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Abstract

In the presented work the Cs2CoCl4 system, which can be seen as a compound of
weakly coupled spin chains, was used as a starting point for several theoretical con-
siderations.

First of all the concept of local interactions of spins on a one dimensional chain will be
developed. This considerations will be related to several Heisenberg chains containing
an anisotropy term ∆. The influence of such a term as well as the effect of an external
magnetic field will be considered. It is fundamentally important to distinguish between
models containing a longitudinal or a transversal field. The emerging ground states,
that are totally different, will be discussed. Beside several works on longitudinal fields
only a few consider transversal fields. One reason could be the complication brought
into the model, as the field does not commute with the spin-spin interaction term.
This work will try to contribute to further insight in the case of transversal fields.

The system under consideration is not exactly solvable. This means it is necessary
to develop certain approximations such as a Mean field approach. In the second
chapter of this work an advanced application of the principle of Mean field theory
will developed. It will be used to describe the behaviour of spins in a chain as well
as to describe the effect occurring through the coupling of those chains. In there two
particle terms are decoupled using the evaluation of expectations values with respect
to a chosen reference Hamilton H0. With the definition of such a reference system
new parameters are introduced. They can be found using a minimum condition of the
Mean field free energy FMF . From this, self consistent equations arise, which will be
solved iteratively and equivalently by minimization of the free energy with respect to
such parameters. The values obtained by the mentioned techniques can be used e.g.
to calculate thermodynamic quantities.

Basically in the same way, self consistent equations will be derived in the case of
coupled chains. In contrast to further works on this material, different chain types
will be considered where the type relation is defined through the orientation of cor-
responding easy planes. The self consistent equations derived by this will be solved
iteratively. This solution provides an numerical approach to the spin configuration of
the system.

From this point on one can calculate the staggered and uniform magnetization of the
system. Furthermore one can calculate phase transitions, which are related to the
magnetic configuration. It will be shown, that the material shows first and second
order quantum phase transitions.
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1 Introduction

Concerning the theoretical part of this work two basic aspect should be mentioned:
The principle of local interactions and the theory of Mean field (Mf) fields in combi-
nation with a minimum condition for an estimate of the free energy.

In the 1930’s Heisenberg1 and Dirac2 independently introduced the description of
ferromagnetism in terms of local spin interactions. They invented the picture of chain
interactions via nearest neighbour interactions. Using this description there were huge
efforts and successes concerning the description of many body systems through a local
interaction approximation. Famous effects like superconductivity, quantum Hall Effect
or the Kondo Effect can be derived using this approach. The second theoretical aspect,
that has to be mentioned here is the idea of treating a system in a Mf approach. It
is not a recent aspect, as in the 1970’s several publications related to this topic were
published. Eugene3 wrote a book were he introduced the Mf theory of magnetic
phase transitions. Additionally to the MF approach, a variational principle providing
a formal estimate for an upper bound of the free energy, developed by Feynman4 is
used.

On the other hand the material Cs2CoCl4 was studied in the 1970’s, for example by
Alga et al.5, who did specific heat measurements on Cs2CoCl4 . From these mea-
surements it was concluded that this material can be described using an anisotropic
Hamiltonian built of local spin-spin interactions. Similar conclusions were drawn by
investigation of other tetrahedral cobalt salts, which have been studied earlier, but
all of them not in a external magnetic field. The field direction is a crucial detail,
either the field is in the anisotropy direction or it is not. In the first case, the field
term commutes with the spin-spin interaction. This case was studied extensively in
the 1970’s by Yang et al.6. Due to the commuting character of the field this model
can be solved exactly using the Bethe ansatz7.

