon-
ical ensemble, has a average occupation of the ith state [22] given by the Bose-Einstein
distribution

ni = 1
exp[β(Ei − µ)]− 1 . (1.37)

For all configurations of ni the normalisation condition ∑i ni = N must be fulfilled. The
chemical potential depends on the temperature because for increasing temperature also
the chemical potential rises. Let n0 be the lowest energy state. The energy states Ei are

11



1.5 Gross-Pitaevskii theory

independent of the temperature.Then, depending on the density of states of the Ei there
can exist a critical temperature TC , where µ approaches E0, and the fraction of condensed
particles n0 becomes macroscopic.

1.5.3 Mean-field-approximation

In the present work we are also interested in studying the role of interactions in the bosonic
lattice gas. A good starting-point to study weakly interacting particles is using a mean
field approach for the field operator. This approximation has been applied successfully to
describe several BEC properties [23][13][17]. The main idea is to split up the field operator
in the macroscopically occupied condensed fraction and a perturbation containing the non-
condensed particles [23]

ψ̂(~r) = ψ̂(~r) + δψ̂(~r). (1.38)

Since the fraction of the condensate n0 = N0
N

is finite, one can assume that N0 ± 1 ' N0

and the corresponding physical states do not change. As a consequence of that one can
describe the system using coherent states and replace the operators b†i and b†i by their
eigenvalues

√
N . Hence, the mean value of field operator 〈ψ̂(~r)〉 can be associated directly

to the expectation values of the condensate fraction. This we are allows to change from
operators to complex functions

ψ̂ −→ ψ (1.39)

This complex function is defined as the order parameter and also known as the condensate
wave function. In fact the many-body problem is treated in this approach as a one-body
problem in presence of an external mean field.

1.5.4 s-wave-scattering

We are considering a dilute and cold gas of bosonic atoms. When these slow particles scatter
each other, they cannot resolve their internal structure since their De Broglie wavelength is
very long. Therefore, the details of the interacting potential U(~r−~r′) are not important, but
only how the potential behaves at long length scales. The formal way to solve the problem
would be to do a partial wave expansion using the angular momentum components of the
outgoing particles. At low energies the most relevant term is the lowest order which is
the spherical symmetric (angular momentum l = 0) outgoing wave. This is the so called
s-wave scattering.
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1.5.5 Gross-Pitaevskii equation

Since the particles do not realize their structure, the interacting potential can be replaced
by a delta potential in the Gross-Pitaevskii theory within the mean-field equation discussed
below

U(~r − ~r ′) = gδ(~r − ~r ′), where g = 4π~2a

m
. (1.40)

The constant g is proportional to the s-wave scattering length a, which depends on the
atomic properties. In experiments, alkali atoms are used because of the filled up shells and
the single electron in the s-orbital, holding the choice of the δ-potential.

1.5.5 Gross-Pitaevskii equation

The above mentioned properties of a dilute, weak interacting, cold gas of atoms converge
in the Gross-Pitaevskii equation (GPE). The starting point for the GPE is the Heisenberg
equation for the evolution of the field operators. The commutator of equation (1.31) with
the Hamiltonian of equation (1.32) has the form
[
ψ̂(~r, t),

∫
d~r ′ ψ̂†(~r ′) Ĥ0 ψ̂(~r ′) + 1

2

∫
d~r ′d~r ′′ ψ̂†(~r ′) ψ̂†(~r ′′)U(~r ′ − ~r ′′) ψ̂(~r ′) ψ̂(~r ′′).

]

where
Ĥ0 = T̂ (~r ′) + V̂ (~r ′) (1.41)

Using the commutator relations(1.30) we obtain the time evolution of the quantum state
ψ̂(~r, t) by

i~∂tψ̂(~r, t) =
∫
d~r ′ δ(~r − ~r ′) Ĥ0 ψ̂(~r ′) + 1

2

∫
d~r ′d~r ′′ δ(~r − ~r ′) ψ̂†(~r ′′)U(~r ′ − ~r ′′) ψ̂(~r ′) ψ̂(~r ′′)

=
[
Ĥ0 +

∫
d~r ′ψ̂†(~r ′)U(~r − ~r ′)ψ̂(~r ′)

]
ψ̂(~r, t). (1.42)

The next step is to do the mean-field approach (1.38) in the sense that the field operators
are identified by complex functions i.e. ψ̂ → ψ and ψ̂† → ψ∗. So all operators are now
changed to complex functions. Finally, the interaction potential is substituted by the
δ-potential (1.40) and equation (1.42) is rewritten as

i~∂tψ(~r, t) =
[
− ~2

2m∇
2 + V (~r, t) + g |ψ(~r, t)|2

]
ψ(~r, t) . (1.43)

This is known as the Gross-Pitaevskii equation (GPE) and is a common starting point to
study weakly interacting bosonic gases which are considered throughout the present work.
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1.6 Bose-Hubbard model

In particular in this thesis the GPE is used to analyse the quantum ratchet effect of the
particles in a one-dimensional lattice under certain conditions. We consider our system
to be in the tight-binding regime, mentioned in section (1.1.2). In that context the Bose-
Hubbard model is introduced now.

1.6 Bose-Hubbard model

The concept of the Bose-Hubbard model has mainly been worked out with the help of [24]
and [25].

In this thesis we focus on a one-dimensional problem. This is experimentally realizable with
an optical lattice with a modulated potential in one direction and a translation-invariant
potential in the other two.
In the tight binding approach particles are fixed to one site and can solely jump to an
adjacent site, as it is sketched in figure (1.3). More precisely the Wannier functions of the

Figure 1.3: System with equal hopping parameters Jij = J

atoms are separated by comparative high potential barriers. As a result, the behaviour
of atoms confined in an optical lattice can be described by the creation and annihilation
operators b̂†i and b̂i, where i marks the lattice sites. The idea of the Bose-Hubbard model
is to express the Hamiltonian (1.32) in terms of the ladder operators. Therefore we replace
the field operators in the Hamiltonian (1.32) with the expressions in equation (1.29), where
the wave functions can be described by Wannier functions (1.4 because of the high locality
of the atoms, ). Consequently the Hamiltonian can be rewritten, using the δ-potential
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from the s-wave scattering, as

Ĥ =
∑
i,j

∫
d~rb̂†iw

∗(~r − ~Ri)
[
− ~2

2m∇
2 + Vext(~r)

]
b̂jw(~r − ~Rj)

+ 1
2U

∑
i,j,k,l

∫
d~rb̂†iw

∗(~r − ~Ri)b̂†jw∗(~r − ~Rj)b̂kw(~r − ~Rk)b̂lw(~r − ~Rl)

=
∑
〈i,j〉
−Ji,j b̂†i b̂j +

∑
i

Vib̂
†
i b̂i + 1

2
∑
i

Uib̂
†
i b̂
†
i b̂ib̂i. (1.44)

