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Introduction

“Now, there are some curious bodies in nature (of which I have two specimens on the
table) which are called magnets or loadstones ores of iron, of which there is a great
deal sent from Sweden. They have the attraction of gravitation, and attraction of
cohesion, and certain chemical attraction; but they also have a great attractive power,
for this little key is held up by this stone.”

Michael Faraday

The concept of magnetism has fascinated people for centuries. In the eighteen hundreds, people
were still much in awe of magnets and its properties as can be seen by how Faraday introduces
ferromagnets in one of his lecture courses [1]. This has not changed a bit since then and even
nowadays there is still so much to discover. Quite recently in 2009, the discovery of so-called
Skyrmions has been made in MnSi and opened up a whole new field of research possibilities.
Skyrmions are topologically stable, whirl-like objects. Their general description goes back to
1961, when T.H.R. Skyrme introduced them as quasiparticles, that act as defects in a non-linear
meson field theory [2]. In the magnetic case they form a two-dimensional whirl structure, opposed
to the three-dimensional description used in Skyrme’s model, similar the mixed state of type-II
superconductors [3]. Experimentally, such a Skyrmion lattice was first observed in the chiral
magnet MnSi in 2009 [4].
Since then, Skyrmions have attracted more and more interest. They turned out not to be a
unique property of MnSi but present in many chiral materials. Discoveries range from metals
to insulators both in bulk form or as thin films, and from low temperature ranges around 40K
up to almost room temperature in thin films [5]. For most of our studies in this thesis, we will
focus on three concrete bulk materials namely metallic MnSi and Fe0.8Co0.2Si [6] and insulating
Cu2OSeO3 [7].
Methods of experimental detection have been quite numerous as well, the first being neutron
scattering [4], but also Lorentz transmission electron microscopy [8] and most recently magnetic
force microscopy [9].

What make Skyrmions even more amicable are the novel effects they bring along into the realm
of magnetic materials. Most prominent examples include possible new applications in computer
memory storage devices [10] due to the extremely low spin-polarized currents needed to move
them [11, 12], rotation of an entire Skyrmion lattice caused by spin torques or applied field or
temperature gradients [13], and even the creation of magnetic monopoles in bulk materials as
topological defects, that arise when two Skyrmion lines merge [9].
In some setups, Skyrmions even exist individually in a crossover between the Skyrmion lattice and
ferromagnetic phase [8], which opens up the prospect of using them to efficiently couple electric or
spin current to a magnetic structure, which could yield numerous applications in nanotechnology
[14], especially, because a current-induced motion of Skyrmions seems to be little affected by
disorder and damping.
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Introduction

Also multiferroic properties play a role of growing importance. Helical and skyrmionic spin
textures influence the equilibrium charge distribution and induce a local polarization within a
material. Because of the magneto-electric effect, this could enable manipulations of Skyrmion
lattices or individual Skyrmions by the use of electric fields and that, at least in insulators, even
without energy loss due to joule heating [7].
The endeavor goes on in this new and exciting field and a next step is to gain an even better
understanding of how Skyrmions behave and can be manipulated.

To this end, the present thesis focuses on the response of chiral magnets, which provide a Skyrmion
lattice under appropriate conditions, to magnetic and electric excitations.
The first chapter serves as an introduction to the field. Characteristics and properties of both
materials and occurring phases are stated and explained in a static limit. We continue in the
following chapter by providing an insight into the methods of calculation.
Magnetic excitations are covered in chapter 3. The main focus lies on developing a theory that
describes experimental data obtained by research groups of Prof. Dr. Pfleiderer and Prof. Dr.
Grundler from the Technical University of Munich.
The final chapter contains an introduction to the electric properties and excitations of helices
and Skyrmions.

2



CHAPTER 1

Chiral Magnets and their Phases

To start off, we introduce chiral magnets as our material of interest. Their difference
to common ferromagnets is explained, and a more thorough characterization in terms of
crystal structure and of the ordered phases is given. Explicit phase diagrams are presented
and the individual phases are described in a mean-field approximation.

1.1 Key property of chiral magnets

Ordinary ferromagnets are quite well understood nowadays. Their description is mainly char-
acterized by the exchange interaction [15]. Taking the Heisenberg-exchange Hamiltonian for a
lattice of spins as an example, one can see quite easily, that the energy is lowest, if the spins are
aligned in parallel for Jij > 0.

HHeis = −
∑
i,j

Jij Si · Sj (1.1)

Here, the summation is over all lattice sites i and j and Jij , the exchange coupling constant, is a
function of the vector connecting ith and jth lattice sites. The strength of Jij generally decays
exponentially, which makes it often possible to fix Jij to a constant value J for nearest neighbors
and zero otherwise. This ultimately limits the summation just to nearest neighbors, which is
commonly denoted by 〈i, j〉. The result of J > 0 is therefore the formation of a ferromagnet,
whereas J < 0 will yield an anti-ferromagnet, in which neighboring spins are aligned antiparallel.
This of course depends on the lattice structure, that must, for example, not yield a frustrated
arrangement. Frustration means, that the system is inable to satisfy all its bounds, e.g. the
anti-ferromagnetic Ising model on a triangular lattice [16].

The description of chiral magnets goes back to a phenomenological theory by Dzyaloshinsky [17],
that has been refined by Moriya [18] a couple of years later. In the original theory, Dzyaloshinsky
studied weak ferromagnetism in α-Fe2O3, MnCO3 and CoCO3. Weak ferromagnetism occurs for
example in Anti-ferromagnets with an anisotropic exchange interaction, which results in a small
ferromagnetic component perpendicular to the spin axis [19]. Dzyaloshinsky found, that the
surprisingly low magnetic moment, which acts as the spontaneous magnetization, can be explained
by a term, that favors a canted spin arrangement in contrast to the expected antiferromagnetic
arrangement.

HDM = Dij · (Si × Sj)

The vector Dij is a called the Dzyaloshinsky-vector. In their studied material α-Fe2O3 it points
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1 Chiral Magnets and their Phases

along a fixed axis, that is given by the crystal structure.
A continuum theory approach is given by a Ginzburg-Landau free energy description. This
theory is very powerful in the vicinity of phase transitions. Here, we consider the change from
a magnetically disordered phase to a magnetically ordered one. Since the degrees of freedom,
which describe the transition, are long wavelength collective oscillations of spins, it is possible
to coarse grain the system to a scale, which is much larger than the atomic lattice spacing and
where we can define a vector field for the magnetization M(r) at position r instead of trying to
describe it fully microscopically. The continuous field M(r) then describes the average of the
microscopic spins around the point r and is the order parameter of our theory.
The theory assumes, that the order parameter is small in the vicinity of the phase transition.
Equilibrium thermodynamics is then completely determined by the free energy functional F of
temperature and the (local) order parameter. F needs to be invariant under the symmetry group
of the disordered phase. Short range interaction is described through gradient expansions [16].
Important for the case of chiral magnets is now, that its lattice has no inversion symmetry. This
allows a gradient term of linear order, which represents the Dzyaloshinsky-Moriya interaction.
The interaction responsible for this term, is the spin-orbit coupling. The linear order term has
the form

FDM =

∫
d3r 2DM(r) · (∇×M(r)) (1.2)

where D is the pre-factor and basically the coupling strength. The to (1.1) corresponding
continuum version has the form

FHeis =

∫
d3r J(∇M)2 (1.3)

In a chiral magnet, both terms are present. While FHeis favors parallel arrangement of neighboring
spins, FDM favors orthogonal arrangement of neighboring spins. This competition leads to a
compromise, which manifests itself in a gradually canted arrangement, for example a helical spin
structure. The sign of D in (1.2) fixes the chirality of the resulting helices. A right handed helix
is given by D > 0 and a left handed otherwise [20].

1.2 Experimental phase diagrams

The experiments under consideration in this thesis are conducted on three different materials,
namely MnSi, Fe0.8Co0.2Si and Cu2OSeO3. All materials crystalize in the cubic crystal structure
B20, with their non-centrosymmetric space group being P213. A picture of the crystal structure
of MnSi as an example can be seen in Figure 1.1.
The properties of Fe1-xCoxSi depend on its Co-concentration. To achieve a helimagnetic metallic
phase, the Kondo insulator FeSi has to be doped with cobalt, in our case with a ratio of one per
four iron atoms, so x = 0.2. The possible doping range to achieve a helimagnetic metal goes up
to a cobalt concentration of roughly 80%. Some experiments, that we also refer to, use a ratio
of 50% doping [21]. While MnSi and Fe0.8Co0.2Si are both helimagnetic metallic, Cu2OSeO3 is
of insulating nature. Although the latter is characterized by the same space group, its atom
coordination is very different [7]. The materials described above possess four interesting and
different magnetic phases: a field-polarized ferromagnetic phase, a helical, conical and a Skyrmion
phase. In the polarized phase, all spins are aligned parallel. The other phases are conceptually
visualized in Figure 1.3. The figures need to be imagined in a bulk setting. The helical and
conical picture are hence to be seen as multiple helices next to each other. The arrows represent
the vector field M(r). Whereas the propagation direction of the conical helix is parallel to an
applied magnetic field M(r) the direction in the helical phase is less dependent on an external
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1.2 Experimental phase diagrams

Figure 1.1: Crystal structure of MnSi. Manganese atoms with
a radius of 127pm are shown in orange and Silicon atoms
with a radius of 117.6pm in blue. The unit cell contains
atoms at positions (u, u, u; 1

2+u, 12−u, ū; 1
2−u, ū,

1
2+u; ū, 12+

u, 12 − u), with uMn = 0.183 and uSi = 0.845 [22].

0.2

0.4

0.6
MnSi

conical

helical

FM

PM

IM

A-phase

B || <100>

B
(T

)

0 10 20 30
0.0

T (K )

0

50

100

150

conical

B || <110>

B
in
t
(m

T
)

x = 0.20

IMhelical (zfc)

PM

FM

IMIM

A-phase

0 10 20 30
T (K)

56 58 56 58
0

20

40

60

0 20 40 60
0

20

40

60

80

100

120

A

B||<100>

T (K)

 

T (K)

h

c

56 58

B||<110>

  

 T (K)

  

A

h

c

B||<111>

 T (K)

 B
 (m

T)

   

A

h

c

helical

B||<111>

 

 B
 (m

T)

conical

A-phase

metallic MnSi [25] metallic Fe0.8Co0.2Si [26] insulating Cu2OSeO3 [27]

Figure 1.2: Experimental phase diagrams of the three studied materials in bulk form. Thin films will
lead to a broader Skyrmion phase (here called A-phase) [7]. The intermediate phase (IM) stands for a
fluctuation-induced first-order transition [28] between the paramagnetic and helimagnetic phases of
the chiral magnet.

magnetic field but fixed by cubic anisotropy terms as described in subsection 1.3.1. In MnSi
it is, for example, the 〈1 1 1〉 direction. The Skyrmion lattice, as it is depicted in Figure 1.3,
forms in a plane perpendicular to the magnetic field. Furthermore, it is translation invariant in
field-direction, which leads to a tube-like structure in a way, that circles of constant magnetization
in êz-direction form hollow cylinders.
The whereabouts of the phases depend strongly on temperature and the strength of the applied
magnetic field. Phase diagrams of the three studied materials are shown in Figure 1.2.
Without such an external magnetic field and below a critical temperature of TMnSi

c ≈ 29.5K,
helical magnetic order develops in MnSi [4]. In Fe1-xCoxSi, the critical temperature depends on
the doping of Co and has its maximum of T

Fe1−xCoxSi
c ≈ 60K at x = 0.35 [23]. According to

Kohn [24] TCu2OSeO3
c ≈ 58.8K.

The phase transition from the helical into the conical phase occurs at a temperature dependent
critical field Hc1(T ). The transition to the polarized phase happens at the critical field Hc2(T ).
The phase diagram also depends on the shape of the specimen, especially concerning the Skyrmion
phase. While its phase space is merely a small pocket in a bulk material, it broadens in the case
of a thin film, where the external field is applied perpendicular to the surface. When the film
is thin enough, there is not enough room to build up an entire conical helix pointing in field
direction. As a result, the conical phase is suppressed and a Skyrmion arrangement much easier
stabilized, even down to T = 0K [8].
Experimental detection of the different phase has be done predominantly by neutron scattering
experiments. In the conical phase, one sees two scattered dots pointing along the direction

5



1 Chiral Magnets and their Phases

Figure 1.3: From left to right: helical phase, conical phase and Skyrmion phase. To obtain the three
dimensional phases, the pictures of the helical and conical phase need to be imagined in array translated
perpendicular to the helix axis. The Skyrmion picture has to be seen as translation invariant in
direction of the plane normal.

90 nm

Figure 1.4: Experimental detection of the conical phase. Left: Typical small angle neutron scattering
pattern in the conical phase in bulk Cu2OSeO3 [27]. Right: experimentally observed real-space
images of helical spin textue at zero magnetic field via Lorentz transmission electron microscopy in a
thin film of Fe0.5Co0.5Si [8].

<      

      

      

<      

<      <      

<      <      90 nm

20 mT

�⊗

Figure 1.5: Experimental detection of the Skyrmion lattice phase. Left: Typical intensity distribution
obtained by small angle neutron scattering experiments on bulk MnSi. An applied magnetic field is
aligned parallel to the incident neutron beam. Notice the higher order scattering peaks [29]. Middle:
Detection of Skyrmions in thins films of F0.5Co0.5Si via Lorentz transmission microscopy [8]. Right:
Typical magnetic force microscopy data at the surface of Fe0.5Co0.5Si blue (red) areas indicate a
magnetization pointing into (out of) the plane surface, respectively. The inset on the left hand side
shows the Fourier transformation of the real space signal [9].
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1.3 Ginzburg-Landau free energy functional

of the applied magnetic field, as can be seen in Figure 1.4. They indicate the pitch-vector
of the underlying helical magnetic structure. In the purely helical phase those two spots lie
along the axes, that are preferred by cubic anisotropy. Lorentz transmission electron microscopy
measurements show the conical and helical phases as a striped area, which is shown in Figure 1.4,
too. A lattice of Skyrmions has first been experimentally observed via neutron scattering in MnSi
[4], but later also as a real-space picture by Lorentz transmission electron microscopy through a
thin film [8] and via magnetic force microscopy at the surface of bulk Fe0.5Co0.5Si (cf. Figure 1.5).

1.3 Ginzburg-Landau free energy functional

The general free energy, that accommodates terms to describe all important occurring effects as
well as the time dependent magnetic and electric perturbations, has the form

F̃ [M̃ ] =

∫
d3r̃
(
f̃0 + f̃demagnetization + f̃anisotropy + f̃oszil. magnetic(t) + f̃oszil. electric(t)

)
(1.4)

The term f̃0 is the most important one, as it already generates by itself the underlying magnetic
structure, and it is given by

f̃0 = (r0M̃
2 + J (∇M̃)2︸ ︷︷ ︸

:=∂αM̃β∂αM̃β

+2DM̃ · (∇× M̃) + U(M̃2)2 − µ0H̃ · M̃) (1.5)

The first two terms in (1.5) are the usual quadratic terms with the common gradient term that
favours parallel alignment of the magnetization. The third term represents the Dzyaloshinsky-
Moriya interaction (1.2), responsible for the canted contribution, and the last term is the
Zeemann-term, that couples the magnetization to an external magnetic field. The quartic term
stabilizes the magnetic order, which will be explained in more detail later, and accounts in lowest
order for the effects of mode-mode interactions. The prefactors of the individual terms still
depend on microscopic interactions as well as external parameters such as temperature. The
pitch length Q of the generated helices is given by the competition between the exchange and the
Dzyaloshinsky-Moriya interaction strengths Q = D/J .
Most of the time we do our calculations in rescaled units. Advantages are, for example, that results
can be described with less pre-factors, but rescaling also introduces a new parameter t, that is zero
at the critical temperature as well as proportional to temperature. Upon re-scaling all lengths as
r = Qr̃, magnetizations as M = [U/JQ2]1/2M̃ , and magnetic fields as H = [U/(JQ2)3]1/2H̃,
we arrive with κ = J2Q/U and t = r0/(JQ

2)− 1 ∝ T − Tc at

F0[M ] = κ

∫
d3r f0 = κ

∫
d3r ((t+ 1)M2 + (∇M)2 + 2M · (∇×M) +M4−µ0H ·M) (1.6)

One may note, that only a linear dependence of temperature is kept in the parameters, because
one linearizes all T dependences around Tc in the Ginzburg-Landau approach. The free energy
functional hence takes the form

F [M ] = κ

∫
d3r
(
f0 + fdemagnetization + fanisotropy + foszil. magnetic(t) + foszil. electric(t)

)
(1.7)

Cubic anisotropy effects are expressed by terms in fanisotropy. Although they are responsible for
a finite phase space area of the purely helical phase, we will neglect them in our calculations
because, for one, they are small compared to the remaining parts of the free energy, but also
because we are mostly interested in the conical and Skyrmion phases.
Shape dependences of the calculated resonance frequencies are taken into account by fdemagnetization.
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1 Chiral Magnets and their Phases

This term does not change the general appearance of the magnetic structure, but is of grave
importance in the calculations of resonance frequencies, which play a major role in this thesis. As
they influence the effective internal field, they also influence the phase diagram to some degree as
is shown in subsection 1.4.1. Therefore, this term will be explained and thoroughly discussed in
the next subsections.
The remainder of this chapter will deal with the static case. That means, that the time dependent
contributions foszil. magnetic(t) and foszil. electric(t) will be set to zero. Later, they will play the
role of the magnetic and electric excitation fields, respectively.