In this work the other case is studied in which the field does not commute, as it
is applied in the anisotropy direction. Those systems behave drastically different
compared to the case of longitudinal fields. In the early 1980’s Kurmann et al.8,9

theoretically considered XXZ models in a transverse field. From these considerations
two main aspects concerning this work follow. Firstly the field in the xy-plane induces
long range order, namely antiferromagnetic order perpendicular to the field, where the
corresponding ground state is called spin flop state. Secondly the field causes a gap
in the excitations spectrum. For a specific external magnetic field the gap closes and
the long range order is destroyed at a Mf-type phase transition. This critical field is
below that where the system is fully polarized. Altogether these systems can show a
quantum phase transition through a quantum critical point, where the external field
acts the tuning parameter.
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1 Introduction

In the following theoretical approach the mentioned anisotropic Heisenberg chains are
fundamentally considered and classified with respect to the several symmetries they
hold. By means of numerical calculations, the magnetic configuration of the single spin
chains and of coupled chains is found. Using these results, thermodynamic properties
such as, specific heat or the magnetization is calculated. In the case of coupled chains,
quantum phase transitions could be calculated and thus a phase diagram constructed.
Most of these results are comparable to measurements done recently.
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2 Theoretical considerations

2.1 Anisotropic Heisenberg model in a transverse field

In this section several aspects concerning the Heisenberg model will be briefly dis-
cussed. The specific model, which is taken under further analysis in this work, will
be classified with respect to models occurring in the context of Heisenberg chains.
The effects will be described, which are caused by the assumptions taken. In the last
part of this section, the specific model mentioned above will be described concerning
quantum phases.

Beside other well studied models the spin-1/2 Heisenberg chain is one of the most stud-
ied and understood models providing quantum phase transitions. The most general
Heisenberg chain model under consideration can be defined through:

H =∑
ij
∑
a

JaijS
a
i S

a
j , (2.1)

where the summation ∑a, a ∈ {x, y, z} runs over all three spin components, ∑ij over
all sites and couples the spins sitting on the lattice site i and j. The term Sai denotes
the usual spin operator at a given site i. Jaij is the anisotropic spin-spin interaction
constant, also called exchange energy. If all Jaij < 0, the coupling is called ferromagnetic
and if all Jaij > 0, it is called antiferromagnetic. This corresponds to the preferred
ground state of the specific model. It is obvious, that for Jaij < 0, the spins prefer to be
parallel to minimize the energy and it turns out that they form ferromagnetic order.
The sum ∑ij reduces mostly to the summation over nearest neighbouring lattice sites
denoted by ∑⟨ij⟩. This corresponds to an exchange energy Jij , which is finite only for
nearest neighbours. More commonly the model is represented by H = ∑i,a J

aSai S
a
i+1.

In the case of the spin 1/2 Heisenberg model they are connected to the Pauli spin
matrices σa via:

Sai =
σai
2

σa ∈ {σx, σy, σz} = {[ 0 1
1 0 ] , [

0 −i
i 0 ] , [ 1 0

0 −1 ]}. (2.2)

where h̵ is set to one. This model can be used to describe a huge field of different
states of matter, such like ferro- or antiferromagnetism on lattices. The fact that for
example ferromagnetism can be described by an effective Hamiltonian containing only
the local spin-spin interactions was firstly shown by Heisenberg1 and Dirac2. The
term effective Hamiltonian describes the aspect that the global Coulomb interactions
of electrons, can be described by the local interactions of neighbouring spins.

As long as the Ja are arbitrary the model is often called the XY Z model. But one
can introduce several restrictions, Jx = Jy ≠ Jz or Jx = Jy = Jz, which correspond to
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2 Theoretical considerations

XXZ respectively XXX models10. If one chooses Jx = Jy = 0 one ends up with the
well studied Ising Model11. The particular choice in this work is a XXZ model, where
the anisotropy is partially broken by Jx = J = Jy and Jz = J∆. This is motivated
through the claim12 that the properties of the material Cs2CoCl4 are reproduced by
taking the following Hamiltonian:

H = J∑
i

(Sxi S
x
i+1 + S

y
i S

y
i+1 +∆Szi S

z
i+1) = J∑

i

S⊺
i ĴSi+1 (2.3)

in the field less case, where the objects Si ≡ {Sxi , S
y
i , S

z
i }

⊺ and Ĵ ≡ [
1 0 0
0 1 0
0 0 ∆

] are intro-
duced.