The last step takes the limitation for the hopping to the adjacent sites and the negligence
of interaction between atoms in different sites into account. The notation 〈i, j〉 represents
the set of all neighbouring sites i and j. The factors Ji,j, Vi and Ui are the matrix-elements
given by

Ji,j = −
∫
d~rw∗(~r − ~Ri)

[
− ~2

2m∇
2 + Vext(~r)

]
w(~r − ~Rj) ,

Vi =
∫
d~rw∗(~r − ~Ri)

[
− ~2

2m∇
2 + Vext(~r)

]
w(~r − ~Ri) ,

Ui = 2g
∫
d~r
∣∣∣w(~r − ~Ri)

∣∣∣4 . (1.45)

In particular Ji,j is the probability for a particle to jump from i to j and is referred to
as the hopping-parameter or simply the hopping. Following we will calculate the time-
evolution of the field operator for one site using the Heisenberg-equation (1.31) and the
ladder operators are replaced by the corresponding field operators. We obtain for the
hopping part with the bosonic commutation (1.30) relations

i∂tψ̂k = [ψ̂k,
∑
〈i,j〉
−Ji,jψ̂†i ψ̂j] =

∑
〈i,j〉
−Ji,j

(
ψ̂kψ̂

†
i ψ̂j − ψ̂

†
i ψ̂jψ̂k

)
=
∑
〈i,j〉
−Ji,jδk,iψ̂j

= −J
(
ψ̂k+1 + ψ̂k−1

)
. (1.46)

An analogous calculation is done for the potential

i∂tψ̂k = [ψ̂k,
∑
i

Viψ̂
†
i ψ̂i] =

∑
i

Vi
(
ψ̂kψ̂

†
i ψ̂i − ψ̂

†
i ψ̂iψ̂k

)
=
∑
i

Viδi,kψ̂i = Vkψ̂k, (1.47)
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1.7 Ratchet effect

and the interaction term

i∂tψ̂k = [ψ̂k,
∑
i

Ui
2 ψ̂

†
i ψ̂
†
i ψ̂iψ̂i] =

∑
i

Ui
2
(
ψ̂kψ̂

†
i ψ̂
†
i ψ̂iψ̂i − ψ̂

†
i ψ̂
†
i ψ̂iψ̂iψ̂k

)
=
∑
i

Ui
2
[
ψ̂k, ψ̂

†
i ψ̂
†
i

]
ψ̂iψ̂i =

∑
i

Ui
2
([
ψ̂k, ψ̂i

]
ψ̂†i + ψ̂†i

[
ψ̂k, ψ̂i

])
ψ̂iψ̂i

= Ukψ̂
†
kψ̂kψ̂k . (1.48)

All terms considered, the time-dependence for a field operator of site i is then

i∂tψ̂i = −J
(
ψ̂i+1 + ψ̂i−1

)
+ Viψ̂i + Uiψ̂

†
i ψ̂iψ̂i . (1.49)

The mean field approximation allows us the transfer ψ̂ → ψ and respectively ψ̂† → ψ∗.
As a convention for a weak-interacting case U is replaced by g. The time-dependent mean
field equation for the Bose-Hubbard model can be viewed as a discretized version of the
GPE

i∂tψi = −J(ψi−1 + ψi+1) + Viψi + g|ψi|2ψi. (1.50)

1.7 Ratchet effect

In general context, the concept of ratchets refers to periodic systems with broken symme-
tries that present an unidirectional transport of particles in the presence of zero-averaged
forces [26]. The involved symmetries are on the one hand of spatial and on the other hand
temporal nature, and arise from the periodicity in space and time

x→ x+ a a: spatial period , (1.51)
t→ t+ T T: time period . (1.52)

An example of a classical ratchet is given in figure (1.4). In this case the ratchet effect
results of a driving potential in a sawtooth-shape, that is switched on and off periodically.
With the potential being switched on, the particles are trapped in the potential minima, so
that they are well-localized. Then, in the absence of a potential,the particles disperse freely,
owing to Brownian motion. If the potential is switched on again, some of the particles have
moved over the potential spike and feel a attractive force in the direction of the minumum.
The spatial symmetry is here broken by the sawtooth-shape of the potential, while the
time-reversal symmetry is broken by the Brownian motion of the particles.
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Figure 1.4: Classical ratchet using Brownian motion (Source: [27])

This effect is caused by the classical effect of dissipation which is absent in an ideal su-
perfluid. Classical ratchets are subject to study due to several applications in the nano-
technology sector. For instance work has been published in the fields of protein engines
[28], biology-inspired organic as well as inorganic nanodevices and, as described above,
brownian motors [29], just to mention a few.

On the contrary part, little is known about the ratchet effect in the scope of quantum
mechanics. This is partly due to the challenge in the experimental realization of suitable
ratchet potentials. Nevertheless there are some efforts in realizing experiments concerning
quantum ratchets [30] and also in the context of δ-kicked quantum ratchets [31] and. For
example the rectification of quantum fluctuations using semiconductor hetero-structures
has been observed [32].

In contrast to classical ratchet a quantum ratchet works devoid of dissipative processes.
Directed motion of particles happens because of the breaking of spatiotemporal symmetries
[27]. This is analogue to the sawtooth form of the potential in figure (1.4). Furthermore
the time-inversion symmetry, which is in the classical example broken by the Brownian
motion needs to be broken.

In this thesis we use the fact that with a periodically modulated Hamiltonian one can
break the systems symmetries and therefore obtain a ratchet effect for a weakly interacting
bosonic lattice gas. The aim is to study this effect, evaluating the system parameters to
enhance the symmetry breaking and thus to maximize the atomic current. To have a better
understanding we analyse the role of the interactions in Chapter 4, and characterizing the
system properties without interactions in Chapter 3 as well.

To justify the chosen parameters we use the Floquet theory in Chapter 4 to understand
the eigenfrequencies in a perturbative approach and draw conclusions to different set-ups
for the amplitude of the driving and later the interaction strengths.
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1.7 Ratchet effect

In Chapter 5 we expand our view on strong interactions and therefore leave the proximity
area of the Gross-Pitaevskii theory. To show whether the system shows chaotic character-
istics in this regime we apply the method of a Poincare map. Moreover we are interested
in the fact, if there are stable regions separated from chaotic orbits in phase space for high
non-linearites.
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2 Numerical methods for the simulation

We study the time-dependent Gross-Pitaevskii equation describing the dynamics of a Bose-
Einstein condensate (BEC) in a one-dimensional optical lattice. Due to the non-linearity
of eq. (1.43) a numerical method is needed to solve the problem. As a technique of choice
we use a Runge-Kutta method with accuracy of O(τ 4) to find iteratively the solution of
the non-linear differential equation.