1.3.1 Anisotropies

Although we neglect those terms in the calculations, it is worthwhile to keep their general function
at the back of one’s mind. Already mentioned was the effect of anisotropies to be responsible for
the appearance of a purely helical phase at a finite applied magnetic field and a pitch direction
different to the field direction [30, 31]. Experiments suggest a term, that minimizes the free energy
at low fields, when the helix points in 〈1 1 1〉 direction. That means a term, that is minimal for
the pitch vector Q ‖ 〈1 1 1〉. A term to lowest order in spin-orbit coupling that favors exactly this
alignment is given by [32]

fanisotropy, hel. = (∂4x + ∂4y + ∂4z )M2 (1.8)

The consequence of favoring a distinct direction at low fields, is a phase transition from high to
low fields, i.e. in our case from the conical into the helical phase. The transition itself follows
two charateristic patterns. In one, the external magnetic field points in an arbitrary direction.
When its strength is reduced, a crossover takes place, and the conical helix becomes gradually
the purely helical helix. The story is different, when the magnetic field points into a direction of
higher symmetry like 〈1 1 0〉 or 〈1 0 0〉, cf. Figure 1.6. In the former case, the helix now has two
possible 〈1 1 1〉 directions which are closest to the applied field direction to choose from. In the
latter case, there are even four options. The result is, that this transition is spontaneous, i.e. of
second order [33].

Figure 1.6: Special high sym-
metry directions (see text).
Red: 〈1 1 0〉 Blue: 〈1 0 0〉
Dotted: 〈1 1 1〉.

The orientation of the Skyrmion lattice is, without anisotropies,
just characterized by the magnetic field direction. As such, it
has the liberty to freely turn about this axis, without changing
the free energy. This freedom of rotational symmetry is however
broken by higher order spin-orbit coupling [20]. To fix the thus
far arbitrary rotation angle Φ to a preferred direction, one needs
an effective potential of the form cos(6nΦ + φ0) with n = 1, 2...
and some constant phase φ0, because it needs to accommodate
the six-fold rotational symmetry of the Skyrmion lattice. One
example of a term in lowest order perturbation theory, that can
lock Φ into a fixed position, is

fanisotropy, Sky. = (∂3xM)2 + (∂3yM)2 + (∂3zM)2 (1.9)

1.3.2 Demagnetization fields and factors

To motivate the inclusion of demagnetizing fields and factors, one can cite a paper by Charles
Kittel from 1947 [34]. In this paper he comments on resonance experiments conducted by J. H.
E. Griffiths in the 1940s. His results showed values for the resonance frequencies, that were two
to six times larger than the expected frequency, which was the Larmor frequency, that we explain
in subsection 2.1.1. His attempts, to describe this discrepancy by introducing the Lorentz cavity
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1.3 Ginzburg-Landau free energy functional

force into his caclulation, where unsuccessful and according to Kittel not even justified.
Kittel on the other hand deduced, that the geometry of the specimen played an important role.
Since one has to deal with a large magnetization, the strength of the demagnetization field
becomes relevant and has to be taken into accounted. Translated to our setup it would mean, that,
including only the initial free energy density f̃0 in (1.4), the theory for the polarized phase would
predict solely a linear dependance of the resonance frequency on the strength of the magnetic
field and the Landé factor. But first things first: this subsection provides a short introduction to
demagnetization fields.

A magnetized body produces effective magnetic surface charges (cf. Figure 1.8). From the outside,
this results in a collective magnetic moment, which aligns parallel to an external magnetic field
Ho. Inside the material, the surface charges create another field HD called demagnetizing field.
Its name hints to the fact, that it acts against the magnetization and therefore in general also
against the external magnetic field. As a result, the effective internal magnetic field H i consists
of both those components.

H i = Ho +HD (1.10)

The demagnetizing field can be characterized via demagnetization factors Ni, with i = x, y, z
indicating the principal axes of the specimen. This is only true for ellipsoidal shapes, where HD

is constant. An arbitrary shape results in an inhomogeneous internal magnetic field. With this
definition the demagnetizing field has the form

H̃D = −

 Nx 0 0
0 Ny 0
0 0 Nz

 · M̃ =: −N · M̃ (1.11)

The tilde notation indicates the true physical fields. One may note, that the demagnetization
factors do not depend on the scale of the body but purely on the shape. An additional condition
set for the Ni is that their sum equals one in SI-units and 4π in cgs-units.

(SI) Nx +Ny +Nz = 1 (1.12)

For example a rod in z-direction will have a smaller demagnetizing field in z-direction. For an
infinitely long, cylindrical, rotation invariant rod we will get Nx = Ny = 1

2 and Nz = 0. A disc,
or in the ideal case an infinite plane, with the plane-normal in z-direction has Nx = Ny = 0 and
Nz = 1. A perfect sphere will yield Nx = Ny = Nz = 1

3 and so forth. Corresponding pictures can
be seen in Figure 1.7.

y

x

Ho

z

y

x

Ho

z

y

x

Ho

z

Figure 1.7: Examples of three different shapes with three mainly different demagnetization factors. Left:
rod or infinite cylinder with Nx = Ny = 1

2 and Nz = 0, Middle: disk or infinite surface (dark gray)
with Nx = Ny = 0 and Nz = 1, Right: perfect sphere with Nx = Ny = Nz = 1

3 .
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1 Chiral Magnets and their Phases

Remembering, that µ0Heff = − δF
δM gives a contribution of

f̃demagnetization,k=0 =
1

2
µ0M̃ ·N · M̃ (1.13)

to the free energy density [35]. Rescaling all quantities like in the beginning of this section gives
us an additional prefactor 1

α .

fdemagnetization,k=0 =
1

2

µ0
JQ2

M ·N ·M =
1

2

µ0
α
M ·N ·M (1.14)

We defined α = JQ2 = D2

J , which will be important later on, to switch between the rescaled
units and the true order parameter units, which are needed to establish a connection to the
experiments.
Since these formulas were derived in the long wavelength limit |k| � 1/L, with L being the extent
of the specimen, it is important to realize, that (1.14) is only the contribution to the free energy
for basically k = 0. For a finite k, long-range dipole-dipole interaction needs to be considered.

Ho

HD

Figure 1.8: Illustration of the creation of a demagnetizing field HD. A magnetic body is subject to an
outer magnetic field Ho. Magnetic surface charges arise and the resulting field inside the body acts
against the outer magnetic field.

1.3.3 Dipole-dipole interaction

Two magnetic dipoles m1 and m2 that are separated by r have an estimated interaction energy
U of

U =
1

r3
[m1 ·m2 − 3(m1 · r̂)(m2 · r̂)]

For typical magnetic solids, U amounts to no more than 10−4eV. This is small compared to the
exchange coupling and therefore dipolar interaction effects usually play a secondary role in the
realm of magnetic ordering [15].

10



1.3 Ginzburg-Landau free energy functional

The most interesting part to us of this interaction is, how it affects the internal magnetic field
and hence the resonance frequencies in our experiments. Regarding the case of isotropic and
parallel spin arrangement (k = 0), the situation can be well described by demagnetization factors,
as is explained in the previous section. If an inhomogeneous field with a considerable wave vector
is used to excite the system, it is necessary to have a closer look at the field H̃s due to the spins
themselves. Ultimately we would like to obtain an additional term, that describes the coupling of
the magnetization to this additional field contribution.
Since its origin are the microscopic magnetic moments, H̃s depends on the distribution of
the magnetization M . The physical magnetic induction B̃ = µ0(H̃ + M̃), which suggest the
application of Maxwells equations to establish a relation between the two entities M̃ and H̃s.

∇ · B̃ = µ0∇ · (H̃s + M̃)
!

= 0 and ∇× H̃s = 0 (1.15)

or in the rescaled units with B =
(
U/JQ2

)1/2
B̃

∇ ·B = µ0∇ · (αHs +M)
!

= 0 and ∇×Hs = 0 (1.16)

One can toggle hence between the physical and rescaled units in the following calculation, by
setting α = 1 for the physical units and α = JQ2 in the rescaled case. The Fourier representations
of the magnetization M(r) and Hs are

M(r) =
∑
q
mqe

iq·r and Hs(r) =
∑
q
hs,qe

iq·r

Using the in the second equation of (1.16) fixes the direction of hs,q.

∇×Hs =
∑
q

(q× hs,q)eiq·r
!

= 0

y q ‖ hs,q (1.17)

The first equation of (1.16) gives

∇ ·M =
∑
q

(mq · q)eiq·r
!

= −α∇ ·Hs = α
∑
q

(hs,q · q)eiq·r

mq · q = αhs,q · q
(1.17)

= α|hs,q| |q|

y |hs,q| = −
1

α

(mq · q)

|q|

y Hs = − 1

α

∑
q

(mq · q)

|q|
q̂eiq·r (1.18)

For Hs is an additional component to the internal magnetic field, an additional term Fdd in the
free energy needs arise with the property δFdd

δM = −µ0Hs. A first guess is

−µ0
∫
d3rM ·Hs =

µ0
α

∫
d3r

(∑
q
mqe

iq·r

)
·

∑
q′
hs,q′e

iq′·r


=
µ0
α

∑
qq′

mq ·
(m′q · q′)
|q|2

q′
∫
d3r ei(q+q′)r︸ ︷︷ ︸
δq+q′

=
µ0
α

∑
q

(mq · q)(m−q · q)

|q|2
(1.19)
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1 Chiral Magnets and their Phases

To substantiate this guess, it is good to differentiate (1.19) with respect to the ith component of
m−q.

−
∂
∫
d3rM ·Hs

∂mi
−q

=
1

α

∂

∂mi
−q

∑
q

(mq · q)(m−q · q)

|q|2

=
1

α

[
∂

∂mi
−q

(
(mq · q)(m−q · q)

|q|2

)
+

∂

∂mi
−q

(
(m−q · (−q))(mq · (−q))

|−q|2

)]
=

2

α

mq · q
|q|2

qi =
2

α
his,q (1.20)

To obtain the right contribution to the free energy, we just need to compensate the additional
factor of 2 in our initial formula leading to

fdemagnetization,k 6=0 =
1

2

µ0
α

∑
q

(mq · q)(m−q · q)

|q|2

Combining the two limits for k in one result, one can write

fdemagnetization =
1

2
Miχ

−1
dem, ijMj (1.21)

or
f̃demagnetization =

1

2
M̃i χ

−1
dem, ij

∣∣∣
α=1

M̃j (1.22)

respectively, with

χ−1dem, ij(q) =
µ0
α

{ qiqj
|q|2 if q� 1/L

δijNi if q� 1/L
(1.23)

where L denotes the length scale of the specimen. Plainly speaking, it is necessary for the
wavelength of the exciting wave to be much larger than the dimension of the specimen to justify
the use of demagnetization factors. Is the wavelength comparable to the length scale of the
specimen and hence cannot be seen as a homogeneous excitation any more, one has to resort to
the direct dipole-dipole field description.

1.4 Mean-field analysis

1.4.1 The conical phase

The dimensionless free energy G as a function of the magnetic field and temperature is given by

e−G =

∫
DMe−F [M ] (1.24)

The favored phase is described by a magnetization field, that minimizes the free energy. To
prove, that the helical/conical phase represents the global minimum, let us consider a Fourier
transformation of M(r), which is allowed due to translation invariance of (1.6) [32]. Plugging
this transformation into the free energy, (1.6) can be written as a sum of a constant term plus
several quadratic terms [4]:

F0[M ]

κ
= −V t

2 − µ20H2

4
+ V

∑
q 6=0

mα
−q

[
rαβ(q)− t δαβ

]
mβ

q

+

∫ (
M2 +

t

2

)2

d3r + V

(
M0 −

µ0H

2

)2

(1.25)
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1.4 Mean-field analysis

The system volume is given by V and rαβ = (1 + t+ k2)δαβ − 2i εαβγ kγ . The Fourier transform
of M is given by

M(r) =
∑
q
mq e

iq·r (1.26)

The two terms on the far right in (1.25) are obviously greater or equal to zero. The eigenvalues of
the matrix

[
rαβ(q)− t δαβ

]
are

{
1 + q2, (1− q)2, (1 + q)2

}
, which makes it positive semi-definite.

As a result, the free energy is bounded from below by the constant −κV (t2 − µ20H2)/4.

To get a first, simple idea of the representation of the structure and parameter relations, let us
consider a helical ansatz for the magnetization in the mean-field limit.

Mhel(r) =

 A cos(Q · r)
A sin(Q · r)

M0

 =

 A cos(Qz)
A sin(Qz)

M0

 (1.27)

We choose here, as a simplification, the propagation direction of the helix Q = Qêz to be parallel
to êz, which in turn is also the direction of a static external magnetic field H0 = {0, 0, Hz}.
Plugging (1.27) into (1.6) minimization with respect to Q, A and M0 yields the solution:

Q = 1 A2 = −M2
0 −

t

2
M0 =

1

2
µ0Hz (1.28)

One can see, that this solution effectively minimizes the free energy as it puts all quadratic terms
of (1.25) simultaneously to zero.
Through a combination of the equations in (1.28) and setting A to zero, one obtains the boundary
of the phase transition between the conical and the polarized phase as

Hc2 =
√
−2t

Notably, the zero-field phase transition is at t = 0.

In the purely helical phase the homogeneous contribution M0 vanishes. As explained in subsec-
tion 1.3.1, its occurrence of the helical phase even at a finite field is due to additional anisotropy
terms, that pin the helix to the underlying atomic lattice and keep it from aligning with the
external magnetic field. The here applied theory to describe the helical and conical phases is
isotropic. In this setup, the pure helical phase arises only atH0 = 0, which has to be kept in mind.

Before we go into more detail and study the effect of demagnetization factors in the mean-field
limit, it is worthwhile to elaborate on the previous calculation in a new basis, that accommodates
the twist in the magnetic structure. While êx, êy and êz are the ordinary cartesian unit vectors,
the new basis has the form

êz = êz, ê± =
êx ± iêy√

2
or êx =

ê+ + ê−√
2

, êy =
ê+ − ê−

i
√

2
(1.29)

We further assume, that the pitch of the helix, as well as the magnetic field, point in êz-direction.
In this new basis, we can formulate an ansatz for the magnetization in the mean-field limit as
follows.

Mhel(r) = M0 êz +A ê− eiQr +A∗ ê+ e−iQr (1.30)

Here, A is a complex amplitude of the helix and M0 the homogeneous component in direction of
the applied magnetic field. One may note, that this ansatz is still valid even while considering
dipole-dipole interaction. Since q ‖Mq, no dipole fields arise. Using this ansatz in the free energy
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1 Chiral Magnets and their Phases

(1.7), which now only consists of the densities f0 and fdemagnetization that are defined by (1.6)
and (1.14) respectively, we obtain an expression for the energy density f = f0 + fdemagnetization in
terms of the new basis and the rescaled units:

f = (t+ 1)
(
M2

0 + 2|A|2
)

+ 2Q2|A|2 − 4Q|A|2 +
(
M2

0 + 2|A|2
)2
− µ0HzM0 +

1

2

µ0
α
N̄M2

0 (1.31)

We have introduced N̄ as the demagnetization factor “pointing along” the magnetic field direction
N̄ = Ĥ ·N ·Ĥ . Differentiation with respect to Q leads to Q = 1, which concurs with our rescaling
of units. Minimizing (1.31) with respect to M0 and A∗ gives two equation of states.(

2(t+ 1) +
µ0
α
N̄
)
M0 + 4

(
M2

0 + 2|A|2
)
M0 = µ0Hz (1.32a)

2tA+ 4
(
M2

0 + 2|A|2
)
A = 0 (1.32b)

Being in the conical/helical phase implies a finite helix amplitude. Assuming hence a finite A
and combining both equations of (1.32) yields an expression for the homogeneous component of
the magnetization.