The several models refer to different symmetries. Concerning symmetries the rota-
tional invariant XXX model is in SU(2). Breaking this symmetry by going to the
XXZ model one has rotational freedom in the xz plane referring to an U(1) symme-
try12. Concerning an external magnetic field, basically one has two distinct options.
Firstly a so called longitudinal field in the same direction than the anisotropy and sec-
ondly a transversal field not in the anisotropy direction. In general the Hamiltonian
would read as:

H = J∑
i

SiĴSi+1 −B∑
i

Si (2.4)

where the field should be specified according to the assumption taken in to account.
The case of longitudinal fields was studied intensively and is presented for example in
the book Quantum Many-Body Systems in One Dimension by Ha13 or in the papers
of Yang et al.6,14. The basic aspect of the application of longitudinal fields is that
no further spatial symmetry is broken. In this case, the longitudinal field commutes
with the XXZ Hamiltonian and thus the model is exactly solvable using the Bethe
ansatz7. The model under consideration is Eq. (2.4) an additional transversal field in
the x direction. In general this particular choice breaks the rotational symmetry in
the xy-plane. By this the exact integrability of the XXZ model is lost and one ends
up with the following model:

H = J∑
i

SiĴSi+1 −Bx∑
i

Sxi

= J∑
i

(Sxi S
x
i+1 + S

y
i S

y
i+1 +∆Szi S

z
i+1) −Bx∑

i

Sxi
(2.5)

In 2002, Krivnov et al. stated, that due to its mathematical complexity this model has
not been studied much7 and following they considered such models in much detail.
The following description of the qualitative aspects and phases of these models is
inspired by those publications.

Phases of the anisotropic Heisenberg chain in a transverse field

In the model Eq. (2.5), one has two parameters to vary, the anisotropy ∆ and the
external transversal field Bx. Concerning these parameters the ground state properties
of this model will be described.
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2.1 Anisotropic Heisenberg model in a transverse field

Bx = 0

If the field is Bx = 0 one has a XXZ model, depending on ∆ which is exactly solvable
using a Bethe ansatz. For ∆ > 1 the model is a Ising like model for which the ground
has Néel long range order along the z-axes15. Néel long-range order describes order of
alternating spin orientation, e.g Szi = (−1)i⟨Sz⟩. This fact is obvious, as the dominant
term in Eq. (2.5) is minimized for Szi+1 = −Szi . In this phase one can define a finite
quantity, the staggered magnetization:

Mst ≡⟨Sst⟩ with Sst =
1

L
∑
i

(−1)iSi (2.6)

which is conserved on long range. It turns out that the excitation spectrum is
gapped7.

For ∆ < −1 the opposite kind of order sets in, namely a ferromagnetic phase charac-
terized by finite uniform magnetization:

Mun ≡⟨Sun⟩ with Sun =
1

L
∑
i

Si. (2.7)

The ground state is the classical ferromagnet15, where every spin is aligned parallel
to each other. In this phase one has a gap in the excitation spectrum, lying above the
ferromagnetic ground state.

In the intermediate regime, where −1 < ∆ ≤ 1 the system is in the so-called Lut-
tinger liquid phase, in which the correlations decay algebraically and the spectrum is
linear7.

Bx ≠ 0

In the other case, where Bx ≠ 0, the model becomes more complicated, because the
total spin projection Sz is not a good quantum number anymore. In the case of large
∆, for ∣∆∣ → ∞ the model reduces again to a 1d Ising model in a transverse field.7 This
model can be solved exactly (e.g. see Sachdev16) by transforming it into the system
of non-interacting fermions, called Jordan Wigner transformation17.