2.1 Runge-Kutta-method (4th-order)

To introduce the technique let us start with an initial value problem defined by

d

dt
y = f(y, t) with y(t0) = y0. (2.1)

The variable t is discretized in steps of τ . A Taylor expansion of y(t) at t′ = t + τ leads
to an approximated expression for yt+τ . From now on the index i marks the value of y(t)
at t and i+ 1 the value at t+ 1τ and so forth, leading to the expansion up to the desired
accuracy p,

yi+1 = yi + τf(ti, yi) + 1
2τ

2
[
d2

dt2
yi

]
+ . . .+ 1

p!τ
py

(p)
i +O(τ p+1). (2.2)

Reclaiming the equation (2.2) in every derivative one obtains the recursive Runge-Kutta
formulas which are for an accuracy up to an order of 4 given by [33]

yi+1 = yi + 1
6 [c1 + 2c2 + 2c3 + c4] (2.3)

with the constants c1, . . . , c4

c1 = τf(ti, yi),

c2 = τf(ti + 1
2τ, yi + 1

2c1),

c3 = τf(ti + 1
2τ, yi + 1

2c2),

c4 = τf(ti + τ, yi + c3).

This calculation is implemented in a C-program with recursive value assignments for the
constants c1, . . . , c4. The use of Richardson extrapolation [34] allows to push the accuracy
to arbitrary good values. But with every gained higher accuracy a higher amount of
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2.2 Simulation of an finite real-space-lattice

constants needs to be calculated. As a compromise between runtime and accuracy we
decided to use the 4th-order

2.2 Simulation of an finite real-space-lattice

As a start we will apply the Numeric method on a finite lattice with free (V = 0) iden-
tical particles, which is characterized by well-defined, discrete lattice points. The well-
localization is simulated by the use of an complex array Psi[N]. The calculations are
executed for an lattice with N = 40 sites and periodic boundary conditions (ψN+1 = ψ1).
The time discretization is chosen as τ = 0.01. Further there were investigated two different
initial conditions.

2.2.1 Gaussian initial condition

The first choice of initial conditions is a normalized gaussian distribution, without any
momentum component:

ψj(t = 0) = C exp
[
−1

2

(
j − µ
σ

)2]
. (2.4)

The center of the Gaussian µ is set in the middle of the lattice at N
2 , and the standard

deviation is selected to be σ = N
2 . The Schrödinger equation for a free particle, with

Gaussian initial distribution (2.4)

− ~2

2m∂2
x ψ = i~∂t ψ , (2.5)

must be solved. A ansatz for the wave function in equation (2.5) is given by the sum over
every possible plane wave under the constraint that ~2k2

2m = ~ω,

ψ(~r, t) =
∫ d~k

2πψ~k exp
[
i
(
~k~r − E~k

~
t
)]
. (2.6)

An explicit perform of a fourier-transformation and the back-transformation to real-space
leads to the result, that the width of the Gaussian distribution σt increases with time,
depending on the initial standard deviation σt=0.

The result of the Runge-Kutta method for the time-evolution in equation (1.50) of the
wave function is plotted in figure (2.1). Due to the periodic boundary conditions the decay
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2.2.2 Well-localized initial condition
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Figure 2.1: Time-evolution of |ψ2
k| with Gaussian initial conditions

evokes a periodic oscillation of the maximum in the plot between the center and the borders
of the lattice because of the additive overlap of the circular floating wave function. Thus
the theoretical model could be reproduced with a numeric calculation.

2.2.2 Well-localized initial condition

Another possibility to initialize the wave function is to constrict the probability density
|ψ|2 to one single site. So the initial condition is given by

ψj(t = 0) = δ(j − χ). (2.7)

where χ is the chosen site with |ψχ|2 = 1. We set χ in the middle of the lattice at N
2 .

Analogue to section (2.2.1) the fourier-transform of equation (2.7) must be calculated, to
get the time-dependence of ψ in real-space. The singularity is include by the fact that
the energy dependence E(k) is a cosine of k, so that vk = dω

dk
is a sine-function. The

back-transformation gives then a classical expectation, with the property of the δ-function
δ(f(x)) = 1

|f ′(x)| ,

n(x, t) =
∫ π

−π
δ(x− vkt)

dk

2π = 1∣∣∣∂vk
∂k

∣∣∣
∣∣∣∣∣∣
vkt=x

= 1
t cos(k)

∣∣∣∣∣∣
sin(k)=x

t

= 1

t

√
1−

(
x
t

)2
= 1√

t2 − x2
.

(2.8)

The contour-plot in figure (2.2) shows the wave function behaviour. It is clearly visible,
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2.2 Simulation of an finite real-space-lattice
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Figure 2.2: Contour-plot for |ψ|2 with well-localized initial conditions

that the former δ-peak moves to the borders of the lattice. Again this matches with the
analytic expectations. In conclusion one can say, that the Runge-Kutta method applied to
the time-dependent mean field theory of the Hubbard model is quantitatively consistent
with the analytic calculation. As a next step we concentrate on the realization of the
ratchet in an infinite lattice system implementing the proper breaking of symmetries and
investigate the resulting atomic current.
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3 Non-interacting quantum ratchets

In this chapter we will present a non-interacting model, so that g = 0 in the discretized
Gross-Pitaevskii equation (1.50). The first step for obtaining a ratchet effect is to break
the spatial symmetry of the lattice in form of a alternating hopping-parameter J . More
precisely every second barrier has the same value for J in the following named J1 and J2,
which are from now on treated as time-dependent. This modulation is easy to realize in
an optical lattice by modulating one laser with the doubled wavelength of the counter-
propagating one. Thus one can divide the lattice into subdomains, each containing two
lattice points, as sketched in figure (3.1). The two points in each box are denoted by L
for left and R for right. In addition a local potential should be also used, to break spatial
symmetry.

Figure 3.1: System with alternating hopping parameters J1, J2

The Hamiltonian for this problem featuring cells of two differing sites is then with the
discrete form of the kinetic energy (1.46) and the potential (1.48) given by

H =
∑
j

[
− J1(t)

(
ψ̂†jLψ̂jR + ψ̂†jRψ̂jL

)
− J2(t)

(
ψ̂†jRψ̂j+1L + ψ̂†j+1,Lψ̂jR

)
.

+ Vj,L ψ̂
†
j,Lψ̂j,L + Vj,R ψ̂

†
j,Rψ̂j,R

]
(3.1)

Moreover we consider not longer a finite but an infinite lattice. As it will turn out later it
is convenient to do a fourier transformation on the Hamiltonian and change into k-space,
which will be the next operation.
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3.1 Transformation to k-space

3.1 Transformation to k-space

We start with the real-space Hamiltonian for a free particle, given by equation (3.1) with
Vj,σ = 0, and the tight-binding approch. The discrete Fourier transformations of the form

ψ̂jσ −→
∑
k

ψ̂kσe
−ikj and ψ̂†jσ −→

∑
k

ψ̂†kσe
ikj, (3.2)

is performed, with σ ∈ {L,R}. Using the discrete δ-function δkk′ = ∑
j e
−i(k−k′)j, Ĥ is

calculated in the following way.