M0 =
µ0Hz

2 + µ0
α N̄

(1.33)

It is noteworthy, that M0 does not depend on temperature to first order, which leads to an also
temperature independent susceptibility (χcon = M0/Hz) in the conical phase

χcon =
µ0

2 + µ0
α N̄

(1.34)

This makes the susceptibility indeed nearly constant in the conical phase, as has been measured
by Bauer et al. [25]. The measured susceptibility however is expressed by the susceptibility χ̃con
calculated analogously in the not rescaled units used of (1.4). The relation amongst each other is
given by

χ̃con =
1

α
χcon

Combining this relation and (1.34) provides us with a concrete value for the thus far unfixed
pre-factor α in terms of measurable quantities.

µ0
α

=
2

χ̃−1con − N̄
(1.35)

For the helix amplitude we obtain via (1.32b) and (1.33) the expression

|A|2 = − t
4
− 1

2

(
µ0Hz

2 + µ0
α N̄

)2

(1.36)

A finite helix amplitude is given as long as Hz is smaller than a critical field Hc2, for which the
relation

0 = − t
2
−
(

µ0Hc2

2 + µ0
α N̄

)2

(1.37)

holds. The helix amplitude can then also be expressed in terms of the critical field Hc2

|A|2 =
χ2

con
2

(
H2
c2 −H2

z

)
(1.38)
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1.4 Mean-field analysis

1.4.2 The Skyrmion phase

Q1

Q2

Q3

Figure 1.9: The basis vectors
of the spin order in the
Skyrmion lattice phase.

The emergence of Skyrmions came about as part of a non-linear
field theory by T.H.R. Skyrme, which unifies mesons (i.e. the nu-
clear “glue” that holds the nuclei together [36]) and their particle
sources. This theory has static solutions of a singular nature, and
the number of those entities has been found to be a rigorously
conserved constant of motion [37, 2]. Such localized field config-
urations were long sought after as an ingredient for a general field
theory of elementary particles and hence a remarkable accomplish-
ment. Over the years, Skyrmions were discovered in several other
fields of research.
In 1989, Bogdanov and Yablonskii already predicted the possible
existence of thermodynamically stable vortices, which later turned
out to be Skyrmions, as stable ground states in magnetically ordered crystals. The real break-
through happened around 20 years later, where a lattice Skyrmions were experimentally verified
by Mühlbauer et. al in MnSi by neutron scattering experiments.
Such a lattice of Skyrmions, can in principle and in lowest order be geometrically constructed by
a superposition of three helices, whose propagation direction form angles of 120° amongst each
other. For the true lattices, higher modes need to be taken into account as well, which are also
evident in experimental results [29]. All (three) of them are orthogonal to the applied magnetic
field, so that the lattice plane normal is parallel to it. The resulting texture of the magnetization
is depicted in Figure 1.3.
For an elaborate description of the magnetization field for the Skyrmion phase, we start again
with the free energy functional (1.6). A valid ansatz consists of generally infinitely many helices
pointing in the three Q-direction shown in Figure 1.9. To first order, three helices suffice, cf.
supplementary information of [4].

Msky(r) = M0 +

∞∑
i=1

(
MQi

eiQi·r + c.c.
)

≈M0 +

3∑
i=1

|Ai|
(
n̂′Qi

cos(Qi · r + φi)− n̂′′Qi
sin(Qi · r + φi)

) (1.39)

Q1, Q2 and Q3 are the wavevectors of the three helices, Qi with i > 3 denote higher order wave
vectors, and

MQi
=

1

2
Ai

(
n̂′Qi

+ in̂′′Qi

)
where Ai = |Ai| exp(iφi) is a complex amplitude and n̂′Qi

, n̂′′Qi
are orthogonal vectors. Addi-

tionally, minimization of the free energy returns the same chirality for all three helices. This
means, that n̂′Qi

, n̂′′Qi
fulfill the relation n̂′Qi

× n̂′′Qi
= Q̂i. Mühlbauer et al. [4] show, that after

minimization the helices have equal weight, i.e. |A1| = |A2| = |A3|, and that the relative phases
φi are fixed in such a way, that at an arbitrary point (say r = 0) the magnetization of each helix
points opposite to the field direction, which leads to the center of a Skyrmion being at precisely
that point. The previously mentioned angle of 120° between the helices is also a consequence of
the minimization process, but can easier be motivated by an analogy to crystal formation out
of a liquid phase. Crystal formation is often driven by cubic interactions and can be written in
momentum space as ∑

k,k′k′′
ρkρk′ρk′′δ(k + k′ + k′′)
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1 Chiral Magnets and their Phases

If a finite uniform magnetization Mf is present, a similar mechanism can arise in helical magnets
as well. Some of the quartic terms of (1.6) have hence a similar structure and these terms cause a
gain in energy, when the momenta form the proclaimed tripod so that the delta function vanishes.

∑
k,k′,k′′

(Mf ·Mk)(Mk′ ·Mk′′)δ(k + k′ + k′′)

A comparison of the energies between the conical and the Skyrmion phase is given in section 1.5

Topological aspects

Another prominent feature of Skyrmions is their topological stability. It has, for instance, played
a crucial role in identifying the proper kind of defects that appear in the transition phase between
a pure Skyrmion-tube phase and the conical phase, and hence to the discovery of magnetic
monopoles in bulk chiral magnets [9].
While the initial theory by T.H.R. Skyrme considered a three dimensional version of Skyrmions,
the term was later generalized to arbitrary dimensions. Nowadays, the general definition of a
Skyrmion is a smooth, topologically stable field configuration, that has a surjective mapping from
real or momentum space to an order parameter space with a non-trivial topology [32].
On the unit sphere, the magnetic structure corresponds to a hedgehog arrangement with all
magnetic moments pointing outward. To arrive at a two dimensional representation of the
hedgehog structure, one needs to project it onto a plane surface, where the south pole is identified
with the origin and the north pole with infinity. To incorporate the chiral nature of the studied
materials into the planar structure, combing of the hedgehog in the appropriate direction is
required prior to the projection, as is demonstrated in Figure 1.10.

Figure 1.10: The principal on how to ob-
tain a Skyrmion lattice, as it occurs in
chiral magnets, from a hedgehog like
spin configuration: From top to bot-
tom: Radially outward pointing spin
configuration on the surface of a sphere.
Combing this arrangement is necessary
to incorporate the chiraltity of the sys-
tem. Then, one projects this configu-
ration onto a plane surface, where the
south pole is projected to the origin
of that surface and the north pole to
infinity. The picture is taken from [32].
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1.5 Theoretical construction of the phase diagram

1.5 Theoretical construction of the phase diagram

The general recipe to obtain an actual phase diagram is to calculate and plot the phases with
lowest free energy. The first approach is to consider energies in the mean-field approximation. As
it turns out however, the free energy in the mean-field limit of the Skyrmion phase is always higher
than the free energy of the conical phase. This does not concur with experimental results. A
theoretical explanation for the stabilization of the Skyrmion phase was given by adding Gaussian
fluctuations as a first order correction to the mean-field theory [4].
The free energy G is given by (1.24). Let MMF be the mean-field solution, then additional
Gaussian fluctuations around the mean-field lead to

G ≈ F [MMF ] +
1

2
log det

(
δ2F

δMδM

)∣∣∣∣
MMF

(1.40)

This procedure explains in the end only the existence but not the extent of a stable Skyrmion
phase as it covers only thermal fluctuations to a Gaussian level around the mean-field theory. A
more elaborate approach to the phase diagram has been made by Buhrandt and Fritz [38], namely
a classical Monte Carlo study, which incorporates fluctuations of the system in a non-perturbative
manner. Taking anisotropy compensation and finite size effects into account, their calculations
yield a phase diagram (Figure 1.11) in excellent agreement with experiments on MnSi.

Figure 1.11: Phase diagram as a result of a classical Monte Carlo simulation. Temperature and magnetic
field are gauged to the ferromagnetic exchange J [38].
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CHAPTER 2

Excitations and Linear Response Dynamics

Condensed matter experiments typically probe the response of a system to weak per-
turbations. If the perturbation is weak enough, the response will bear a linear character.
As this is the case for the here studied experiments, we can focus on perturbations to first
order only. We will use this chapter to give an explanation on how to calculate resonance
frequencies as a response to weak magnetic or electric field oscillations. A large portion is
dedicated to the numerical implementation.
First however, we give a short introduction on simple wave motions in a ferromagnet as
a preparation for the more elaborate calculations later on. We conclude that part with
magnon and helimagnon dispersion relations, as well as a brief introduction of the concept
of resonance.

2.1 Spin waves

To get familiar with the idea of spin waves and ultimately their measurement via resonance
experiments, it is instructive to study an ordinary ferromagnet without all the additional effects
like demagnetization fields etc. This is the focus of this section.
Below the critical Curie temperature, a ferromagnet orders magnetically. The internal magnetic
moments align in a certain direction given by magnetic anisotropies or an external magnetic field,
and form a joint spontaneous magnetization. The latter takes its maximum at zero temperature.
In other words, the individual electron spins add up to a maximum spin S.
When temperature rises, thermal fluctuations lead to a change of the total spin, effectively in
its lowering. This could already be achieved for example by flipping one spin. This procedure,
however, would result in a state, that is not an eigenstate of the hamiltonian of the problem.
This hamiltonian consists of the exchange energy and a Zeeman contribution, where the spins
couple to the effective, internal magnetic field, which includes a possible external field as well as
any molecular field.
But a change of the total spin could also be achieved by an even distribution of the excitation
energy onto the entire system, so that every spin is changed a little bit instead of completely
flipping one single spin. In such a collective excitation, the movement of neighboring spins are
coupled together and form so-called spin waves or speaking in terms of quasiparticles excitations:
magnons.
Their creation and behavior is closely related to phonon excitations in a solid, but they do have a
different dispersion relation (cf. subsection 2.1.2).
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2 Excitations and Linear Response Dynamics

2.1.1 Precession of magnetic moments in a magnetic field

The magnetic object of interest is subject to a homogeneous magnetic field H0. The magnet
contains electrons, that carry a spin of 1

2 . More generally, it suffices to consider charged particles
with a general angular momentum J that induce a magnetic moment m parallel to J .

m = γJ

The proportionality constant γ = gLµ
~ = gLq

2m is called the gyromagnetic ratio. Here, gL is the
Landé factor and µ = q~

2m the magneton for a particle with charge q and mass m. Hence for an
electron we get γ = − gLe

2me
with −e < 0 the charge of the electron and me its mass.

Obviously, this setup leads to some form of interaction between the internal magnetic moments
and the external magnetic field. The energy density connected to said coupling is

U = −µ0m ·H0 (2.1)

Let us consider a fixed direction of the outer magnetic field, H0 = H0êz. The interaction energy
density then only depends on the z-component of the angular momentum:

U = −µ0mzH0 = −γ µ0H0Jz

~ωL = γµ0~H0

H = H0

H = 0

mJ = − 1
2

mJ = + 1
2

Figure 2.1: Level splitting due to the Zeeman
effect in a finite magnetic field.

In the case of itinerant electrons, we can neglect
the orbital angular momentum part, so that Jz =
Sz = ±1

2 . As a consequence of a finite, external
magnetic field, the energy (2.1) has to be taken into
account and the formerly degenerate energy splits
into two possible levels as can be seen in Figure 2.1.
The mJ stand for the possible quantum numbers of
Jz.

Between these two levels, the energy difference scales linear in the magnetic field, which leads to
the fundamental condition for the magnetic resonance absorption [39, pp. 528]:

ωL = γµ0H0 (2.2)

The resonance frequency ωL is called Larmor-frequency. To get an impression of what is actu-
ally going on in the crystal, let us now consider the Heisenberg equation of motion for spins
d
dtS = 1

i~ [S,H]. For H we take the interaction energy (2.1) from above with the magnetic moment
now being just a single spin. Using the commutation relations for spins 1

i~ [Si,Sj ] = εijkSk leads
to

d
dt
S =

1

i~
[S,−γµ0S ·H0] = γµ0S ×H0 (2.3)

This equation describes the precession of the spin S around the static field H0.
An analog in the macroscopic world can be drawn, if one sees that a macroscopic magnetization
is the sum over all microscopic magnetic moments, in this case spinsM =

∑
imi. This approach

yields an expression, which describes a precession of the macroscopic magnetization around the
applied magnetic field (see Figure 2.2) [39].

dM
dt

= γµ0M ×H0 (2.4)
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2.1 Spin waves

M

H0

Figure 2.2: Precession of a
magnetization M around
a static magnetic field H0,
cf. (2.4).

2.1.2 Dispersion relation

The next step to a detailed description of spin waves lies in obtaining their dispersion relation.
In its derivation we follow [40]. To derive the relation, we take the exchange energy (1.1) with
Jij = J > 0 and summation only over nearest neighbors, as well as the Zeeman term (2.1) as the
free energy F for our model. Let us have a look at a setup with equal atoms at each site. For site
a of the lattice, with nearest neighbors j and the use of magnetic moments ma = Sa/γ instead
of spins, then applies

F = −J
∑
〈j〉a

Sa · Sj −ma ·H = − J

γ2

∑
〈j〉a

ma ·mj −ma ·H (2.5)

The summation over 〈j〉a denotes the summation over all sites j, that are nearest neighbors to a.
The effective magnetic field is given via µ0Heff = − ∂F

∂ma
. Applying this to (2.5) yields

Heff = H +
J

γ2

∑
〈j〉a

mj

Plugging this field into the precession equation (2.4) gives us the equation of motion for the
magnetic moment on site a.

dma

dt
= γµ0ma ×H +ma ×

J

γµ0

∑
〈j〉a

mj (2.6)

To simplify this equation further, let us make the following approximations: H = H0 ‖ êz, i.e.
Hx = Hy = 0, and mx,my � mz and therefore mz ≈M0. With the last assumption at hand, we
can neglect terms of the sort mxmy or of similar quadratic order. Equations for the individual
components are now

dma,x

dt
= γµ0ma,yH0 +

J

γ

ma,y

∑
〈j〉a

mj,z −ma,z

∑
〈j〉a

mj,y


= γµ0ma,yH0 +

JM0

γ

n̄ma,y −
∑
〈j〉a

mj,y

 (2.7a)

dma,y

dt
= −γµ0ma,xH0 −

JM0

γ

n̄ma,x −
∑
〈j〉a

mj,x

 (2.7b)

dma,z

dt
≈ 0 (2.7c)
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2 Excitations and Linear Response Dynamics

The number of nearest neighbors to the site a is introduced above as n̄. We now make the
following ansatz of a Fourier representation for the magnetic moments

ma,x = Mxe
i(k·ra−ωt)

ma,y = Mye
i(k·ra−ωt)

(2.8)

where ra points to the ath site. Plugging it into (2.7a) leads to

−iωMxe
i(k·ra−ωt) = γµ0MyH0e

i(k·ra−ωt) +
JM0

γ

n̄Mye
i(k·ra−ωt) −

∑
〈j〉a

Mye
i(k·rj−ωt)


−iωMx = γµ0MyH0 +

JM0

γ

n̄My −
∑
〈j〉a

Mye
ik·(rj−ra)


0 = iωMx +My

γµ0H0 +
JM0

γ

n̄−∑
〈j〉a

eik·(rj−ra)


0 = iωMx +My

γµ0H0 +
JM0

γ

n̄−∑
〈j〉a

cos (k · (rj − ra))


0 = iωMx +My

γµ0H0 +
JM0

γ

∑
j

(1− cos (k · r̃j))


︸ ︷︷ ︸

:=β

In the penultimate line, we have assumed, that the lattice is periodic, so that one can always
find pairs ri and rj within the set of nearest neighbors to site a, on whose connecting line the
midpoint is equal to ra.

ra =
ri − rj

2

That way, the two terms for the opposing sites form a cosine. In the last line, r̃j is the vector
connecting the center site a to the neighbor j. It therefore has the length of the lattice constant.
Along the lines of this calculation, we get a similar equation for (2.7b) and in total the set

0 = iωMx + βMy

0 = iωMy − βMx
(2.9)

Solving this set of equations for a finite magnetization provides us with the sought after spin
wave dispersion relation (cf. [40]).