There is a critical field, Bcrit
x = ∣∆∣/2, at which the system undergoes a phase transi-

tion, the gap closes and the long range order in the z direction vanishes. This phase
transition is suggested to happen for any ∆ > 0 at some critical Bcrit

x [∆]18. Similar
to the Bx = 0 case there is for Bx < Bcrit

x [∆]: Néel order for ∆ > 1 and ferromagnetic
ordering for ∆ < −1. For intermediate anisotropy, ∣∆∣ < 1 and below a critical field
Bcrit
x [∆], the long range order changes fundamentally. In contrast to the staggered

(∆ > 1) or ferromagnetic order (∆ < −1) in the z-direction, it develops a staggered
magnetizationMy

st along the y-direction. As long as this quantity is finite one can also
speak of a spin-flop phase, because the spins are oriented perpendicular to the field.
Additionally they are able to tilt continuously towards the field. This phase is the
ground state until a critical field Bx = Bcrit

x [∆] is reached at which the perpendicular
staggered order vanishes. In this phase the system is gaped except at Bx = 019,20.

11



2 Theoretical considerations

In every case, for fields above the critical value Bx > Bcrit
x [∆], the system is fully

polarized. One can speak of a paramagnetic phase, where all spins are aligned along
the external field direction.

In the special case of ∆ = 1, the model stays integrable, as it is isotropic in the
yz-plane. The model stays in the antiferromagnetic phase until the critical field of
Bc = 2J is reached. At this critical point the model undergoes a phase transition of
the Pokrovsky-Talapov type7, where the ground state changes into a fully ferromag-
netically ordered state. In the other case where ∆ = −1, the model is an isotropic
ferromagnetic model in a staggered magnetic field15. There is no exact solution to it,
but it was shown that the system remains gapless up to an critical field Bcrit, where
a phase transition of the Kosterlitz-Thouless type occurs20,21.

Phasediagram

Figure 2.1: Phase diagram15 of the Heisenberg chain in a transverse field.
The solid lines are the critical lines corresponding to Bc[∆]. The sev-
eral regions correspond to the following long range orders. 1: Néelz, 2:
Ferroz, 3: Néely and 4: Parax. Explanation and further details can be
found in the text Sec.2.1

All together one can draw the following conclusion. The XXZ chain in a transverse
field owns a phase diagram containing four regions corresponding to several distinct
long range ordered phases. In Fig.2.1 the region 1 is characterized by a Néel order
along the z-axis. The region 2 carries mainly a ferromagnetic order in the z-direction.
In the region 3 there is predominantly Néel order along the y-axis. Finally in the region
4 there is no long range order additionally to the magnetization along the external
field in x-direction, which is present in every region (1-4).
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3 Mean Field Concept

3.1 Physical input and geometry of Cs2CoCl4

There are several aspects to describe concerning Cs2CoCl4. The basic aspect certainly
is the crystal structure. Another aspect is how this system can be described in terms of
spin chains and how it orders. The second point strongly depends on how the system
and its constituent interact. Therefore a picture of how interactions are mediated is
needed.

The real space, unit cell of Cs2CoCl4 , is given by the lattice parameters:

a = 9.71 Å b = 7.27 Å c = 12.73 Å (3.1)

at T= 0.3K23,24. The unit cell of Cs2CoCl4 is shown in Fig.3.1. It crystallizes in an
orthorhombic (and non symmorphic) space group Pnma12,25. There are four spin-3/2
Co2+ ions per unit cell, occupying the following positions12 (in units of Eq. (3.1)),
where the numbering refers to Fig.3.1:

v1 = (z0,
1

4
, y0) v2 = (

1

2
+ z0,

1

4
,
1

2
− y0) (3.2)

v3 = (1 − z0,
3

4
,1 − y0) v4 = (

1

2
− z0,

3

4
,
1

2
+ y0) (3.3)

with y0 = 0.422 and z0 = 0.235.

Each Co2+ ion is tetrahedrally surrounded by chlorine ions (a sketch of the situa-
tion is given in Fig.3.2). If this tetrahedral environment would not be distorted the
ground state of every Co2+ ion would be a fourfold degenerated. In Cs2CoCl4 two
of the four surrounding Cl− are shifted out of the symmetry position, they are axial
distorted5. This fact together with spin-orbit coupling lead to a splitting into two
Kramer’s doublets.