Ĥ =
∑
j

−J1(t)
∑
k,k′

ψ̂†k′Le
ik′jψ̂kRe

−ikj +
∑
k,k′

ψ̂†kRe
ikjψ̂k′Le

−ik′j


−J2(t)

∑
k,k′

ψ̂†k′Re
ik′jψ̂kLe

−ik(j+1) +
∑
k,k′

ψ̂†kLe
ik(j+1)ψ̂k′Re

−ik′j

 (3.3)

So the Hamiltonian becomes block-diagonal with the blocks

Hk =
∑
k

ĥk =
∑
k

{
− J1(t)

[
ψ̂†kLψ̂kR + ψ̂†kRψ̂kL

]
− J2(t)

[
e−ikψ̂†kRψ̂kL + eikψ̂†kLψ̂kR

] }
. (3.4)

To justify later that a computed atomic current is detected due to a ratchet effect, we
investigate the case without initial momentum (k = 0). The Hamiltonian of the system is
in this constraint

Ĥk=0 = −
(
J1(t) + J2(t)

) [
ψ̂†Lψ̂R + ψ̂†Rψ̂L

]
. (3.5)

A convenient basis to represent the operators with matrices is the basis for the two sites
L and R

B = {L = (1, 0)T , R = (0, 1)T}. (3.6)

Using equation (1.26) and the field operators as funcitons of the ladder operators, the
matrix-representation of any operator Ô in the system of L and R is obtained by

Ô =
∑
α,β

ψ̂†αÔψ̂β = ψ̂†Lψ̂L
(
1 0

)∗a b

c d

1
0

+ ψ̂†Lψ̂R
(
1 0

)∗a b

c d

0
1


+ ψ̂†Rψ̂L

(
0 1

)∗a b

c d

1
0

+ ψ̂†Rψ̂R
(
0 1

)∗a b

c d

0
1


= aψ̂†Lψ̂L + bψ̂†Lψ̂R + cψ̂†Rψ̂L + dψ̂†Rψ̂R. (3.7)
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In this form the Hamiltonian (3.5) can be written as

Ĥk=0 = −
(
J1(t) + J2(t)

)
.

0 1
1 0

 (3.8)

Numerically ψ̂σ and ψ̂†σ are then, with the mean-field approach, treated as complex func-
tions and are associated with the arrays Psi[i] and Psi∗[i], where i marks the site of
the lattice in k-space (L or R). Another way to write the Hamiltonian is to separate the
time-dependent from the constant part. In this sense we can rewrite equation (3.5) as

Ĥ = Ĥ0 + δHt. (3.9)

3.2 System with absent potential

The analytic solution for a system with the Hamiltonian in equation (3.5) can be calculated
comparatively simple. So it can serve as a testing ground for the numerical methods,
which are applied later to the non-linear Gross-Pitaevskii equation. In this chapter we will
first consider the case of absent potential and later implement several kinds of periodic
potentials.

At first the analytic solution for equation (3.5) is sketched, to maintain the average density
〈nσ〉t of the two sites Left and Right. First of all the Hamiltonian is diagonalized by
performing the following basis transformation on the operators ψ̂L and ψ̂R

ψ̂+ = 1√
2
(
ψ̂R + ψ̂L

)
, and ψ̂− = 1√

2
(
ψ̂R − ψ̂L

)
. (3.10)

The diagonalized form of the Hamiltonian is then with J(t) = J1(t)+J2(t) and n̂± = ψ̂†±ψ̂±

Ĥ = −J(t) (n̂+ − n̂−) . (3.11)

The Heisenberg-equation together with the use of the commutation relations of equation
(1.20), gives the time-evolution for the operators ψ̂±.

i∂tψ̂± = −J(t)(±1)ψ̂± (3.12)
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3.2 System with absent potential

With equation (3.12) and using integrable functions for J(t) it is possible to calculate first
ψ̂±(t) and then then operate the reverse transformation of equation (3.10) to get ψ̂σ(t) and
finally the average density per site 〈nσ〉(t) with 〈nσ〉(t) = ψ̂†σ(t)ψσ(t).

A general case for periodic time-dependent hopping is given by

Ji(t) = J0, i+ δi cos(ωt). (3.13)

With this strategy for the analytic solutions of equation (3.12) for the two cases for the
kinetic energy

Ji(t) = J0,i i ∈ {1, 2}, (3.14)
Ji(t) = J0, i+ δi cos(ωt), (3.15)

are then given by

b̂±(t) = exp
[
± i(J0,1 + J0,2)t

]
for δi = 0 (3.16)

and b̂±(t) = exp
[
± i

(
(J0,1 + J0,2)t+ δ1 + δ2

ω
sin(ωt)

) ]
for δi 6= 0 (3.17)

After carrying out the back transformation of equation (3.10) it is possible to extract the
theoretic expectations for the densities for the sites L and R. It turns out that these are
linear combinations of cos2- and sin2-functions, weighted by the initial distribution of the
two sites represented by n̂L(t = 0) and n̂R(t = 0). In the following example we have
chosen for simplicity the initial conditions as |L,R〉 = |0, 1〉. The analytic functions for
the mean-densities in this special case are

〈nR〉(t) = 〈b†R(t)bR(t)〉 = cos2
(
J0t+ δ

ω
sin(ωt)

)
, (3.18)

〈nL〉(t) = 〈b†L(t)bL(t)〉 = sin2
(
J0t+ δ

ω
sin(ωt)

)
. (3.19)

where J0 = J0,1 + J0,2 and δ = δ1 + δ2. So a striking property of the system is, that it has
an intrinsic period given by J0, which occurs even if there is now external time-periodic
modulation, so when δi = 0.

These solutions are now reproduced by numerical calculations using the introduced Runge-
Kutta method. The results for constant hopping parameters are displayed for the site R in
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figure (3.2). Panel (3.2) (a) shows the squared cosine shape of the curve, with the intrinsic
frequency J0 as it was predicted in equation (3.18).
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Figure 3.2: Time-evolution of 〈nR〉(t) with Ji = const., where the red line is the nu-
merical data and the blue line the theoretical results.
Panel (a) shows the long-term evolution while panel (b) presents an insight
of (a) to emphasize the agreement of numerics with theory. The chosen
hopping-parameters are J0,1 = 1.0, J0,2 = 0.3 .

Panel (3.2)(b) illustrates the very good agreement of the Runge-Kutta values with respect
to the theoretic expectations.

In the next step, the time-dependence of the Ji is added. For this purpose a cosine-term
with a frequency ω is added like it was discussed in equation (3.15). In order to see a
deviation from the squared cosine the amplitudes of the time dependent part must be
setted to be of the same order as J1 and J2, they are chosen as δ1 = 1.00 and δ2 = 0.21
. Again the numerical data is plotted in figure (3.3) against the analytic results. Figure
(3.3)(b) shows the numeric reproduction reproduction of the theory.