ω = β = γµ0H0 +
JM0

γ

∑
j

(1− cos (k · r̃j)) (2.10)

For k = 0 and in a finite and homogeneous external field H0, all magnetic moments are aligned
in parallel, and precess around H0 according to (2.4). As previously mentioned, the rotation
frequency is the Larmor-frequency, or as we have now calculated, the first term of the dispersion
relation.
Without the presence of the external magnetic field, a typical k dependence is shown in Figure 2.3.
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2.2 Resonance

To simplify things, an equal distance between all atoms r̃ was assumed. For a small k, i.e kr̃ � 1,
the dispersion relation is quadratic in k.

ω =
JM0r̃

2

2γ
k2

This is a noticeable difference to phonons, whose dispersion relation goes linear in k around k = 0.
Also in an anti-ferromagnet, the dispersion relation would be linear in k.

0-
Π

 r�¤
Π

 r�¤

0

J M
Γ

k
Ω

Figure 2.3: Dispersion relation of spin-
waves in a one dimensional chain. |r̃|
is the distance between neighboring
sites.

Going a step further is to calculate the dispersion relation
of so-called helimagnons for a helical state, which has
been done by Belitz et al. [41]. They show, that the
helimagnon dispersion relation is highly anisotropic. The
mode is softer in the direction perpendicular to the wave
vector than in the longitudinal direction.

ω ∝
√
c‖k

2
‖ + c⊥k

4
⊥ (2.11)

This means a linear dispersion relation for wave vectors
parallel to the pitch vector, and quadratic one for wave
vectors orthogonal to it. The coefficients c‖ and c⊥
are constants. For further discussion and numerical
calculations of the dispersion relation of Skyrmions, we
refer to subsection 3.3.2.

2.2 Resonance

Atomic magnetic moments are associated with an angular momentum, as we have seen in the pre-
vious section. As a consequence, the change of an applied field does not lead to an instantaneous
rotation of the magnetization vector to the new equilibrium direction or even a delayed following,
but to a precession around it. Due to damping caused by dissipative processes, the precession
motion looses energy and the new equilibrium position will be reached eventually [35].

∆

0 Ω0

Ω

A0

AHΩL

Figure 2.4: Schematic picture of the resonating
amplitude of an oscillator with eigenfrequency
ω0 depending on the excitation frequency ω
A(ω) = A0/

√
(ω2

0 − ω2)2 + (2δω)2, where δ is
some damping coefficient.

If the system were in equilibrium, the applica-
tion of a small oscillating field perpendicular to
the initial equilibrium direction, will hence not
lead to a pendulum like movement of the mag-
netization, but to a forced precession around
the equilibrium direction. These dynamical
effects gain importance for the three materi-
als, which were introduced in the first chapter,
especially at radio and microwave frequencies,
because their natural frequencies are of the
same order of magnitude. Our focus lies on
the response of the system to external field
oscillations. Resonance comes about, when the
oscillation frequency ω of the external magnetic
field coincides with one of the eigenfrequencies,
say ω0, of the magnet. Then, the oscillation
amplitude A(ω) is largest and also the energy taken from the external oscillation reaches its
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2 Excitations and Linear Response Dynamics

maximum, as can be seen in absorption spectroscopy.
A typical resonance spectrum of a damped harmonic oscillator is shown in Figure 2.4 and has a
Lorentzian shape.

2.3 General derivation of the resonance frequencies

In this part, we introduce the so far disregarded time dependent contributions to the free energy
functional. Schematically, we can split the free energy functional into a time independent part
Fstat and a time dependent part F (t).

F = Fstat + F (t)

The time dependent part obviously comprises the oscillating electric or magnetic fields, whose
energies we regard as small quantities compared to the static terms, while Fstat contains f0,
fdemagnetization and in principle also fanisotropy of (1.7). We are interested in the response of the
magnetization to the time dependence of the external field oscillation. To this end, we see the
time dependent deviations from the equilibrium mean-field solution MMF as a small quantity,
too.

M = MMF + δM(t) (2.12)

Sought-after is therefore a linear relation between δM at a time t due to the oscillating field at
time t′, and the oscillating field itself. It may be noted here, that the system is not explicitly
time dependent so that the response will hence just depend on the difference t − t′. Fourier
transformation with respect to time will yield the important statement within the linear response
regime, that a perturbation acting at a frequency ω will result in a response of the same frequency
[42]. Strictly speaking, the excitation is not necessarily confined to be homogeneous in space.
Therefore, we make an ansatz for the oscillations with not only a time dependance, but a spacial
variation as well:

F (t, r) = F̄ e−i(ωt+q·r) (2.13a)

δM(t, r) = δMe−i(ωt+q·r) (2.13b)

Due to the translation invariance of the system, the upper statement for the response in time
applies to the spatial oscillation in a similar fashion. Since we are dealing with a discrete
translation symmetry, the momenta of the excitation and the response only coincide up to a
reciprocal lattice vector.
Using this ansatz in the precession equation (2.4) lets us obtain a general scheme to calculate
resonances of our system. Heff now contains both the static and oscillating outer fields.

∂tM = γµ0M ×Heff = −γM × δF

δM
= −γM ×

(
δFstat
δM

+
δF (t, r)

δM

)
(2.14)

Expansion of Fstat to quadratic order in δM(t, r) gives

Fstat[M ] = Fstat[M
MF ] + 0 · δM(t, r) +

1

2
δM(t, r)

δ2Fstat
δM2

∣∣∣∣
MMF

δM(t, r) +O(δM(t)3) (2.15)

Here, we utilized the mean-field condition δFstat
δM

∣∣
M=MMF = 0. The next step is to plug this

expansion into (2.14). In doing so, we only keep terms to linear order in δM and F̄ . Furthermore,
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2.4 Momentum space calculations for numerical purposes

∂tM
MF = 0 and use of the explicit time dependencies of δM lead to

−iω δM = −γ

(
MMF × δ2Fstat

δM2

∣∣∣∣
MMF

δM +MMF × δF̃

δM

∣∣∣∣∣
MMF

)
(2.16)

δM = −
[
iω − γMMF × δ2Fstat

δM2

∣∣∣∣
MMF

]−1
·

(
γMMF × δF̃

δM

∣∣∣∣∣
MMF

)
(2.17)

y ωresonance = ImEigenvalues

[
γMMF × δ2Fstat

δM2

∣∣∣∣
MMF

]
(2.18)

Here, we have used the definition for the effective magnetic field µ0Heff = − δF
δM . The last line

comes about, because the variation of δM is maximal, if the denominator of the penultimate line
is zero.

2.4 Momentum space calculations for numerical purposes

For numerical purposes, we switch to a representation in momentum space of the precession
equation. For periodic structures like in the conical an Skyrmion phase, it is possible to decompose
the continuous momentum vector q into a reciprocal lattice vector, i.e. a discrete part, which also
functions as a Brillouin-zone index, and a continuous part, which is restricted to the first Brillouin
zone. Thereby q = Q + k with Q being the discrete reciprocal lattice vector and k ∈ 1.BZ
continuous. The reciprocal lattice in the conical phase is one dimensional, while the reciprocal
lattice of the Skyrmion phase is two dimensional. They are both shown in Figure 2.5.

Q

−Q

Q1

Q2

−Q1 −Q2

Figure 2.5: Image of the reciprocal lattice in the conical (left) and Skyrmion phase (right). The latter is
spanned by the two vectors Q1 and Q2. Black solid dots define the first ring, gray ones the second
ring, light gray ones the third and so forth.

We have chosen the following convention for the vectorial structure for the conical phase in
momentum space.

Mcon(q) =
{
Mx

0 ,M
y
0 ,M

z
0 ;Mx

Q,M
y
Q,M

z
Q;Mx

−Q,M
y
−Q,M

z
−Q; ...

}
(k) (2.19)

=: {M0,MQ,M−Q,M2Q,M−2Q, ...} (k) (2.20)

Analogous for the Skyrmion phase

Msky(q) =
{
M0,MQ1

,M−Q1
,MQ2

,M−Q2
,MQ1+Q2

,M−Q1−Q2
,M2Q1

,M−2Q1
, ...
}

(k)
(2.21)
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2 Excitations and Linear Response Dynamics

Before dealing with the entire equation, we have a look at individual parts.
The Fourier transform of the fluctuation matrix δ2F

δM2

∣∣∣
MMF

is given by (cf. supplementary
information of [4])

δ2F

δM i(−q) δM j(q′)
= 2 gijqq′ =

q = Q + k
q′ = Q′ + k′

k,k′ ∈ 1.BZ

2 gijQQ′(k,k
′)

= γ

[
δkk′δQQ′ r

ij(Q + k) + 2 δij
∑
Q′′
M−Q′′ ·MQ−Q′+Q′′δk,k′ + 4

∑
Q′′

M i
−Q′′M

j
Q−Q′+Q′′ δkk′

]
= 2 gijQQ′(k) δkk′ (2.22)

with rij(q) = (1 + t+ q2)δij − 2i εijkqk +Dij(q) where Dij(q) is an additional term representing
the demagnetization field contributions:

Dij(q) =
1

2

µ0
α

{
Nδij ,q = 0
qi qj

|q|2 ,q 6= 0
(2.23)

This scheme can also be applied to the effective magnetic field 1

µ0(H
eff )i(q) = µ0(H

eff )iQ(k) = −
∑
q′

δ2F

δM i(−q) δM j(q′)
δM j(q′)− δF (t,q)

δM i(q)

= −
∑
q′

2gijqq′ δM
j(q′) = −2

∑
Q′k′

gijQQ′(k) δkk′M
j
Q′(k

′)− δF (t,k)

δM i
Q(k)

= −2
∑
Q′

gijQQ′(k) δM j
Q′(k)− δF (t,k)

δM i
Q(k)

(2.24)

Now, we can begin with our calculation in Fourier space. Doing the Fourier transform in space
via M(r) =

∑
qMqe

iq·r yields the following expression for (2.14).

∂t δM
i(q) = ∂t δM

i
Q(k) = γµ0

∑
Q′

εijlM j
Q′ (H

eff )lQ′′(k) δQ′+Q′′−Q

= −γµ0

∑
Q′

εijlM j
Q′ δQ′+Q′′−Q

(−(Heff )lQ′′(k)
)

= −γ

∑
Q′

εijlM j
Q′ δQ′+Q′′−Q


︸ ︷︷ ︸

=:(M×)ilQQ′′

∑
Q′′′

(
2 glbQ′′Q′′′(p) δM b

Q′′′(k) +
δF (t,k)

δM i
Q(k)

) (2.25)

(M×)ilQQ′′ is skew-hermitian (anti-hermitian) due to the anti-symmetric epsilon tensor and has
therefore purely imaginary eigenvalues. Following the steps in section 2.3 to arrive at (2.17) gives

− iωδM i
Q(k) = −γ

(
(MMF×)ilQQ′′

)(
2glbQ′′Q′′′(k)

)
δM b

Q′′′(k) +
(
(MMF×)inQQ′′

)
ξnQ′′ (2.26)

1The general structure is µ0H
eff = − δF

δM
≈ − δ2F

δM2 δM and the pair of M in the denominator are arranged in a
M(−q)M(q) fashion due to momentum conservation. Hence, the structure of δ2F

δM2 is δ2F
δM(−q) δM(q)
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2.5 Resonance frequencies and their weights

where

ξnQ′′ = −

(
δF̃

δM

∣∣∣∣∣
MMF

)n
Q′′

(2.27)

contains the direction and strength of the oscillating field coupling to the magnetization, either
magnetic or electric. We elaborate on both cases in separate chapters. Again, taking steps
analogous to the schematic calculation for (2.18), we arrive at

δM b
Q′′′ = −

[
iωδibδQQ′′′ − γ

(
(MMF×)ilQQ′′

)(
2glbQ′′Q′′′(k)

)]−1 (
(MMF×)inQQ′′

)
ξnQ′′ (2.28)

In principle, the sums extend over infinitely many Q-vectors. Numerically, a cutoff Λ has to be
chosen with |Q| ≤ Λ. This is valid since the free energy approaches a finite limit in the mean-field
limit plus Gaussian fluctuations for Λ→∞ [4].
The numerical challenge is to include as many Q-vectors in the calculations as possible, especially
in the Skyrmion phase calculations. There, we achieve to include up to five rings. A definition of
rings is given in Figure 2.5. A pretty good convergence of the resonance frequencies is found to
happen already by including four rings.

2.5 Resonance frequencies and their weights

Usually, resonance peaks have a Lorentz-peak structure as has been explained in section 2.2.
Since we do not consider damping terms in our calculation, the obtained peak structure is a
delta peak and the weight is hence not given via the area taken by the resonance peak. One can
however take the pre-factor of the delta peak of the resonance condition (2.17) as a weight. In a
schematic sketch, the equation in momentum space has the structure

δMα(ω) = − [iω1−R]−1αβ Tβ (2.29)

where the matrix R =
(
γMMF × δF 2

0
δM2

∣∣∣
MMF

)
and the vector T =

(
γMMF × δF̃

δM

∣∣∣
MMF

)
. The

indices α and β run over all individual components of for example the generally infinite vector
(2.19). To accommodate the same momentum structure, the matrices are constructed accordingly
as has been shown in the section above.
To “purify” the denominator of (2.29), we perform an eigenbasis decomposition of R into a
diagonal part R′, whose diagonal elements consist of the eigenvalues of R, and matrices P and
P ′, that consist of the corresponding eigenvectors.

δMi(ω) =
[
iω1− PR′P−1

]−1
αβ
Tβ = Pαη

[
iω1−R′

]−1
ηη
P−1ηβ Tβ

The matrix [iω1−R′]−1 has diagonal form and its diagonal elements can be written as

[
iω1−R′

]−1
ηη

=
êηê

T
η

iω −R′η
(2.30)

Letting êη (êT
η ) act to the left (right) will select the appropriate components of P (P−1), which

belong to the ηth eigenvalue of R′. To obtain the weight of the resonance for a specific ωn
belonging to the nth eigenvalue of R′, one then needs to project δM onto the direction of probing
êout, because it can change with direction. Since the delta peak is given by the denominator
of (2.30), the remaining pre-factor, and from now on referred to as the weight Wωη of the ηth
resonance frequency, including the projection onto êout amounts to

Wωη = −i êout
α Pαηêηê

T
η P
−1
ηβ Tβ (2.31)
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2 Excitations and Linear Response Dynamics

The direction êout corresponds to the direction of measurement, which can potentially differ
from the excitation-direction êin. The measurements performed accompanying this thesis, both
directions are equal for the used coplanar wave guides.
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CHAPTER 3

Magnetic Excitations

The scheme to calculate resonance frequencies in principal has been explained in the previous
chapter. We focus in this chapter on concrete applications. Additionally, analytical des-
criptions are provided and considered where possible.
This chapter considers magnetic excitations only. Electric ones are covered in the next
chapter. A cooperation with physicists in Munich provided us with resonance measurements.
We start by introducing the experiments from a theoretical and an experimental viewpoint
followed by an analysis of an exciting wave with k = 0. Influences of a finite k-vector are
given in the last section.

3.1 Experimental setup

In the remainder of the chapter we discuss magnetic excitations, their resonances to be more
precise, firstly of three different materials. Some of their properties have already been introduced
in section 1.2. A big influence on the resonance frequencies are not only these material specific
properties, but also the shapes of the studied specimen. They are completely different for all
three of them and characterized by the following demagnetization factors.