It depends on the sign of the axial distortion D which doublet will be higher in energy,
the high-spin ∣±3/2⟩ or the low-spin doublet ∣±1/2⟩. For this effect one can write down
a crystal field Hamiltonian for the spin-3/2 operators Jzi :

H[D] =D∑
i

(Jzi )
2 (3.4)

In Materials such as, Cs3CoCl5, Cs3CoBr5 and Rb3CoCl5, which have similar tetra-
hedral cobalt salt surrounding5 D is negative and thus the high-spin doublet is lower
than the low-spin doublet. They are separated by about −2D/kB ∼ 10 − 15K. Suscep-
tibility measurements done by Figgis et al.22 provided that in the case of Cs2CoCl4

13



3 Mean Field Concept

Figure 3.1: This figure shows the crystal structure of Cs2CoCl4 (figure taken
from Kenzelmann et al.12). There are twelve Co2+ ions shown, each of
them is surrounded by four Cl− ions. The indicated box is the unit cell
containing four of the Co2+ ions, labeled from 1 to 4. There are several
interaction paths visualizing the interaction of the Co2+ ions. J denotes
an antiferromagnetic super exchange interaction path along the b-axis with
interaction energy J . This interaction direction is meant to be the chain
direction. Then there are several paths, labeled with Jac, Jab and Jbc. The
suffix indicates in which plane the path ’lies’, or more precise the involved
Co2+ are lying. The shaded rectangular planes symbolically indicate the
orientations of the xy easy-planes (e.g. Figgis et al.22). Further descriptive
details can be found in the text.

14



3.1 Physical input and geometry of Cs2CoCl4

Figure 3.2: In this figure the tetrahedral surrounding of the Co2+ ions by
Cl− ions is sketched. One option how the CoCl24− tetrahedral can be de-
formed from a perfect tetrahedron is indicated with arrows. The distortion
is reported to be about some degrees26

the sign of D is opposite. With the confirmation by McElearney et al.27, it became
clear that in the case of Cs2CoCl4 the low-spin states are lowest (see Fig.3.3). The
separation of those doublets is of the same order and the spin-spin interaction was
found to be antiferromagnetic.

The crystalline structure derived by now, is assumed to have magnetic Co2+ ions
sitting on given sites, surrounded by an distorted tetrahedral crystal field. To each
ion an effective spin-3/2 can be assigned, resulting in two energy levels, both doubly
degenerated. The question at this stage is, how these spins interact and what are the
nearest neighbours. The distances between the Co2+ atoms, following the notation of
Fig.3.1, are:

dCo1,1 = b dCo1,2 = d
Co
3,4 = 6.56 Å dCo1,3 = 6.61 Å dCo1,4 = d

Co
2,3 = 7.34 Å, (3.5)

where the underscript i, j refers to the several sites introduced in Fig.3.1. Naively
judging from these distances one would follow that the sites 1,2 and 3,4 are nearest
neighbours, as dCo1,2 < b. More established analysis considers the interaction of neigh-
bouring spins via super exchange interaction, involving at least two Cl− atoms. This
Cl− atoms act as mediators and because the super exchange integral decreases rapidly
with distance, one has to focus on the Cl− distances. It turns out that there is one dis-
tance about 10 percent shorter than all others, namely dCl1,1 which is in b-direction12:

dCl1,1 =
b

2
= 3.64 Å dCl1,2 = 4.05 Å dCl1,3 = 4.04 Å dCo1,4 = 4.01 Å (3.6)

Considering these distances, there is a specific direction, which provides the most
energy gain by super exchange interaction. Moreover the angle between the Co-Cl
bond and the Cl-Cl bond is relatively large (145○) with respect to the other bonds.
The other paths have distances of about ∼4 Å and have sharper angles. From these
considerations one expect the super exchange interaction in the b-direction to be the
strongest. This path is labeled with J, which will be the notation for the interaction