Further the periodicity in figure (3.3)(a) becomes more complex. Nevertheless there can
still be identified a period if ω is commensurate with J0. This is shown in figure (3.4),
which is the same calculation as before in a wider range. The periodic shift arises here in
form of a square sine-function. Here no temporal or spatial symmetries were broken, thus
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3.2 System with absent potential
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Figure 3.3: Time-evolution of 〈nR〉(t) for Ji = Ji(t) with the parameters: J0,1 = 1.0,
J0,2 = 0.3, δ1 = 1.0, δ2 = 0.21, ω = 2.8, again red stands for numerical data
and blue for theoretical calculations
(a) shows the curve’s shape and (b) a zoom in a small interval of (a)

there should be no ratchet effect and consequently no atomic current in this system. In
order to analyse this fact, the current using second quantisation is introduced.
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Figure 3.4: Complex periodicity of the density 〈nR〉(t). The black line emphasizes the
periodicity which has the form of sin2(ct)
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3.2.1 Current-operator

3.2.1 Current-operator

The current ĵ is defined by the number of particles, which move from one site to another
one. Because of the thight-binding regime, this process is limited to the neighbour sites. In
the language of second quantisation the motion of particles is described as the destruction
in one site and the creation in the adjacent one. The probability of such an event is
determined by the hopping-parameters.

The current operator is specified by the continuity equation

∂t
(
ψ̂†i ψ̂i

)
= j( hopping from i+ 1 to i )− j( hopping from i to i+ 1 ) (3.20)

and therefore is given by −Jψ̂†i ψ̂i+1 subtracted by −Jψ̂†i+1ψ̂i. But since ĵ is an observable,
it must be hermitian, thus ĵ† = ĵ. To guarantee this property, one of the summands is
multiplied with i and the other one with −i. So the final operator for the atomic current
has the following form

ĵ = −J i
(
ψ̂†i+1ψ̂i − ψ̂

†
i ψ̂i+1

)
. (3.21)

Physically the total net-current is computed here by subtracting the current in one direction
from the one in its counter-direction.

If we return to figure (3.1), the process for site (j, L) is for the hopping in the left direction
−J2ψ̂

†
j−1,Rψ̂j,L and in the right direction −J1ψ̂

†
j,Rψ̂j,L. The same procedure is operated for

site (j, R), so that the total current for all cells is divided into a current inside the cell and
one flowing out of it. The current for the whole lattice is then given by the sum over all
sites j

ĵ =
∑
j

[
(−J1(t))i

(
ψ̂†jLψ̂jR − ψ̂

†
jRψ̂jL

)
+ (−J2(t))i

(
ψ̂†jRψ̂j+1,L − ψ̂†j+1,Lψ̂jR

)]
. (3.22)

Now, analogue to section (3.1) a Fourier-transformation is performed and the restriction
to k = 0 leads to the following form of the operator

ĵ = −(J1(t)− J2(t))i
(
ψ̂†Lψ̂R − ψ̂

†
Rψ̂L

)
. (3.23)

In the simulation, the operator is a matrix acting on the vector Psi[]. The expectation
value is then calculated with the standard rules of quantum mechanics and the use of
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3.2 System with absent potential

equation (3.7) for the matrix-representation of the second-quantisation operator,

〈ĵ〉 = 〈ψ|ĵ|ψ〉 = −(J1(t)− J2(t)) i 〈ψ|ψ̂†Lψ̂R − ψ̂
†
Rψ̂L|ψ〉

= (J1(t)− J2(t))
ψ∗L
ψ∗R

0 −i
i 0


︸ ︷︷ ︸

=σy

ψL
ψR

 . (3.24)

So one can say, that the Pauli matrix σy can be identified with the atomic current. From
this follows the numerical formula for the current, which can be written as

j =-i(J1-J2)(Psi[L]∗Psi[R]− Psi[R]∗Psi[L]). (3.25)

For the non-potential case, it is possible to specify the time-dependence of ĵ knowing ψ̂σ
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Figure 3.5: Time-evolution of the current for a constant (left) and a time dependent
(right) hopping. Same parameters as before

and ψ†σ, from the solution of the Heisenberg equation of the fourier-transformed diagonal-
ized Hamiltonian Hk. This has been done for the two considered cases. The formula for
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3.2.1 Current-operator

the current turns out to be for the initial condition |L,R〉 = |0, 1〉

〈j(t)〉 = −(J1(t)− J2(t)) sin
[
2
{

(J0,1 + J0,2) t+ δ1 + δ2

ω
sin(ωt)

}]
. (3.26)

Figure (3.5) displays both, the theoretical and numerical results for the two hopping-
instances, which match in a very good accuracy. But in both cases, the current oscillates
around zero. The consequence of this is that there does not exist a net-current over a long
time interval. In conclusion there is no ratchet effect in this system, as it was suggested in
the interpretation of the figures (3.2) and (3.4).

3.2.1.1 Mean current

The tendency of the current should be analysed more accurately. To gain the mean-value
of the current, the current is integrated over time. This value then converges after a long
time to a fix value. In the above considered system this limit is zero, due to periodicity of
the current. The integrated current is computed continuously for every time t as

〈j〉(t) ≡ jint(t) = 1
t

∫ t

0
j(t′)dt′. (3.27)

To approximate the limit limt→∞〈j〉(t) the integrated current is averaged over an time
interval ∆t at the end of the whole calculated interval [0, tf ] . In the numerics the current
is calculated for discrete times with the discretization time τ , over an interval where one
can consider the system to be stabilized

lim
t→∞
〈j〉(t) ∼= jmean(tf ,∆t) ≡

1
∆t

N∑
i

jint(ti), (3.28)

with N = ∆t
τ

and ti = tf − (N − i)τ.

This is the quantity we will refer to later as the integrated current, or more roughly just
as the current. It is important to pick this interval ∆t not to short, to compensate small
oscillations of the current, and not to long, for not entering the highly oscillating zone in
the small time-values and remain in a section with small variation.

As expected figure (3.6) illustrates that the mean-current vanishes for the case of δi 6= 0
considered above.
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3.3 System in the presence of a potential
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Figure 3.6: Asymptotic behaviour of the integrated current as a function of time. The
blue line guides the eye.

3.3 System in the presence of a potential

In section (3.2) we have seen that there is no net-current in a system with absent potential,
even if the hopping parameters have different values and oscillate time. As a next approach
we will add a potential with a site-alternating positive and and negative sign

V (t) =

V (t) for L,

−V (t) for R.
(3.29)

-V(t)

0

+V(t)

... L R L R L R L ...

sites
The potential-operator acts on the particles in each site so that it can be identified with
the number operator b̂†σ b̂σ. In the manner of equation(3.7) the Hamiltonian has then the
form

H =
 V (t) −(J1(t) + J2(t))
−(J1(t) + J2(t)) −V (t)

 . (3.30)
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The form of the potential helps to break the spatial symmetry. But there still exist
symmetry-axes namely a mirror on a lattice sites which is not broken via the potential
but using the different hopping to the left and right. Further we will investigate the char-
acteristics of the system for a broken time-reversal symmetry (3.32), and compare it to one
with a constant potential

V (t) = V0 = const., (3.31)
V (t) = V0 + δV cos(ωt+ ϕ). (3.32)

Here ϕ is an added phase in the potential and therefore breaks the time-reversal symmetry
in combination with the cosine-function of the hopping-parameters in equation (3.15).