MnSi Nx = Ny = 0.175, Nz = 0.651

Corresponding to a disc with plane normal in z-direction
Fe0.8Co0.2Si Nx = 0.074, Ny = Nz = 0.463

Corresponding to a rod in x-direction
Cu2OSeO3 Nx = 0.39, Ny = 0.27, Nz = 0.34

Corresponding to an almost spherical shape

(3.1)

The setup is such, that an applied static magnetic field H0 is always pointing in z-direction and
the excitation direction, i.e. the direction of the oscillating field Hω, is always the x-direction
relating to the given demagnetization factors. It is important for the calculations, that êx, êy
and êz are the principal axes of the ellipsoid. A sketch of this setup is shown in Figure 3.1. We
define Ho = H0 +Hω as the general outer field and H i as the internal field combining the outer
and demagnetization fields.
Additionally to the three shapes of the specimen, we include a perfect sphere in our calculations
as a reference.
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3 Magnetic Excitations

Another material specific quantity is the constant susceptibility in the conical phase, which we
already mention in subsection 1.4.1. Its values for the three materials and the sphere are

MnSi χ̃MnSi
con = 0.28

Fe0.8Co0.2Si χ̃
Fe0.8Co0.2Si
con = 0.5

Cu2OSeO3 χ̃
Cu2OSeO3
con = 1.1

N/A χ̃sphere
con = 1

(3.2)

The value for χ̃sphere
con does not represent a specific material, but is chosen to be as simple and still

realistic as possible. Whenever we refer to the three materials in the remainder of this chapter,
we always include the here described setup and shapes, unless specifically noted.

y

Hω

x

H0

z

y

Hω

x

H0

z

y

Hω

x

H0

z

Figure 3.1: Schematic visualization of the experimental setups. The choosen convention is: H0 ‖ êz and
Hω ‖ êx. Left: Shape that corresponds to the used MnSi specimen Middle: shape of the Fe0.8Co0.2Si
specimen Right: shape of the Cu2OSeO3 specimen.

To provoke dynamic excitations in the specimen experimentally, a coplanar waveguide (CPW) is
used [43]. A schematic picture can be seen in Figure 3.2. It consists of two ground lines and a
signal line in between. The outer lines carry half the current of the signal line in opposite direction,
leading to reversed magnetic field lines. An external magnetic field H0 is additionally applied
perpendicular to the waveguide and the specimen is placed on top of it. The high frequency field
created by the waveguide has a strong in-plane component orthogonal to the external magnetic
field, which corresponds to the above defined Hω, but also a small out-of-plane component. The
latter is at least one order of magnitude smaller than the in-plane component, because of the
small height of the CPW of around 120 nm compared to its width of approximately 20 µm.
The in-plane high frequency field induces spin precession in the specimen. The signal created by
the induced spin precession then couples inductively back to the CPW. One could say, that the
signal line has two purposes. It leads the exciting field to the magnetic specimen and carries the
induced voltage signal further to the microwave-detector. This allows for absorption spectroscopy.
The resulting data is plotted in the form of gray scale plots as shown in Figure 3.3. These specific
plots show raw data of field sweeps in bulk MnSi. Subfigure (a) shows data from a field sweep at
a temperature, where no Skyrmion phase occurs. The next two figures (b,c) show measurements
that also contain a sweep through the Skyrmion phase at a fixed temperature. The second row
shows the temperature dependence of the Skyrmion phase. While the range of the magnetic field
sweep is fixed, the extent of the Skyrmion phase is temperature dependent. It is worthwhile to
compare these plot to the earlier described phase diagrams for consistency and to gain awareness
of the effects of temperature in the setup.
The spin-wave wave vector k is defined by the geometry of the waveguide. The corresponding
wavelength in the used setup is large compared to length scales of the specimen, and hence
in particular also much larger than Q, so that the excitation field can be considered almost
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3.2 Excitations with k = 0 and mode characteristics

k
magnetic field: in-plane
component

electric field

H0 H0

Hω

Figure 3.2: Cross-section of the experimental
setup of the coplanar waveguide [45] with a
homogeneous field H0 and a high frequency
field Hω.
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(a) (b) (c)

A-phase
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A-phase

Figure 3.3: Grayscale plots of the absorbed in-
tensity in bulk MnSi. The scale of darkness
correspond to the amount of resonance [46].
For details see text.

homogeneous. The fact that it is only almost homogeneous, leads to a broadening of the resonance
peaks, which will be explained in more detail later (cf. subsection 3.3.1). The broadening, which
is caused by damping as could be seen in the experiments by Onose et al. [44], could not be
resolved in the considered experiments. We hence do not include damping terms in our theory,
because the finite line-width is more likely to be caused by the aforementioned inhomogeneities
of the magnetic field.

3.2 Excitations with k = 0 and mode characteristics

In this section we assume, that the static and oscillating outer magnetic fields are both spatially
homogeneous. This situation is described by a wavevector k = 0 of the exciting wave. The
dynamical contribution to the free energy (1.7) has the form

foszil. magnetic(t) = −µ0Hω(t) ·M = −µ0H̄e−iωt ·M (3.3)

where H̄ is the time independent part of Hω. For the numerical calculations, ξ is needed, as
defined by (2.27), and given in Fourier space by

ξQ =
{
H̄; 0; 0; ...

}
(3.4)

because Hω does not couple to the magnetization with finite Q.

3.2.1 The polarized phase: Kittel’s formula

We have seen and studied in section 2.1 the behavior of spins, or in a broad sense of a ferromagnet,
that is subjected to an external magnetic field. The magnetic moments precess around the
direction of the applied magnetic field with the Larmor-frequency ωL, that is proportional to the
field strength. We now extend this result by including the influence of the sample shape in our
calculations. We use the physical units but the tilde is omitted for this subsection to keep the
notation simple. Taking the demagnetization factors Ni into account results in an effective, inner
field with components

H i
x = Ho

x −NxMx = Hω −NxMx

H i
y = Ho

y −NyMy = −NyMy

H i
z = Ho

z −NzMz = H0 −NzMz

(3.5)
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3 Magnetic Excitations

Using this new field in the precession equation (2.4), we obtain a set of linear, differential
equations.

dMx

dt
= γµ0 [H0 + (Ny −Nz)Mz]My = γµ0ηyMy

dMy

dt
= γµ0 [MzH

ω − [H0 + (Nx −Nz)Mz]Mx] = γµ0 [MzH
ω − ηxMx]

dMz

dt
= γµ0 [−MyH

ω + (Nx −Ny)MxMy] ≈ 0

(3.6)

For a static magnetic field in z-direction the magnetization points in the same direction. Hence,
components perpendicular to that direction can be seen as small, since the perpendicular per-
turbation Hω is small as well. Therefore the last line of (3.6) is of quadratic order and can be
neglected. To simplify the notation, we introduced

ηx := [H0 + (Nx −Nz)Mz]

ηy := [H0 + (Ny −Nz)Mz]

The basis for our calculation was an assumed small oscillation in x-direction, which we now
concretize by

Hω(t) = H̄x sin(ωt)

As we have seen in section 2.3, the response of the system is of the same frequency. This leads to
the following ansatz for the magnetization.

Mx(t) = M̄x sin(ωt)

My(t) = M̄y cos(ωt)

Plugging this ansatz into (3.6) brings us to

ωM̄x = γµ0ηyM̄y (3.7a)
ωM̄y = −γµ0ηxM̄x + γµ0MzH̄x (3.7b)

Solving (3.7a) for M̄x leads to an expression for the transversal magnetic susceptibility in x-
direction χmagxx = M̄x/H̄x

M̄x =
Mz/ηx

1− ω2

γ2µ20ηxηy

H̄x =
χ0
x

1− (ω/ω0)2
H̄x ≡ χmagxx H̄x (3.8)

where χ0
x = Mz/

[
H0 + (Nx −Nz)M̄z

]
= Mz/ηx. After an analogous calculation for an exciting

field in y-direction, we would obtain

M̄y =
Mz/ηy

1− ω2

γ2µ20ηxηy

H̄y =
χ0
y

1− (ω/ω0)2
H̄y ≡ χmagyy H̄y (3.9)

with χ0
y = Mz/ηy. The resonance frequency ω0 is in both cases given by

ω2
0 = γ2µ20 [H0 + (Ny −Nz)Mz] [H0 + (Nx −Nz)Mz] (3.10)

The last line will be referred to as the Kittel formula. It describes the resonance frequency in a
ferromagnet including demagnetization factors (cf. [47]). Since we are at k = 0, we are dealing
with a uniform mode, in which all moments precess together in phase with the same amplitude
around H0. For a perfect sphere, where all Ni = 1

3 , we arrive again at the Larmor-frequency
(2.2).
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3.2 Excitations with k = 0 and mode characteristics

Experimental link

To get a grasp of the effect of demagnetization factors in the polarized regime, the plots in Figure 3.4
below qualitatively show the resonance frequency in dependence of the homogeneous, magnetic
field strength for all three materials in comparison to Ni = 1

3 for i = 1, 2, 3 and so representing a
perfect sphere. In our cases, we obtain resonance frequencies lower than the Larmor-frequency.

H0

ω

|
Hc2

H0

ω

|
Hc2

H0

ω

|
Hc2

Figure 3.4: Qualitative plots of theoretical resonance frequencies ω in the polarized phase depending on
an external magnetic field H0 for the three studied materials. Demagnetization factors are included
(red curves) and those curves are compared to a perfect sphere (dashed lines). From left to right:
MnSi, Fe0.8Co0.2Si and Cu2OSeO3.

H0

ω

|
Hc2

Figure 3.5: Kittel mode with
outer field parallel to disc sur-
face.

The direction of the static magnetic field is of great importance.
In the experiments of the disc-shaped MnSi specimen, H0 has
been applied normal to the disk surface. If it would have been
applied in parallel, the resonance frequency curve would change
its form significantly as can be seen in Figure 3.5. It now lies
above the Larmor-frequency.
To obtain these curves, we have assumed that the body is mag-
netized to a constant saturation Mc2 [27]. Since we reach the
polarized phase only at comparably high field strengths, such an
approximation is justified in the field strength range above Hc2,
which also corresponds to the appropriate magnetic field range
of the field-polarized phase in chiral magnets.

3.2.2 The conical phase

Resonance frequencies

To obtain the resonance frequencies in the conical phase and ultimately in the Skyrmion phase,
we need to calculate the eigenvalues of the matrix

[
γMMF × δ2Fstat

δM2

∣∣∣∣
MMF

]

cf. the derivation of (2.18). Using the helical ansatz Mhel in the chiral basis (1.30) and the
expression for the helix amplitude A in terms of χcon and Hc2 (1.38) plus the term for the
homogeneous part M0 of the magnetization (1.33), it is possible to calculate the resonance
frequencies for the conical phase analytically [33]. The obtained expression then only depends on
the measured and constant susceptibility χ̃con, the shape dependent demagnetization factors Ni

and the magnetic field, here gauged to the critical field (h = H/Hc2):
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ω2
±Q

(γµ0Hc2)2
=

1

4

(
8 + 2(2 +Nx +Ny − 8Nz)χ̃con − (Nx +Ny − 4Nz)(−1 + 2Nz)χ̃

2
con

+h2
(
− 4− χ̃con(4 + (Nx +Ny − 2NxNy)χ̃con + 4Nz(−2 + (−1 +Nz)χ̃con))

)
∓χ̃con

[
N2
x

(
2 +

(
1 + h2(−1 + 2Ny)− 2Nz

)
χ̃con

)2
+N2

y

(
−2 +

(
−1 + h2 + 2Nz

)
χ̃con

)2
+2NxNy

(
− (2 + χ̃con − 2Nzχ̃con)2 − 2h2(4 + (1 +Ny − 4Nz)χ̃con)(−2 + (−1 + 2Nz)χ̃con)

−h4(8 + χ̃con(8 + χ̃con + 2Nyχ̃con + 8Nz(−2 + (−1 +Nz)χ̃con)))
)] 1

2

)
(3.11)

This result of the analytical calculation yields in fact two different modes, dubbed ω±Q, instead of
only one found in the polarized phase. This nomenclature was already used by Kataoka in 1987 [48].
In his work, he calculated electron spin resonance energies in systems with a helical/conical spin
density wave due to two different origins, one being a symmetric and the other an antisymmetric
exchange interaction. In the symmetric exchange interaction, anisotropies are responsible for
the helical spin structure. The anti-symmetric one corresponds to the Dzyaloshinsky-Moriya
interaction, which we take as the foundation for our theoretical calculations. He proclaims to
consider a specimen of spherical shape but sets the demagnetization factors to zero. In the
field-polarized phase this would be tantamount to all Ni = 1

3 , but not in the helical/conical phase,
as can be seen by plugging these values into (3.11).

ω2
±Q
∣∣
Ni=0

=(γµ0Hc2)
2
(
2 + χ̃con − h2(1 + χ̃con)

)
(3.12)

ω2
±Q
∣∣
Ni=

1
3

=(γµ0Hc2)
2 1

18

[
36− χ̃2

con + 2h2(−9− 3χ̃con + χ̃2
con)

∓ χ̃con
√
h2(−6 + χ̃con)(3h2(2 + χ̃con)− 2(6 + χ̃con))

]
= ω2

±Q
∣∣
Ni=0

+ ∆ · (γµ0Hc2)
2 (3.13)

with

∆ =
1

18
χ̃con

(
− 18− χ̃con + 2h2(χ̃con + 6)∓

√
h2(χ̃con − 6)(3h2(χ̃con + 2)− 2(χ̃con + 6))

)
which is only zero for χ̃con = 0. For example even for Fe0.8Co0.2Si with the lowest conical
susceptibility of the three materials, ∆ leads to a change in value of about 10%.
One may note here, that the degeneracy of the resonance frequency in the conical phase is only
lifted for a finite χ̃con and when demagnetization factors are included.
For the three materials the resonance frequencies are plotted in Figure 3.6 below. The conical
susceptibility is decisively influenced by the ratio of µ0 and α = JQ2. It can, potentially, reach very
small values. It is hence instructive to give an expression of ω±Q for χ̃con → 0. The complicated
expression for the resonance frequencies then reduces to the very simple form

√
2− h2, which is

shown as a dashed line up to Hc2 in the plots below as well. The dashed line above Hc2 is just
given by ω

γµ0Hc2
= ~ω

gµBµ0Hc2
= h, i.e. the Kittel mode for a sphere.

The plots in Figure 3.6 demonstrate nicely the key feature of the calculated resonance formula,
namely its universal applicability and temperature independence, when everything is gauged to
the critical magnetic field Hc2, which by itself is temperature dependent. Another prominent
feature is the degeneracy for H0 = 0 for the disc-shaped specimen MnSi on the very left. This
degeneracy happens, whenever the two demagnetization factors for the axes orthogonal to the
direction of the static field are equal. In the picture on the very right, the two modes are close at
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Figure 3.6: Plots of theoretical resonance frequencies in the conical phase for the three studied materials
including their dependance on demagnetization factors (red curves) compared to a material with
χ̃con = 0 (dashed lines). From left to right: MnSi, Fe0.8Co0.2Si and Cu2OSeO3.

that point, but do not touch completely. This is because the shape of the Cu2OSeO3 specimen
was only close to a sphere, but not a perfect sphere. If that were indeed the case, the two modes
would touch at H0 = 0.
The spread between the two modes is greatly determined by χ̃con. As one can see it is closest for
the MnSi specimen, which has the smallest susceptibility of the three materials, cf. (3.2).

Frequency weights

Numerical calculations provide us with corresponding peak-weights according to (2.31). In the
conical phase, we only get two analytical resonances for ω. The matrix R′, however, has many
more eigenvalues. The realized resonance frequencies are those eigenvalues, whose corresponding
weight is non-vanishing.
Typical plots, in form of bubble-diagrams, of the conical and polarized phases with weights
proportional to the area of the bubbles are shown below in Figure 3.7. To emphasize the
directional weight dependence, we picked Fe0.8Co0.2Si as an example, because it is the only one
of the three materials, whose demagnetization factors are different in the plane perpendicular
to the static field direction (cf. (3.1)). The four pictures show different combinations between
the incident wave direction and the direction of probing restricted to the xy-plane, because no
resonances are obtained in H0-direction. Further plots are shown at the end of this section. They
comprise theoretical results for all three materials as well as experimental data (cf. Figure 3.11).
Nice to see here is, that the one of the conical modes, whose frequency transitions continuously
into the Kittel mode, also continuously transitions into the Kittel mode with respect to its weight.
While this mode gains full weight, gauged to the weight of the Kittel mode, the second one
vanishes as H0 approaches Hc2.

Mode characteristics

To paint a picture about how the oscillating modes are realized in real-space, it is key to remember
the initial statement, that spin waves with wave-vectors corresponding to q = +Q and q = −Q
are excited. Onose et. al [44] have interpreted the wave motion calculated by Kataoka [48] as
two different precession directions of the individual spins, i.e. a clockwise and counterclockwise
precession around their equilibrium position. Our analysis shows, that rather the collective
excitation changes direction while the individual spins keep the same precession direction.
To be more concrete, let us have a look at the perturbation δM(ω) of the magnetization. A non-
diverging momentum representation of δM(ω) without the singularity at a resonance frequency

35



3 Magnetic Excitations

0
0

1

2

~ω
gµBµ0Hc2

H0
Hc2

(a)

0
0

1

2

~ω
gµBµ0Hc2

H0
Hc2

(b)

0
0

1

2

~ω
gµBµ0Hc2

H0
Hc2

(c)

0
0

1

2

~ω
gµBµ0Hc2

H0
Hc2

(d)

Figure 3.7: Plots of the resonance frequencies in the conical phase up to Hc2. Direction of the static
magnetic field is always the z-direction. Demagnetization factors are Nx = 0.074, Ny = Nz = 0.463.
(a) Excitation field in x-direction, probing in x-direction (b) Excitation field in x-direction, probing in
y-direction (c) Excitation field in y-direction, probing in x-direction (d) Excitation field in y-direction,
probing in y-direction.