In figure (3.7) the six possible combination of constant and time-dependent J with absent,
alternating constant and alternating time-dependent potential are plotted for the last 200
time-units to point out the long-term behaviour of the current. The options are assigned
to the plots via the table below. The average-value of the current in this region is treated
as the final current of the ratchet system since its remaining oscillations are insignificant.
The plots show, that there is only a finite integrated current, if the potential as well as
the hopping-parameters are time-dependent. In all other options, the integrated current
oscillates around zero (fig. 3.7 d,e) or approaches zero from one direction (fig. 3.7 a,b,c).

Figure J V

(a) J = const. V = 0
(b) J = const. V = ±V0
(c) J = const. V = ±V (t)
(d) J = J(t) V = 0
(e) J = J(t) V = ±V0
(f) J = J(t) V = ±V (t)

As a first qualitative result it is appropriate to say, that there remains a finite unidirectional
current only if the time-reversal symmetry is broken. This is demonstrated more detailed
later in the discussion of the phase-shift ϕ in section(4.1). In general all parameters were
up to now arbitrary chosen. It is now the task to examine the behaviour of the system, in
the sense of maximazing the current by changing the parameters in a systematic way.

An additional discovered effect is, that the net-current vanishes if the relation between the
constant hopping parameters to the amplitudes of the corresponding time-dependencies is
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3.3 System in the presence of a potential
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Figure 3.7: Long-time development of the integrated current for the set-ups:
Parameters: J01 = 1.0, J02 = 0.3, δ1 = 1.0, δ2 = 0.21, V = 0.7, δV = 0.7,
ω = 2.8, ϕ = π

2 , for a assignment to the plottet data revisit the table on
page 33

chosen to be equal like

J1(t) = J0,1(1 + δ cos(ωt)), (3.33)
J2(t) = J0,2(1 + δ cos(ωt)). (3.34)

To avoid this we introduce a further parameter δrel for second hopping parameters, so that
the amplitude of its time dependence is given by δ2 = δ· δrel. The pontential’s factor δV
is implemented as as δV = δ·V0.
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4 Quantum ratchets considering weak interactions

In the set-up of an optical lattice it is possible to regulate the interaction-strength, so
that, in contrast to solids, several different options can be realized experimentally. The
problem discussed in this chapter contains only weak-interactions for a g of the order of
a tenth of the kinetic or potential energy. For the weakly interacting case we employ the
Gross-Pitaevskii equation (1.43). The behaviour for greater interactions, that is to say
with greater coefficients g is outlined later in Chapter 5.

4.1 Role of the time-reversal symmetry in the ratchet

In the following it is studied to what extend the current is influenced by the interactions in
comparison to the non-interacting system of Chapter 3. Furthermore the influence of the
time-reversal symmetry breaking caused by ϕ in equation (3.32) is investigated. For this
purpose the asymptotic current is plotted for several values of the interaction strength g.
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Figure 4.1: 〈j〉 as a function of the phase shift ϕ for the interaction strength g =
0.0, 0.1, 0.5, the other parameters were chosen as above.

The results are shown in figure (4.1). It is clearly recognizable, that the current vanishes
at the value of ϕ = 0 and ϕ = π. This matches the expectations since the absolute value
of the cosine for the time-dependent potential has a periodicity of π. Consequently, the
time-reversal symmetry between the potential V and the kinetic energy-terms J1 and J2 is
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4.2 Quantum ratchet with variable driving-frequency

restored at points where ϕ is a integer multiple of π. This shows again, that there is only
a non-vanishing asymptotic current, if the temporal symmetry is broken.

Another feature of the plot (4.1) is revealed by the fact, that the current is maximal around
ϕ = π

2 (2n+1),where n ∈ N0. This originates in the property of the trigonometric functions
that

cos(x+ (2n+ 1)π2 ) = (−1)2n+1 sin(x). (4.1)

Since sin(x) and cos(x) are orthogonal with respect to the scalar product

〈f, g〉 = 1
π

∫ 2π

0
f(x)g(x)dx, (4.2)

the temporal symmetry is maximally broken for ϕ = (2n+ 1)π2 . That is the reason why ϕ
is chosen in most of the calculations in this thesis as π

2 .

Remarkable is, that in the weakly-interacting regime the influence of the interactions are
negligible. The curves of g = 0 and g = 0.1 coincide with a few small exceptions. With
an increasing interaction term this agreement disappears as seen in the curve for g =
0.5. Moreover there occur small peaks, which are not discussed in more detailed in this
thesis. But it is possible that they are caused by the fact that the interactions shifts the
current-dependence of the driving and the peaks therefore stand in context to the resonance
frequencies treated in section 4.2. In general one can say, that the behaviour of the weak-
interacting system is comparable to the non-interacting system. This result coincides with
the conclusions obtained in reference [5] but contrast sharply with [6], where a non-zero
momentum is obtained with the help of interactions. It seems that in a stronger interacing
environment the interaction strength influences the current, but since the Gross-Pitaevskii
theory is constricted to weak interactions, we can not give any quantitative statement in
this direction.

4.2 Quantum ratchet with variable driving-frequency

We investigate now the behaviour of the current while we change the driving-frequency
ω of the system continuously. Before we analyse the numerical results, we examine the
eigenfrequencies with the use of the Floquet theory. Thus the Ratchet Floquet-Hamiltonian
HF of equation (1.6) is needed. The matrix elements (ĤF )nm are calculated using the
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Floquet states of equation (1.7) given by

(ĤF )nm = 〈φn(t)|ĤF |φm(t)〉 =
∫
eiµntĤF e

−iµmtdt =
∫
einωt

(
Ĥ − i∂t

)
e−imωtdt

=
∫
einωtĤe−imωtdt− i

∫
einωt∂te

−imωtdt, (4.3)

where the Floquet exponents µn = nω are identified with the driving frequency ω

(ĤF )nm =
∫
eiωntĤe−iωmt − ωm

∫
eiωt(n−m)dt︸ ︷︷ ︸

=δnm

. (4.4)

The Hamiltonian in second quantisation including potential and interaction is given by

Ĥ = (V (t) + g |ψ|2)ψ̂†Lψ̂L − J(t)ψ̂†Lψ̂R − J(t)ψ̂†Rψ̂L + (−V (t) + g |ψ|2)ψ̂†Rψ̂R, (4.5)

what is equivalent to the matrix representation

Ĥ =
V (t) + g |ψ|2 −J(t)

−J(t) −V (t) + g |ψ|2


=
V0 + g |ψ|2 −J0

−J0 −V0 + g |ψ|2


︸ ︷︷ ︸

=Ĥ0

+
δV cos(ωt+ ϕ) −δJ cos(ωt)
−δJ cos(ωt) −δV cos(ωt+ ϕ)


︸ ︷︷ ︸

=Ĥt

. (4.6)

In the following procedure we evaluate the matrix element of equation (4.4) for cos(ωt+ϕ)
∫
eiωnt cos(ωt+ ϕ)e−iωmtdt =

∫
eiωnt

1
2
(
e−i(ϕ+ωt) + ei(ϕ+ωt)

)
e−iωmtdt

= 1
2

∫
e−iϕeiωt(n−(m+1)) + eiϕeiωt(n−(m−1))dt = 1

2
[
e−iϕδn,m+1 + eiϕδn,m−1

]
, (4.7)

and H0 which is time-independent and therefore diagonal
∫
eiωntĤ0e

−iωmtdt = Ĥ0δn,m. (4.8)

Concerning (4.7) and (4.8) the Floquet-Hamiltonian for the system is

ĤF = Ĥ0δn,m + δJ
2 [δn,m+1 + δn,m−1]σx + δV

2
[
e−iϕδn,m+1 + eiϕδn,m−1

]
σz, (4.9)
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4.2 Quantum ratchet with variable driving-frequency

where n and m run from −∞ to ∞ and represent matrix-blocks of the dimension 2 × 2.
We now calculate the eigenfrequencies ω0 for the non-interacting system without any time-
dependence. So we just take Ĥ0 into account. The Floquet matrix is then already block
diagonal with the blocks Ĥ0. To diagonalize the matrix completely, we only need to
transform Ĥ0, which results in a 2 × 2 matrix, with ±ω0 = ±

√
V 2

0 + J2
0 on the diagonal.

So the eigenvalues of the Floquet Hamiltonian are

nω ± ω0. (4.10)

If the time-dependent term Ĥt in equation (3.9) is small compared to H0 a treatment
within the framework of perturbation theory is justified. The energy in non-degenerated
perturbation theory, up to second order of Ht is given by [35]

En ≈ εn + 〈n|HF,t|n〉+
∑
m6=n

|〈m|HF,t|n〉|2

εm − εn
+O(H2

F,t), (4.11)

where εn and εm are the eigen-energies of the non-perturbative Floquet Hamiltonian ĤF,0

calculated in (4.10). The second-order term reveals a singularity if the eigen-energies are
degenerated εn = εm. So we expect resonance frequencies, where

nω + ω0 = mω − ω0 =⇒ 2ω0 = (m− n)︸ ︷︷ ︸
=1

ω. (4.12)

Here m − n = 1 because the constant blocks Hn
0 on the main-diagonal of the Floquet-

Hamiltonian (4.9) can affect only the blocks Hn−1
0 or Hn+1

0 over the off-diagonal blocks of
δJ and δV . In higher order of perturbation theory we expect also resonances for m− n =
2, 3, 4, . . . as can be seen in figure 4.2.

Figure (4.2) shows the asymptotic current plotted for a continuously changing of the driving
frequency. In contrast to the investigations before, here we used small amplitudes for Ht

compared to those of H0. One can say, that in this regime the weakly interacting results
coincides with the expectations from perturbation theory, as long as there are peaks at the
harmonic frequencies of 2ω0.

In the ratchet context the regime where Ht � H0 is not considered in our previous set-up
because we need to chose Ht ≈ H0, which means to have the amplitude of the time-
dependence, of the same order as the constant time-independent amplitudes J0,1, J0,2 and
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Figure 4.2: The asymptotic current is plotted versus the driving frequency for two val-
ues of δHF,t with δ = 0.1 and δ = 0.2.

V0. Figure (4.3) shows now a plot under these conditions. Instead of a sharp peak for
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Figure 4.3: Driving frequency versus current with the time-dependent-term being of
the same order as the constant amplitude (δ = 1)

the harmonics of 2ω0 it shows rather broad peaks shifted to larger values, although the
resonance feature still remains throughout the different curves.
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5 System beyond weak interactions

Up to now, we have only regarded weak particle-particle interactions, so regimes where
the interaction term of the Hamiltonian is small compared to the kinetic energy and the
potential. Now, we will extend our consideration and investigate the behaviour of an
interaction term, which dominates the Hamiltonian. For this analysis we still use the
Gross-Pitaevskii equation, even if we leave the limit of weak interactions. Consequently,
the following results can maximal serve as plausibility statements, which need to be proven
by a theory containing strong interactions.

To study the system’s dependence on the strength of interaction, we examine the charac-
teristics of the asymptotic current with respect to g. As can be seen in the plot of figure
(5.1), there roughly exist two regimes. For g . 2.45 we observe a regular regime and for
g & 2.45 the system shows a non-regular characteristic. In the following we will explore, if
the non-regular regime can be identified with a chaotic system. Therefore, it is necessary
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<
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g

2.5

Figure 5.1: Asymptotic current plotted versus interaction strength g.
Parameters: ω = 2π 50 τ , δ=1.0, J0,1, J0,2, V0, δ1, δ2 and δV as before

to analyse the behaviour of the trajectories of the particles in phase space. In a regular
system these trajectories should be lines. Since our system contains a large number N of
particles and therefore also N degrees of freedom each for space and momentum as well
as one global variable for the time, it is not an option to visualize the whole phase space
trajectories. Instead, a common method is to do a Poincare map [36]. For this purpose,
the set of the phase space trajectories are treated as a flow on a manifold M [37] of the
dimension of the phase space, which is 2N+1 as commented before. Furthermore, a global
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cut is defined as a hyperplane S, which is a subspace of M with the properties, that (i) the
flow is never tangential on S and (ii) every orbit has an infinite amount of intersections
for t → ±∞. It is then possible to define a Poincare map, which maps one intersection
point of an orbit with a global cut x ∈ S to the next one after the returning time τ(x)
[37]. So for a periodic or quasi-periodic dynamic system, the intersection points form lines
in the Poincare map. If one is able to find a map where these lines are closed, the system
can certainly be regarded as regular. Vice versa non-closed lines do not imply a priori a
chaotic behavior. If the trajectories in phase space are chaotic the intersection points are
not related to each other, so that there arise clusters of points in the plot which cover
limited areas. So the transition between a regular system to a chaotic systems contains
intermediate states, where areas of points coexist with areas of smooth continuous lines
[38]. With an increasing non-linear perturbation the point-covered areas expand.

In our case the information of the particle’s degrees of freedom is inside the wave-function
vector |ψ(t)〉 which is computed with the Runge-Kutta-method.