ωη is obtained similarly to the weight, that belongs to the excitation frequency ω. It just lacks
the final projection onto the direction of observation.

δMα(ωη) = −i PαηêηêT
η P
−1
ηβ Tβ (3.14)

For real-space interpretations, a Fourier transform of the magnetization back to M(ω, r) is
needed.

M(ω, r) =
∑
q

Re
[
MMF

q + ε e−iωt δMq(ω) eiqr] (3.15)

where ε is a small parameter tuning the approximate strength of the oscillation and the summation
over generally infinitely many q runs only over q = −2Q,−Q, 0,Q, 2Q. We find no contributions
for |q| > 2|Q| in general, and for the mean-field part the only contributions come from terms
with |q| ≤ |Q|.
The difference between the two modes lies in the strengths of the individual, q-dependent
contributions δMq(ω). The setting in the conical phase is such, that we generally excite two
modes with frequencies ω−Q and ω+Q where ω−Q < ω+Q as long as a present external field and a
finite demagnetizing field lift the degeneracy. The labeling of the two frequencies is arbitrary at
the moment, but the reasoning will be clear by the end of this subsection.
Starting with the higher frequency ω+Q, numerical calculations reveal, that the corresponding
eigenvector in momentum space has the form

δMq(ω+Q) = {v0,0,v+Q,0,v+2Q}

with

v+Q =

 0
0
vz+Q

 and v+2Q =

 vx+Q
vy+Q

0
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3.2 Excitations with k = 0 and mode characteristics

The eigenvector of the lower frequency mode ω−Q has components of the form

δMq(ω−Q) = {v̄0, v̄−Q,0, v̄−2Q,0}

with

v̄−Q =

 0
0
v̄z−Q

 and v̄−2Q =

 v̄x−Q
v̄y−Q

0


The vectors v−2Q and v+2Q possess the chiral character in the xy-plane for v−2Q · v−2Q = 0 and
v+2Q · v+2Q = 0. More importantly, for the higher frequency mode ω+Q the z-component of
the magnetization (z-direction is the helix pitch direction in the conical phase) oscillates with
ε vz+Qe

−iω+QteiQz. The helix hence experiences a distortion of the neighboring spin tip distances,
that propagates up the helical staircase. The other mode in turn exhibits the same distortion,
but a movement in the opposite direction. The movement is illustrated in Figure 3.8.

+Q

−Q

Figure 3.8: Illustration of the ex-
citations in the conical phase.
Left: Equilibrium state in
which all neighboring spin tips
have the same distance from
each other. Right: The equilib-
rium state is distorted in such a
way, that the spin tips of neigh-
boring spins are either closer
together (green) or farer away
(red). This distortion propa-
gates either up or down the spi-
ral spin staircase. Up is here the
direction of the helix pitch vec-
tor and the external magnetic
field.

If we would have not considered demagnetization fields or looked at zero-field excitations for a
select subset of shapes, where the modes join at |H0| = 0, the two resonance frequencies would be
one and the same and two fold degenerate. The calculated eigenvectors, that span the degenerate
eigenspace, now contain mixed components of both δM+Q and δM−Q, which can be decomposed
into two eigenvectors that carry pure +Q and −Q contributions, respectively.
Note, that the numerical calculations have been performed by employing negative gyromagnetic
ratio γ < 0 in the precession equation (2.4), as is the case for electrons. It fixes the sense of the
local precession of the spins, indicated by the red arrow in Figure 3.8.

Historical and recent measurements

In 1977, Date et al. measured electron spin resonances in MnSi single crystals. Their experimental
results yield the same two peak structure in the conical phase of which one mode continuously
transitions into the Kittel mode in the polarized phase, just as we have calculated here. They
try to explain their results with a theory developed by Cooper and Elliot, and give a concrete
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formula for the resonance frequencies [49]. However, their consideration of demagnetization
effects do not coincide with our calculations. Their theoretically calculated curves therefore look
a little optimistically fitted to the data. Furthermore, as Kataoka already pointed out in [48],
their derivation is based on a symmetric exchange interaction which requires a uniaxial magnetic
anisotropy, whose origin is not necessarily obvious. The shape of our calculated curves would
explain for one the small discrepancy in their peak position, but would also explain missing data
points for the higher frequency branch, because of peak weight loss.

More recently in 2012, Onose et al. measured resonance frequencies in bulk Cu2OSeO3 [44]. The
shape of their resonance peak positions within the conical phase and Skyrmion phase, the latter is
discussed in the next section, concurs with our theory very well. They even provide measurements
for the purely helical phase. By adding anisotropy effects to our numerical calculations, it is
conceptually possible to arrive at the measured peak positions. But since different terms could
potentially lead to the same shift it is not certain which ones contribute primarily in the helical
phase. The only thing one can say so far is, that anisotropy terms are responsible for a change in
the resonance frequencies in the helical phase with respect to the conical phase.

3.2.3 The Skyrmion phase

Resonance frequencies

We apply the same numerical method as in the conical phase, to obtain the resonance frequencies
and corresponding weights in the Skyrmion phase. Unfortunately it is not possible to express them
in an analytical fashion. We take the eigenvalues of R in (2.29) again as all possible resonance
frequencies.
Considering all potential resonance frequencies and plotting them including their weight analo-
gously to the conical plots in Figure 3.7, we get a plethora of modes. Nearly all of the modes with
small weight fluctuate strongly, if one changes the ring number used to calculate the resonance
frequencies. Because it is, for one, not certain enough whether those strongly fluctuating modes
will stabilize and secondly, they have a vanishingly small weight, we focus on the modes, that
arrive at a stable position and have a considerable weight. These are essentially two modes for
magnetic excitations perpendicular to the static magnetic field and one for excitations parallel to
the external field.

Excitations orthogonal to H0 – In the orthogonal excitation direction, we obtain two
stable modes with non-negligible weight. The two modes are plotted in red in Figure 3.9 for a
perfect sphere in comparison to the conical and polarized resonances shown as a dashed line.
Demagnetization effects affect merely the overall position of the resonances, but not the shape of
the branches or their weight distribution as they have in the conical phase.

Excitations parallel to H0 – In the case of an excitation parallel to the static mag-
netic field, i.e. orthogonal to the Skyrmion lattice, the analysis yields only one significant mode.
Its frequency dependance on the magnetic field strengths is also shown in Figure 3.9 as a blue curve.

Mode characteristics

Like in the conical phase, each of the three Skyrmion modes relates to a different characteristic
movement in real-space. The two modes in the orthogonal case are a clockwise and counterclockwise
rotation of the averaged z-component of the magnetization around the center of each Skyrmion.
As usual, êz points in external field direction. The question of which mode corresponds to which
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Figure 3.9: Plot of resonance
frequencies in the Skyrmion
phase for a perfect sphere.
The numerical cutoff is four
rings. As an orientation, the
resonances of the conical and
polarized phases are shown
by dashed lines. Consider-
able resonances of an excita-
tion perpendicular to the ex-
ternal field are shown in red,
resonances for a parallel exci-
tation are shown in blue.

rotation direction is actually not answered by the sign of the Dzyaloshinsky-Moriya term in the
free energy, but by the sign of γ in (2.4). We chose a negative sign and obtain a counterclockwise
rotation for the low frequency mode and a clockwise rotation for the high frequency mode. An
illustration of the different movements is given in Figure 3.10. They have already been calculated
in a Monte-Carlo simulation by Mochizuki et al. [50]. Their calculated rotation directions concur
with ours, i.e. ωCCW < ωCW. It has to be noted, that their chosen sign for the Dzyaloshinsky-
Moriya interaction is just the opposite of ours, which again demonstrates the independence of the
rotation direction on the Skyrmion chirality.
For an exciting field parallel to the static field, Mochizuki et al. predict a breathing mode, which
perfectly agrees with our results in Figure 3.10.

3.2.4 Summary and experimental comparison

At this intermediate point, it makes sense to reflect on the so far obtained results. For an exterior
field strength H0 greater than Hc2, i.e. in the field-polarized phase, we find the so-called Kittel
mode as an answer to an additionally applied, oscillating field Hω, whose field strength is small
compared to the external homogeneous field. It is important, that this perturbation is applied
perpendicular to the static field. For H0 < Hc2, there are potentially five different modes of the
system, though they cannot all be excited and seen simultaneously. Only one, belonging to the
Skyrmion phase, is obtained, if the oscillating component of the magnetic field is parallel to the
static component. The other four potentially occur below Hc2, when the oscillating field Hω is
applied perpendicular to the static field component. Two of them in the conical phase and two in
the Skyrmion phase. Their actual occurrence is temperature dependent as can be deduced from
the phase diagrams of the three studied materials, cf. Figure 1.2.
Magnetic field and frequency sweeps were generally measured for a fixed temperature. This has
been done by experimentalists in Munich for the three materials, each for a couple of different
temperatures. The resulting intensity distributions have then been reduced to points with error
bars. Comparing graphs are shown in Figure 3.11. As one can see, the measured data agrees very
well with our theoretical calculations. An important feature is, that our calculated resonance
spectra are universally applicable to numerous materials, as long as their demagnetization factors
and susceptibilities in the conical phase are known. Temperature merely influences which phase
is realized at which magnetic field strength. In Cu2OSeO3 for example, the Skyrmion phase is
only reached, at the measuring temperature of 57.0K but then stretches over quite an extended
magnetic field range, compared for instance to Fe0.8Co0.2Si.
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(a)

(b)

(c)

Figure 3.10: The xy-component of the magnetization is shown in each case by an amber colored arrow.
The z-component is represented by a contour plot where green corresponds to the magnetization
pointing into the plane, i.e. parallel to the line of sight, and red stands for the magnetization
pointing out of the plane, as does the static magnetic field. (a) Clockwise, high frequency mode (b)
Counterclockwise, low frequency mode (c) breathing mode.

0

0.5

1.0

1.5

2.0

 

 skyrmion
 conical

sp
he

re

hf
 / g

μ
0μ

BH
c2

CSCH FP(a)

-Q

+Q

clockwise

breathing

counter-
clockwise

0.5

1.0

1.5

2.0

  5.0 K, f0 = 27.7 GHz
27.5 K, f0 = 18.1 GHz
28.0 K, f0 = 17.5 GHz

H || <100>

M
nS

i -
 d

is
c

(b)

hf
 / g

μ
0μ

BH
c2

0 0.5 1.0 1.5
0

0.5

1.0

1.5

2.0

C
u 2O

Se
O

3 - 
cu

bo
id

hf
 / g

μ
0μ

BH
c2

(d)

40.0 K, f0 = 4.22 GHz
57.0 K, f0 = 1.97 GHz

H / Hc2

H || <111>
0

0.5

1.0

1.5

2.0 H || <110>

Fe
0.

8C
o 0.

2S
i -

 b
ar

hf
 / g

μ
0μ

BH
c2

(c)

10.0 K, f0 = 6.53 GHz
25.0 K, f0 = 4.30 GHz

0 0.5 1.0 1.5
0

H / Hc2

Figure 3.11: Experimental results of resonance measurements with the exciting field direction perpendic-
ular to the direction of the static magnetic field H ((b)-(d)). Experimental data are represented by
green and blue triangles according to the appropriate temperature. The circles represent numerical
calculations. Gray: conical and field-polarized phase, red: Skyrmion phase. In panel (a) the breathing
mode, which only occurs for an excitation field parallel to the static field, is shown in dark red.
The vertical stripes indicate the different phases. They include a teal colored one representing the
purely helical phase below Hc1 for completeness. Its properties due to anisotropies were, however, not
included in the shown calculations due to the lack of experimental resolution: it was impossible to tell
the difference between the conical or helical phase unlike in the experiments of Onose et al. [44].
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3.3 Excitations with a finite k

3.3.1 Consequences for data obtained by experiments

So far we assumed, that the experimental setup produces a completely homogeneous magnetic field.
For this reason, we chose the exciting wave to be homogeneous in space as well, and only varying
in time. As it turns out, the exciting field cannot be seen as completely homogeneous. Rather,
we have to describe the situation by a field with a finite, though relatively large, wavelength in
space, that is, however, of the same order of magnitude as the dimension of the specimen. To
comply with this demand, we need to calculate the resonance frequencies not for an excitation
with k = 0 but k → 0. As a consequence we cannot rely on the demagnetization factors any
more, but have to take long range dipole-dipole interaction as the responsible effect into account.
They are described in subsection 1.3.3.

For the analysis of the resonance frequencies, we start again with the precession equation (2.4)
for resonances in the field-polarized phase. As a preparatory step, we define again that the static
magnetic field H0 points in z-direction. The linear ansatz for the magnetization consists hence of
a large static component M0 in field direction, and by neglecting amplitude modulations, small
fluctuating components in x- and y-direction.

M = M0 +

 δMx e
i(ωt+k·r)

δMy e
i(ωt+k·r)

0

 =

 δMx e
i(ωt+k·r)

δMy e
i(ωt+k·r)

Mz

 (3.16)

The internal field then consists out of the mentioned static part plus the magnetic field created
by the spins within the magnet itself. The latter contribution is given in Fourier space by (1.18).
For the effective, internal magnetic field we get in total

Heff =

 0
0
H0

− k · δM
|k|2

k ei(ωt+k·r) (3.17)

Plugging the approximations into the precession equation brings us to

− iωδM = γµ0

(
−M0 × k

k · δM
|k|2

+ δM ×H0

)
(3.18)

Neglecting higher order terms yields a set of linear differential equations for the x- and y-
components of δM .

−iωδMx = γµ0

[
Mz

(
kxky

|k|2

)
δMx +

(
H0 +Mz

(
k2y

|k|2

))
δMy

]

−iωδMx = −γµ0
[(
H0 +Mz

(
k2x

|k|2

))
δMx +Mz

(
kxky

|k|2

)
δMy

]
A solution ω0 to this set of equations has been calculated by Herring and Kittel [51] for k→ 0
and is given in our notation by

ω2
0 = γ2µ20

(
H2

0 +MzH0 sin2 θk
)

= γ2µ20H0

(
H0 +Mz sin2 θk

)
(3.19)

where θk is the angle between k and the static, magnetic field direction H0. Having an excitation
with a finite but small momentum, hence leads to a modulation of the resulting resonance fre-
quency between two boundaries, dependending on the direction of k. The first boundary is given
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Figure 3.12: Schematic description of how an excitation with finite k-vector and k→ 0 relates to an
excitation at k = 0, depending on the direction of k. The striped star represents an arbitrary shape of
the specimen. For more details see text.

by the case of k ‖H0 y sin θk = 0 and is actually equivalent to the case of k = 0 and a sample
shape of a perfect sphere with all demagnetization factors Ni = 1

3 , cf. (3.10). The other extremal
case is k ⊥H0 which corresponds again to a familiar case with k = 0. This time with the shape of
an infinite disc, where the homogeneous field is applied parallel to the surface, i.e. in our notation
Ny = Nz = 0 and Nx = 1. As a result, one can summarize the following: conducting a magnetic
resonance experiment in the field-polarized phase with a specimen of an arbitrary shape and a not
completely homogeneous field, gives resonances, that are not unambiguously described by demag-
netizing factors. They rather lie in a broader zone, whose borders could be obtained by conducting
an experiment with an indeed homogeneous excitation field, i.e. k = 0, and the specimen in two
shapes, namely the perfect sphere for the lower boundary and a potentially infinite disc with
the static field applied parallel to the surface. This relationship is shown conceptially in Figure 3.12.