Our model is now described by the Hamiltonian and the current operator, given in equation
(4.5) and (3.23). In matrix form these operators can be rewritten with (3.7) as

Ĥ = − (J1(t) + J2(t)) σ̂x + V (t)σ̂z + g|ψ|21 and ĵ = (J1(t)− J2(t)) σ̂y, (5.1)

where σ̂x, σ̂y and σ̂z are the Pauli matrices

σx =
0 1

1 0

 , σy =
0 −i
i 0

 , σz =
1 0

0 −1

 . (5.2)

The Pauli matrices build an irreducible basis for the SU(2) group. To obtain a Poincare
map, the information of the wave function is mapped to a three dimensional space, using
the expectation values of the Pauli matrices, given by

〈
~̂σ
〉
t

=


〈σ̂x〉t
〈σ̂y〉t
〈σ̂z〉t

 =


〈ψ(t)|σ̂x|ψ(t)〉
〈ψ(t)|σ̂y|ψ(t)〉
〈ψ(t)|σ̂z|ψ(t)〉

 , (5.3)

as points in R3. This is a good choice because we are able to see directly the behaviour of the
physical observables of the current, the potential and the hopping. An explicitly calculation
shows that the distance of

〈
~̂σ
〉
t
from the origin is equal to one for a normalized wave
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CHAPTER 5. SYSTEM BEYOND WEAK INTERACTIONS

(a) regular regime (b) non-regular regime

Figure 5.2: Three-dimensional plot of the expectation values of the Pauli matrices, both
for a regular regime with g = 0 and a highliy non-regular regime g = 8. the
yellow lines guide the eye.

function. This is also valid, since the σ̂i are unitary matrices and unitary transformations
do not change the norm of a vector. Consequently, all points of

〈
~̂σ
〉
t
are positioned on the

surface of a unit sphere.

The plot in figure (5.2) shows the behaviour for two interaction strengths each representing
one regime of figure (5.1), where (a) displays a regular regime with g = 0 and (b) a highly
non-regular regime with g = 8. Every point on the sphere represents

〈
~̂σ
〉
t
for different times

t which are integer multiples of the period T = ω
2π of the driven system. This is assumed to

be the returning time τ(x), where ω is the driving frequency. The total number of periods
for these calculations was 30000 with the initial condition |L,R〉 = |0, 1〉.

It can be seen for the non-interacting system, that the points form a closed loop on the
spheric surface. As mentioned above this guarantees a regular system. For another view,
covering the whole sphere in one image, the points are mapped to the spheric angles θ and
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(a) regular regime (b) non-regular regime

Figure 5.3: Transformation of the sphere in figure (5.2) to the spheric angles θ and ϕ
by equation (5.4)

ϕ by the transformation 
〈σ̂x〉t
〈σ̂y〉t
〈σ̂z〉t

 7→
θ
ϕ

 =
arctan

(
〈σz〉
〈σx〉

)
arccos(〈σy〉)

 , (5.4)

where the z-axis in the polar coordinate system has been laid in the direction of (0, 1, 0)T .
This is the direction of 〈σ̂y〉t, which correlates with the current. The corresponding plots
to figure (5.2) are shown in (5.3). The transformation does not conserve the form of the
curves on the sphere, so the trajectory in (5.2 a) similar to a circle, appears modified in
(5.3 a).

In contrast to the g = 0-model, the system does not show any structure under consideration
of strong interaction (figure 5.2 b and 5.3). In fact, the expectation values do not depend
on the driving properties of the system at all and therefore show no periodicity or smooth
lines in the Poincare map. Nevertheless there is a region where no points are determined.
The transition between these two regimes is very sharp, and is localized at a non-linearity
of g = 2.5 witch coincides with the behaviour of the current in (5.1).

Until now we have chosen the same initial conditions |L,R〉 = |0, 1〉 for both options. De
facto every set-up starting in the area covered with points, reproduces the same trajectories
as (5.2)(b) and (5.3)(b). The point of interest now is, to determine the arrangement of the
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CHAPTER 5. SYSTEM BEYOND WEAK INTERACTIONS

(a) spherical plot (b) mapped to the spheric angles

Figure 5.4: Analogous plots to 5.2 b and 5.3 b with the two additional initial conditions
of equation (5.5)

points for initial conditions, which are located in the empty spaces of the strong-interaction
images. So additionally to the data of the non-regular system before, in figure (5.4) the
trajectories for

|L,R〉 = |−0.67−0.67i, 0.24+0.19i〉 and |L,R〉 = |−0.67−0.67i, 0.29+0.13i〉 (5.5)

are included.

These initial conditions generate closed, non-crossing trajectories which are an indication
for a regular system. Thus, even in the presence of very high particle-particle interaction,
a system can evolve regularly in time. After all this matches qualitatively the expectations
of two different areas in the Poincare plot. As a conclusion one can say, that the behaviour
of the system, strongly depends on the choice of the initial conditions.

Once again we want to emphasize, that the obtained data was calculated with the Gross-
Pitaevskii equation which was derived for the limiting case of weak-interaction, which is
clearly left in the upper consideration with a non-linearity g of about eight times greater
than the kinetic and potential energy. Nevertheless the obtained results are consistent to
each other and can be used as a qualitative guidance.
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6 Conclusions

We have considered the features of a periodically driven system and have obtained an
asymptotic net-current originated in the quantum ratchet effect.

As a remarkable feauture of this quantity in the absence of interactions is that the only
possibility to achieve a final net current is to break the time-reversal (ϕ 6= nπ, n ∈ N0) and
the spatial symmetry as discussed in Chapter 3. This result is in very good quantitative
agreement with the numerical values of [5] as well as with the experimental data of [30]
where the velocity of the unidirectional motion, respectively of the center of mass, vanishes
for a restored temporal symmetry. Moreover as one can see in figure (4.1), the deviation
of the weak-interacting (g = 0.1) behavior from the non-interacting system is insignificant
compared to the absolute value of the current. This reproduces the conclusions of Ref. [5].
Furthermore the fact that the maximal particle transport occurs at ϕ = {π2 ,

3π
2 } reproduces

the experimental findings of [30] qualitatively.

The computation of the resonance frequencies enables us to predict, with the knowledge
of the other system parameters, the driving frequency which maximizes the current. How-
ever for temporal amplitudes similar to the constant values, the peaks at the position of
resonance frequencies smear out and broaden enormously.

The study of a broad interval for the interactions yields the attendance of a regular and
a non-regular regime which shows some chaotic properties. The transition between these
two behaviours is found at a sharp value for the non-linearity g. Furthermore examining
the Poincare cuts of the phase space one can find in the non-regular consideration empty
areas where stable trajectories are observed if the initial conditions are chosen properly.
This coincides with [39], where similar calculations are presented for a quantum treatment
of a driven anharmonic oscillator. Our results therefore suggest, that the system for strong
interactions becomes chaotic. To test this statement a theory beyond the mean-field ap-
proach is needed. To identify the non-regular regime undoubtedly a levelstatistics for the
quasi-energies should be performed as it is done in Ref. [40].
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