In the numerical approach for the k→ 0 case, we boldly picked a small enough, finite value for
k for either the parallel or orthogonal direction to H0 of about k = 10−4 with k ≈ 1

2 being the
border of the 1. BZ. This is more than justified for the orthogonal direction, because the thereby
calculated frequencies converge with a zero slope, to a finite value for k→ 0, which is, of course,
different to the value at k = 0. And for the longitudinal direction, the slope is small enough,
so that the change in frequency at k ≈ 10−4 is orders of magnitude smaller than the frequency
itself, and therefore negligible. The calculations show, that there are also limiting values for the
resonance frequencies in the conical and Skyrmion phase. They effectively yield a band-like area,
in which the possible resonance frequencies may lie, when the exciting field is not completely
homogeneous. Plots, analog to those in Figure 3.11, are shown in Figure 3.13, including the
mentioned bands as a gray background area for the conical and field-polarized phase and dark
red bands for the Skyrmion phase.
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Figure 3.13: Experimental and theoretical results in comparison, analog to Figure 3.11. Here included
are gray and dark red bands in the background, that indicate a broader area, where resonance peaks
may lie, when the excitation field is not completely homogeneous.

3.3.2 Dispersion relations

Spontaneous symmetry breaking occurs, when a system is invariant under a certain global contin-
uous symmetry, for example rotational symmetry of all spins in a ferromagnet, but its ground
state, e.g. the ordered state of the exemplary ferromagnet, does not posses the same symmetry
[42]. In that case, one finds soft modes due to residual fluctuations on top of the symmetry
broken ground state, called Goldstone modes, or in the example from above: ferromagnetic
magnons. In subsection 2.1.2 we have seen, that these magnons carry a quadratic dispersion
relation, ω ∝ k2, which is an expression for the price, that needs to be payed when including weak
spatial fluctuations in the coordinate profile. Also mentioned in said subsection is the anisotropic
dispersion relation for helimagnons, that are Goldstone modes in the purely helically ordered
state. While also quadratic in k in the direction perpendicular to the propagation direction
of the helices, their dispersion relation is linear in pitch direction. We confirm that statement
in this subsection numerically, extend it to the conical case with a finite, static magnetic field
components and present numerical results for the Skyrmion phase. We also study the impact of
long-range dipole-dipole interaction to the dispersion relations.
Figure 3.14 shows numerical results in the conical phase. Calculations done without dipole-dipole
interactions are shown in black while their inclusion give the red curves. Numerical results for
the Skyrmion phase are presented in Figure 3.15.
In the helical phase with H0 = 0 we reproduce the predictions of Belitz et al. [41] quite nicely.
Without anisotropies, nothing changes in the direction parallel to the pitch vector Q when
the magnetic field is turned on and one goes over into the conical phase. The behavior of the
dispersion orthogonal to Q, on the other hand, changes from a quadratic to a linear dispersion
as H0 increases. Concerning dipole-dipole interaction, one can say, that they do affect merely
the slope of the dispersion relation, but not their character. In the purely helical case for k ⊥ Q,
they do not seem to change the dispersion relation at all.
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We find, that the Goldstone modes have a quadratic dispersion relation in directions parallel and
orthogonal to the applied magnetic field. The results for the latter direction is independent of
the rotation angle around H0. Also in this case, the dipole-dipole interaction does not affect the
k-dependence of the dispersion relation significantly.

While our studies were mainly confined to the regime of k ≈ 0, it might be interesting for future
studies to do calculations for wave vectors of seizable values. They could lead to potentially
different results for the resonance frequencies especially in the longitudinal helix direction during
the transition between the helical and conical phase.
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Figure 3.14: Dispersion relations in the conical phase. Black lines are obtained via calculations that
include just the f0 term in the free energy (1.7) and the red curves by including demagnetization fields
of the sphere and dipole-dipole interactions (1.21). In the picture on the upper right, both curves lie
on top of each other. The scale of ω is in arbitrary units and the scale of k is in fractions of |Q|.
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Figure 3.15: Dispersion relations in the Skyrmion phase. Black lines are obtained via calculations that
include just the f0 term in the free energy (1.7) and the red curves by including demagnetization
fields of the sphere and dipole-dipole interactions (1.21). Since Skyrmions only form in the presence
of a finite magnetic field, plots for zero field are not shown. The scale of ω is in arbitrary units and
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CHAPTER 4

Electric Excitations

Electric excitations occur, for instance, when an oscillating electric field couples to a
polarization. This chapter introduces an expression for the polarization to the theory as
well as the coupling to an exciting electric field. The different nature of said coupling leads
to a stronger directional dependence, compared to magnetic excitations, which is discussed.
Finally, we give a brief overview of the change of the resonance frequencies compared to
purely magnetic excitations.

4.1 The polarization

Skyrmions and the helical structure in B20 compounds are magnetic structures. Most of the
time, magnetism and ferroelectricity occur only individually in materials and, when they do
coexist, interact only marginally with each other [52]. Recent studies on multiferroics found, that
non trivial magnetic structures like spin frustration, can cause the appearance of a spontaneous
polarization, that can be manipulated by magnetic fields [53]. Particularly the Skyrmion spin
structure affects the symmetry of charge distribution and induces a finite polarization [7], that
is influenced by a magnetic field. The reverse argument is, that an electric field can influence
the magnetic structure. This could have future engineering advantageous because, in insulating
materials like Cu2OSeO3, the energy dissipation of an electric field is negligibly and a manipulation
of Skyrmions via an electric field could hence be more energy efficient compared to current driven
manipulations in metals [7].
These multiferroic properties motivate us to study the electric polarization and charge, carried by
Skyrmions and helices, in more detail and furthermore, the effect of electric excitations in chiral
magnets.

4.1.1 Introduction and derivation of the static polarization in chiral materials

The electric dipole moment per unit volume, i.e. the polarization P , is given by electrodynamic
textbooks as follows [54]

D = ε0E + P = ε0(1 + χel)E (4.1)

with the displacement D, an electric field E, the dielectric constant ε0 and especially

P = ε0χelE (4.2)

Analogous to our studies in the magnetic case, we are now not interested in the magnetic
susceptibility, but in the electric susceptibility χel = ∂P

∂E , that also appears in (4.1). First,
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however, we need an expression for P , that suits our problem setup. Such a local expression for
the Ginzburg-Landau theory of order parameters has been given by Ye-Hua Liu et al. [55] as

P = λ

 MyMz

MzMx

MxMy

 (4.3)

with a coupling constant λ. Its derivation bases upon the so-called pd-hybridization, which has
also been confirmed by Seki et al. [56] to be the mechanism responsible for electric dipole moment
induction in Cu2OSeO3.
Like the magnetic field couples to the magnetization in the free energy, so couples the electric
field to the polarization. For the last term of (1.7) we obtain

fωoszil. electric(t) = E(t) · P (4.4)

That background in mind, it is possible to motivate such a term on symmetry grounds [57]. Under
time reversal t→ −t, the polarization transforms as P → P , the electric field as E → E and the
magnetization as M → −M . This requires the lowest order coupling term to be quadratic in M .
Additionally, the symmetries of the P213 non-centrosymmetric spacegroup need to be obeyed,
as well as combinations of time inversion symmetry and crystal symmetries. For example, an
allowed rotation of angle π around [0 0 1] has the following transformations as a result.

Rπ[0 0 1]
Ex → −Ex
Ey → −Ey
Ez → Ez

Mx → −Mx

My → −My

Mz →Mz

(4.5)

The x-component of E obtains a minus sign, and the only way for (4.4) to be invariant, is for the
quadratic magnetization term to be either MxMz or MyMz. Considering additionally a rotation
about [1 0 0], we get that only a term proportional to ExMyMz is allowed. Checking all possible
combinations leads to a term of the form (4.4) with P as defined in (4.3).

For the time dependent electric field, we use the following convention throughout this chapter.

Eω(t) = Ē sin(ωt) (4.6)

where Ēin encapsulates the excitation direction.

4.1.2 Directional dependance of the static polarization on the external mag-
netic field

While the magnetic excitations depend, at least in the field-polarized phase as well as the conical
and Skyrmion phases, purely on the direction of the external magnetic field and the excitation
direction, the situation could be different, when dealing with electric excitations. The crystal
alignment now plays an elevated role, since the polarization depends explicitly on it. Three
characteristically different directions are [0 0 1], [0 1 1], [1 1 1] and have the following properties in
the static case:

M ‖ [0 0 1] y P = 0 M ‖ [0 1 1] y P ‖ [1 0 0] M ‖ [1 1 1] y P ‖ [1 1 1]

In the field-polarized phase, this translates directly to a relation between P and the magnetic
field direction, because H0 ‖M .
The other phases are characterized by the magnetic field direction as well, but the proper
polarization has to be calculated using the explicit local magnetization direction.
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4.1.3 The polarization and charge in the Skyrmion and conical phases

Due to its directional dependance on the local magnetization, the polarization in the Skyrmion
phase is most interesting, as is has the most diverse magnetic structure of the three studies
phases. Additionally, it carries a local electric charge, which is proportional to the divergence of
the polarization [54].

ρsky(r) = ∇ · P (r) (4.7)

In Figure 4.1 we show a vector-density plot of the familiar magnetization distribution of the
Skyrmion lattice as a point of reference for the other plots in the picture, which relate to the
same Skyrmion position arrangement. The other plots in Figure 4.1 contain maps of the local
polarization within the Skyrmion plane as well as a mapping of the local electric charge carried
by the Skyrmions. These two types of plots are shown for the three, aforementioned, different
directions of the applied magnetic field. One can see, that they are quite different. Furthermore,
there is a nice effect to be noticed, that is due to the overlay of the cubic symmetry and the
hexagonal Skyrmion structure. If one looks closely, one can see, that the Skyrmion arrangement
is slightly tilted with respect to the cubic axes, for example in the H0 ‖ [0 0 1] case with respect
to [1 0 0]. This is a consequence of the lack of anisotropy terms in our calculations. Despite this
angular offset, the polarization and charge keep their orientation according to the crystal axes.
In fact, they rather seem to shear like a parallelogram than rotate around a given Skyrmion center.

The color coding of each of the plots in Figure 4.1 is scaled individually between minus one and
one, according to the individual minimal and maximal value of the polarization component. This
scaling lets us resolve the structure of the plot in the most detailed way. It furthermore lets us
compare these plots to pictures obtained by Seki et al. [56] and Mochizuki et al. [58] with which
we find good agreement.
Figure 4.2 shows the same plots, but with a different scaling. There, we use a global maximum of
the absolute value of the polarization and charge components as the outer limit of the color code.
This lets us compare the different strengths of the polarization and charges between the different
field directions. It is noticeable, that there is a strong bias of the polarization component in
magnetic field direction for the [0 1 1] and [1 1 1] field directions, while its maximal and minimal
values equally polarize in the [0 0 1] case.

The polarization and charge in the conical phase has been calculated analogously. The results are
shown in Figure 4.3 and Figure 4.4. Here, the change in polarization and charge, respectively, does
not happen in planes perpendicular to the applied magnetic field, but only parallel to it. The color
coding is the same as in the Skyrmion case. Most interesting is a magnetic field direction of [1 1 1],
which leads to vanishing of the charge in the considered plane. Interestingly enough this does
not happen spontaneously but gradually when tilting the field from the [0 0 1] direction, where
the carried, local charge is largest, to the [1 1 1] direction. Similarly, the polarization component
perpendicular to the plane, changes from equally polarized in both directions to almost uniform
in [1 1 2] direction.
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Figure 4.1: Top row: Magnetization in the Skyrmion Phase. Color coding represents the magnetization
component in field direction (green = antiparallel, red = parallel). Arrows represent the in-plane
components.
Middle row: The polarization of the Skyrmion phase in dependance of the magnetic field direction
as shown by directional drawings above.
Bottom row: Local electric charge in the Skyrmion phase in dependence of the magnetic field
direction.
The scaling of the density plots has been done as such, that the minimum and maximum value of
the polarization and charge, respectively, were taken for each picture individually, and the color code
interpolates between those two values. For more details see text.
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Figure 4.2: Top row: Magnetization in the Skyrmion Phase. Color coding represents the magnetization
component in field direction (green = antiparallel, red = parallel). Arrows represent the in-plane
components.
Middle row: The polarization of the Skyrmion phase in dependance of the magnetic field direction
as shown by directional drawings above.
Bottom row: Local electric charge in the Skyrmion phase in dependence of the magnetic field
direction.
The scaling of the density plots has been chosen as such, that one global maximal absolute value of
the polarization (charge) component was set to be the global absolute value of the color coding scale.
This lets us compare the relative strengths of the polarization (charge) for the different field direction
to each other. For more details see text.
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Figure 4.3: Top row: Magnetization in the conical Phase. Color coding represents the magnetization
component perpendicular to the field direction (green = into the plane, red = out of the plane
component). Arrows represent the in-plane components.
Middle row: The polarization of the conical phase in dependance of the magnetic field direction as
shown by directional drawings above.
Bottom row: Local electric charge in the conical phase in dependence of the magnetic field direction.
The scaling of the density plots has been done as such, that the minimum and maximum value of the
polarization and charge, respectively, has been taken for each picture individually, and the color code
interpolates between those two values. For more details see text.
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Figure 4.4: Top row: Magnetization in the conical Phase. Color coding represents the magnetization
component perpendicular to the field direction (green = into the plane, red = out of the plane
component). Arrows represent the in-plane components.
Middle row: The polarization of the conical phase in dependance of the magnetic field direction as
shown by directional drawings above.
Bottom row: Local electric charge in the conical phase in dependence of the magnetic field direction.
The scaling of the density plots has been chosen as such, that one global maximal absolute value of
the polarization (charge) component was set to be the global absolute value of the color coding scale.
This lets us compare the relative strengths of the polarization (charge) for the different field direction
to each other. For more details see text.
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4.2 Linear response and the field-polarized phase

Having now explained, that Skyrmions and helices induce an appreciable polarization, it seems
likely, that the major influence in the resonance spectrum is also due to this substantial polariza-
tion. We hence pursue the goal to calculate the resonance frequencies analogously to magnetic
excitations, only by now using the previously mentioned coupling term of an electric field to the
polarization (4.4). Similarly to the magnetic case we start with an analytic calculation in the
field-polarized phase and continue with numerical results for the conical and Skyrmion phases.

Before getting into more detail in the polarized phase, one key ingredient to our resonance theory
needs to be deduced, namely ξ = δF̃

δM

∣∣∣
MMF

in (2.28). Associating the terms properly, one arrives
at

F̃ =

∫
d3rEω · P (4.8)

Making a linear ansatz for the magnetization as MMF + δM , one obtains

Eω · P = Eω · PMF +Eω ·

 0 MMF
z MMF

y

MMF
z 0 MMF

x

MMF
y MMF

x 0

 · δM (4.9)

and therefore

ξ = λ

 0 MMF
z MMF

y

MMF
z 0 MMF

x

MMF
y MMF

x 0

 · Ē (4.10)

It has to be noted, that its Fourier transform is now momentum dependent, since ξ depends
explicitly on MMF . The projection direction êout in (2.31), to obtain the resonance weights,
equally momentum dependent, because we assume the measurement to be of electrical nature as
well.

4.2.1 Discussion of the field-polarized phase

As mentioned above, the direction of the homogeneous applied magnetic field H0, plays a distinct
role in the resonance behavior when using a term like (4.8). We pick the three aforementioned
directions, i.e. [0 0 1], [1 1 0] and [1 1 1], to illustrate the differences and similarities between electric
and magnetic excitations. We begin by going through the derivation of Kittel’s formula for electric
excitations in the case of H0 ‖ êz.

Analogous to the calculation in subsection 3.2.1, we have a shift of the effective inner magnetic
field compared to the externally applied fields. The difference to the shift in the magnetic case
lies now in the direction and form of the exciting electric field contribution. The additional term
to the effective magnetic field is

µ0H
eff, el = − δF̃

δM

∣∣∣∣∣
MMF

= −λ

 MzE
ω
y +MyE

ω
z

MzE
ω
x +MxE

ω
z

MyE
ω
x +MxE

ω
y

∣∣∣∣∣∣
MMF

(4.11)

Let us assume as an example an electric excitation in y-direction, i.e. Ē ‖ êy, to concretize the
calculation. Together with H0 ‖ êz, we obtain an analogous set of equations to (3.5).

H i
x = Ho

x −NxMx = −NxMx − λMzE
ω
y

H i
y = Ho

y −NyMy = −NyMy

H i
z = Ho

z −NzMz = H0 −NzMz − λMxE
ω
y

(4.12)
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Note, that the electric analog to the demagnetization factors are not used here, because we
assumed, that the oscillating electric field is small, as was the oscillating magnetic field compared
to the static, external field for which the demagnetization factors were applied.
Neglecting again terms, that are not linear in Mx,y or combinations between them and Eωx,y, the
equations of motions take the following form

dMx

dt
= γµ0 [H0 + (Ny −Nz)Mz]My = γµ0ηyMy

dMy

dt
= −γµ0 [H0 + (Nx −Nz)Mz]Mx − γµ0λM2

zE
ω
y = −γµ0ηxMx − γµ0λM2

zE
ω
y

dMz

dt
≈ 0

(4.13)

We can pick the same ansatz for the magnetization as in subsection 3.2.1. Plugging it and (4.6),
i.e. the ansatz for the electric oscillation, into (4.13), yields

ωM̄x = γµ0ηyM̄y (4.14a)

ωM̄y = γµ0ηxM̄x + γµ0λM
2
z Ēy = γ2µ20ηxηy

1

ω
+ γµ0λM

2
z Ēy (4.14b)

In the last line we used (4.14a). Solving both equations for M̄x and M̄y lets us obtain

M̄x = −λ
Mz
ηx

1− ω2

ω2
0

MzĒy (4.15a)

M̄x = −λω
Mz
γηxηy

1− ω2

ω2
0

MzĒy (4.15b)

where the resonance frequency ω0 is again given by (3.10). Most interesting is the expression
(4.15a), because, using the same conventions as in the magnetic case, it can be written as

M̄x = −λ χ0
x

1− ω2

ω2
0

MzĒy = −λχmagxx MzĒy (4.16)

Calculating the electric susceptibility, the upper expression comes in handy.

χelyy =
∂Py
∂Ey

=
∂(MzM̄x)

∂Ēy
= −λχmagxx Mz (4.17)

We find, that an oscillating electric field in y-direction corresponds to a magnetic field in x-
direction and vice versa.
For an excitation parallel to the magnetic field in [0 0 1] direction, there is no response in first order,
because Heff, el contains only terms of quadratic order like MxEz. For excitations including the
other two directions, the results are summarized in Table 4.1 according to [59]. One can see,
that the situation for H0 in [1 1 0] direction is basically opposite to H0 ‖ [0 0 1]. In this case
no resonances occur to linear order for excitations perpendicular to H0. For H0 ‖ [1 1 1] the
situation is again similar to the [0 0 1] case.

4.2.2 Symmetry arguments in the field-polarized phase

The consideration of symmetry arguments to in- or to exclude physical phenomena is quite a
common practice. Within the so far established setup, we can with their use check for consistency
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4 Electric Excitations

Table 4.1: Dependence of electric excitations on the direction of the external magnetic field in the
field-polarized phase.

H0 ‖ [0 0 1] Eω ‖H0 → no excitation to linear order
Eω ⊥H0 → Eω ‖ [1 0 0] =̂ Hω ‖ [0 1 0]

Eω ‖ [0 1 0] =̂ Hω ‖ [1 0 0]

H0 ‖ [1 1 0] Eω ‖H0 → Eω ‖ [1 1 0] =̂ Hω ‖ [0 0 1]
Eω ⊥H0 → no excitation to linear order

H0 ‖ [1 1 1] Eω ‖H0 → no excitation to linear order
Eω ⊥H0 → Eω ‖ [1 1 0] =̂ Hω ‖ [1 1 0]

Eω ‖ [1 1 2] =̂ Hω ‖ [1 1 0]

with the perturbatively obtained results.

The applied magnetic field H0 breaks certain symmetries of the crystal. Therefore, not all so far
possible terms in the dynamical polarization are allowed. As an example, we consider again a
magnetic field parallel to [0 0 1].
Due to the magnetic field, only three symmetries are left: rotation around the field axis by π,
and rotations by π around the other two 〈1 0 0〉 axes combined with time reversal. The dynamic
polarization is given by

P[0 0 1] = λ

 Mz δMy

Mz δMx

δMx δMy

 ≈ λ
 Mz δMy

Mz δMx

0

 (4.18)

The effects of the symmetry transformations are either accompanied by a sign change of the
magnetization and polarization, respectively, or not. The effects of the three transformations to
the individual components are shown in Table 4.2. Sign changes are denoted by a minus sign in
the table and if the symmetry transformation has no effect on δM or the polarization, a plus
sign stands in its place. While the couplings of Px (Py) and δMy (δMx) are perfectly allowed, a
linear coupling of δM to Pz is even forbidden on symmetry grounds. Remarkably, this restriction
is already caused by rotation symmetry alone, without a time reversal.
For the [1 1 0] direction, a similar analysis can be made. It turns out, however, that symmetry
arguments do not yield further restrictions to the otherwise obtained excitations, whether linear
in δM or not. One can used this result, on the other hand, to verify, that the obtained linear
couplings are indeed allowed. The dynamic polarization is given by

P[1 1 0] = λ


1√
2
M1(M −M2)

1√
2
M1(M +M2)

1
2(M +M2)(M −M2)

 ≈ λ


1√
2
M1M

1√
2
M1M
1
2M

2

 (4.19)

To this end, we decompose the magnetization again into a big part parallel to the magnetic field,
and a perturbation δM perpendicular to it, as

M =
M√

2

 1
1
0

+M1

 0
0
1

+
M2√

2

 1
−1
0


︸ ︷︷ ︸

δM

(4.20)
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4.2 Linear response and the field-polarized phase

Table 4.2: List of symmetry transformations (left column) and their effect on the polarization and the
magnetization for a magnetic field H0 in [0 0 1] direction. Time reversal is expressed by T and a
rotation about an angle ϕ around the axis ê by Rϕ

ê .

Px Py Pz δMx δMy

Rπ[0 0 1] – – + – –

T Rπ[0 1 0] – + – + –

T Rπ[1 0 0] + – – – +

Table 4.3: Effect of the symmetry transformation on the polarization and the magnetization for a
magnetic field H0 in [1 1 0] direction. Time reversal is expressed by T and a rotation about an angle
ϕ around the axis ê by Rϕ

ê .

P[1 0 0] P[0 1 1] P[0 1 1] δM[0 1 1] δM[0 0 1]

T Rπ[0 0 1] + – – + –

The effect of the allowed symmetry transformation is shown in Table 4.3.

In the case ofH0 ‖ [1 1 1] the system is invariant under the rotation R
2
3
π

[1 1 1]. If one would decompose
the magnetization like above into a parts parallel and perpendicular to H, the perpendicular
component would not stay on the same axis, so that it the rotation would correspond to a spacial
inversion, but gets rotated away from it. An excitation in that direction would comply with that
result and is hence not allowed as has also been confirmed by the calculation to obtain Table 4.1.

4.2.3 Numerical calculation of the resonance frequencies

The more complicated form of the resonance spectrum in the conical and Skyrmion phases is
calculated numerically. The transition into the field-polarized phase happens automatically for
large enough magnetic fields and is hence also included in the calculations. The parts, within the
numerical calculation for electric excitations, that differ from the calculations with a magnetic
excitation are, for one, the already explained momentum dependent ξ but also the directional
dependence, whose implementation is as follows. It may be noted, that a goal was to keep the
description of the coupling term in the free energy in terms of one coordinate system to minimize
numerical effort.
For the case, where H0 ‖ [0 0 1], the formula for the polarization stays as defined in (4.3). This
gives a certain expression C for the coupling term as shown above, where the polarization is
described by the components of the local magnetization in coordinates canonical to the cubic
system:

C = E · P |M (4.21)

The rotation of the magnetic field to a new direction, say H ′, leads to a new arrangement of
the local magnetization M ′ = R′ ·M , where R′ stands for the rotation matrix, that transforms
a vector {0, 0, 1}T into a vector ê′, like for instance {0, 1, 1}T/

√
2 or {1, 1, 1}T/

√
3 in our case.

Plugging this transformed magnetization into P , yields a transformed polarization P ′, that still
consists of the magnetization components described in the old coordinate system. To get the
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4 Electric Excitations

correct coupling term for the new field direction, the electric field direction needs to be rotated
via R′ as well.

C ′ = E′ · P |M ′ = (R′E) · P |R′M (4.22)

This term can then be decomposed into

C ′ = E ·K ·M = Ei
∂C ′

∂Ei∂Mj
Mj (4.23)

that can be used to obtain ξ for the new orientation (cf. (4.9)).

Numerical results and plots

Numerical results for the conical phase are shown in Figure 4.7 in form of bubble-resonance
plots, where the resonance weight is like before proportional to the area of the bubble. For the
calculations themselves, we have assumed a spherical shape of the specimen and χ̃sphere

con = 1. The
plots are arranged in a grid, where rows relate to a mutual magnetic field direction and columns
to the direction of the oscillating electric field. The first two columns contain graphs of excitations
perpendicular to the magnetic field direction, with both of those directions being perpendicular
to each other. The third column shows excitations parallel to H0 and the last column unites all
of the previous excitations. For a comparison to the case of magnetic excitations, the resonances
of the conical and field-polarized phases are shown as a reference by a dashed line. It may be
noted, that we have not included directional dependence in those reference lines, because there
would be none for longitudinal excitations. these conventions are also used in Figure 4.8.
A first thing to check, is whether the previously performed theoretical predictions for the field-
polarized phase hold. Comparing the diagrams to Table 4.1, one finds that they do agree with
our numerical results or vice versa. For example, no excitation is found for H0 ‖ [0 1 1] when
Eω ⊥H0 for values of |H0| > Hc2. Concerning the comparison to the magnetic excitations, one
can see for the here considered coupling to the polarization, that the plus and minus Q modes
are electrically excited in numerous directions as well. The most noteworthy difference is the
appearance of an additional mode at slightly more than twice the frequency of the two original
modes. It also seems to be doubly degenerate.
An analogous grid of plots for the resulting resonance frequencies in the Skyrmion phase is shown
in Figure 4.8. On first sight, it seems like a plethora of cluttered points. Shown here are however
all numerically obtained points, including the previously mentioned fluctuating mini-modes, i.e.
modes with vanishingly small weight. The shown calculations have been done by including 3
rings of Q-vectors to obtain a fairly stable result for the modes with considerable weight. It also
needs to be noted, that the potentially, experimentally realized portion of the shown frequencies
lies only in a small magnetic field range within H0 = 0 and H0 = Hc2, cf. Figure 3.11. Again,
the conical excitations are shown as a reference line. A first consistency check reveals, that the
ferromagnetic excitations coincide also here with the predictions made in Table 4.1.

Most remarkable is, that calculations for Skyrmion crystals show several additional modes
when excited electrically according to the here described approach, than magnetically. Liu and
collaborators [55] studied these modes as well and present three cases (I-III), shown in Figure
4.5(I), that relate to the in Figure 4.8 shown subfigures (A3), (B1) and (C3), respectively. Liu
et ql. [55] compare their findings to magnetic resonance frequencies calculated by Mochizuki et
al˙[50], which provides a good reference of where their calculated frequencies lie in our plots. One
can identify his R1 and R2 modes with the clockwise and counter-clockwise modes as well as
B1 with the already magnetically excited breathing mode. The other four modes (E, X1, X2
and B2) are also found in our calculation and are labeled accordingly in the appropriate plots in
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4.2 Linear response and the field-polarized phase

Figure 4.8. We find very good agreement.
In their most recent work, Mochizuki et al. [58] also studied electric excitations. Their comparison
to the magnetic excitations is shown in Figure 4.5(II) In their case, H0 ‖ 〈1 1 0〉 and they excite
both longitudinal (red line in in the lower part of the figure) and perpendicular (blue dashed line)
too H0. These cases relate well to subfigures (B3) and (B1) in Figure 4.8, when remembering
that his convention for clockwise and counterclockwise is opposite to ours. Unfortunately, their
shown frequency range does not suffice to be able to compare the high frequency modes.

0

0.2

0.4

0.6

0.8

1

Im
χ
(ω

)
(a
b
.
u
n
it
)

B1

R1

R2

(a) B||z,Bω||x,y
B||z,Bω||z

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

ω

Im
χ
(ω

)
(a
b
.
u
n
it
) E

X1
X2

B1
B2

(b)
case (I)  : B||[001],Eω||[001]
case (II) : B||[110],Eω||[001]
case (III): B||[111],Eω||[111]

Figure 4.5(I): Spectra by Liu et al. [55]. The upper
portion has its origin in Mochizuki’s work [50].

(a)

(b)

0.02 0.040

0

0.02

0.04
0

4

12

Im
χ α

βee
Im
χ α

βm
m Imχzz

mm
Imχyymm

Imχzz
ee

Imχyy
ee

8

ω/J

CCW
rotation

CW
rotationbreathing

6.12x10-3 7.76x10-3 1.135x10-2

Figure 4.5(II): Spectra by Mochizuki et
al. [58]. The magnetic field direction is
given by H0 ‖ êz ‖ 〈1 1 0〉.

Figure 4.5: Comparison of calculated absorption spectra for a.c. uniform magnetic (a) and electric (b)
fields for different directions.

4.2.4 Conflicts and prospects

While the upper calculation show nice analogies to the magnetic excitations, recently conducted and
still unpublished experiments by the research group of PD Dr. Hemberger from Cologne indicate,
that some assumptions made for the calculations above might not yield a proper description of the
experimentally measured resonances, It seems like they need to be at least extended by further argu-
ments. Potential disagreement ranges from the presence of measured resonances that should have
been excluded, according to the calculations done so far, to additional occurring excitations, which
cannot be described by the previous assumption of how the electric field couples to the magnetic
structure.

Hω

Eω

Figure 4.6: Figure of the mag-
netic field induced by a chang-
ing electric field.

A solution to this problem could potentially be obtained by a
coupling term not yet included in the electric theory, for example

f∗ = M · ∂tE (4.24)

This is a term invariant under time reversal symmetry, as well as
rotationally invariant and hence perfectly allowed in our situation.
Taking Maxwell’s equation ε0∂tE = ∇ ×H into account and
plugging it into (4.24), a resemblance to the Dzyaloshinsky-
Moriya interaction becomes evident.

f∗ =
1

ε0
M · (∇×H) (4.25)
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4 Electric Excitations

This formulation also incorporates the fact, that a changing electric field results in a two
dimensional circular field as shown in Figure 4.6, whereas the previous calculations were done with
an excitation, that is directed in only one direction. Elaborate calculations with this additional
insight are current work in progress.
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Figure 4.7: Electric resonances in the conical phase - (A1-A4): H0 ‖ [0 0 1], (B1-B4): H0 ‖ [0 1 1], (C1-C4): H0 ‖ [1 1 1]; (A1-C1) and (A2-C2):
Eω ⊥H0 and Eω

(1) ⊥ E
ω
(2), (A3-C3): Eω ‖H0; (A4-C4): All plots of same letter together in one. The dashed line shows the resonance frequencies in

the conical and field-polarized phase of magnetic excitations as a reference. The demagnetization factors are that from a sphere. For more details see text.
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Summary

In the present thesis, the behavior of chiral magnets, which accommodate helical spin structures
and magnetic Skyrmion lattices, was studied under the influence of oscillating magnetic and
electric fields. The major part of the thesis dealt with the calculation of resonance frequencies
an their corresponding weights. The formulation of the theory for resonances due to magnetic
excitations was accompanied and influenced by experimental results provided by research group
around Prof. Dr. Pfleiderer and Prof. Dr. Grundler of the Technical University of Munich. For
the electric excitations, we presented an analogous approach.

Our general analysis was based upon a linear response theory. While resonance frequencies were
calculated numerically for all different phases, it was also possible to provide some analytical
expressions in agreement with the numerical calculations. This was achieved for the field-polarized
phase in both cases and for magnetic excitations even in the conical phase.

In the part of this thesis contributed to magnetic excitations only, we refer to three specific
experimental measurements. A big part of the work was to incorporate sample-shape dependent
demagnetization factors into the theory for both numerical and analytical results. An extension
to not completely homogeneous excitation fields concluded that chapter. The highlight of the
developed theory was, that it was not only possible to explain the resonance frequencies for the
different materials individually, but on a universal basis that was independent of the conducting
properties of the specimen and, most prominently, of temperature. Merely the sample-shape and
the approximately constant, conical susceptibility were needed.

Within the chapter about electric excitations it was explained in an analogous manner, how
resonance spectra would look like, if the coupling of the oscillating electric field to the magnetization
comes about via an effective coupling of the electric field to a polarization. The latter is induced
by the non-trivial magnetic texture. The structure of the induced polarization was described as
well. Recently conducted experiments by the research group of PD Dr. Hemberger in Cologne hint,
that this form of coupling might not yield the biggest contribution to the resonance frequencies.
Current work on electric excitations leave exciting prospects for the future.
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