15



3 Mean Field Concept

Figure 3.3: Shown is the term diagram of the Co2+ ions in the tetrahedral
surrounding. The electronic configuration of Cs2CoCl4 is such that there
are seven of in total 25 e− electrons per ion, in the 3d orbital. This level
splits up into the two well known levels: t2g and eg, containing the orbitals
indicated. The reason for this splitting is the presence of the tetrahedral
crystal field. This two levels split up further due to the non perfect cubic
symmetry. The eg level is fully occupied, but the t2g is not and the two(!)
levels are not fully occupied. To indicate that there are two high energy
levels (xz, zy), they are artificially drawn not at the same height. This three
spins form the effective spin-3/2 system, which is analyzed (more details can
be found in the text).

energy in the formal description. Other paths can be related, as in Fig.3.1 marked,
there is dCl1,2 ≙ Jac, d

Cl
1,3 ≙ Jab and d

Cl
1,4 ≙ Jbc.

For small temperatures, T ≪ D, one can assume that only the lower lying doublet
is occupied. This induces the picture of an effective spin-1/2 chain system in the
b-direction. In this temperature regime one can describe the system using an XXZ-
Hamiltonian. As long as one is interested in the calculation for one chain, one could
start at this point constructing the Hamiltonian (see 3.3).

If 3d effects should be encountered one has to refer to the fact, that rotations of the
distorted CoCl4 tetrahedron lead to different orientations of the xy-easy-planes and
thus there is only the b-axis as a common axis left. Even and odd site indices carry
the same easy-plane, which lead to two types of chains: A- and B-type (c.f. Fig.3.4).
The angle between those planes is called β. Its numerical values is given contradictory
to be: β = −38.8○ 22 or β = 19.4○ 12.

An additional aspect is the lattice formed by these different chains. Concerning the real
positions of the different ions, several assumptions are taken to describe the material
in a simplified way. It was already argued that there is one predominant interaction
direction, so that the system can be regarded as weakly coupled spin chains.

By considering the results of neutron scattering done by Kenzelmann et al.12 presented
in Fig.3.5 one can see that several chains couple frustrated and others not. Especially
there is frustrated coupling from sites 1&2 to sites 3&4 and vice versa. Elsewise

16



3.1 Physical input and geometry of Cs2CoCl4

Figure 3.4: In this figure again the unit cell of Cs2CoCl4
is shown. But now the focus lies on the relative angle
between the denoted local easy-planes according to
the four Co2+ ions. The numbering is similar to that
of Fig.3.1. As two of them carry the same easy-plane
there are two specific directions perpendicular to the
b direction: n̂A and n̂B. This two directions define
the two types of chains: A and B, which is considered
in the further calculation.

17



3 Mean Field Concept

TN . The extracted transition temperatureTN5217 mK is
consistent with that inferred from specific-heat and suscepti-
bility measurements.8,11

The observed magnetic reflections are associated with a

magnetic ordering wave vectork5(0,1
2 , 1

2 ). To determine the
magnetic structure we first used group theory to identify the
spin configurations consistent with the wave vectork for the
given crystal symmetry, and second, we compared the struc-
ture factor of possible spin configurations with the experi-
mentally observed magnetic Bragg-peak intensities.

The group-theory analysis and determination of the
symmetry-allowed basis vectors are presented in the
Appendix. After comparison of the data with the possible
eigenvectors, we find that the observed structure belongs
to the G10 irreducible representation with eigenvector
f10 given in Eq.~A5!. This eigenvector has six degrees of
freedom corresponding to the three components of the mo-
mentsm1 andm3. Using spherical coordinates these can be
written as m15M1(sinq1,cosq1 cosf1,cosq1 sinf1) and
m35M3(sinq3,cosq3 cosf3,cosq3 sinf3). For q1,350,
spins are in the (b,c) plane andf is the azimuthal angle
with the b axis.

Figure 4~a! shows a pictorial representation of thef10

eigenvector in Eq.~A5! in the special case of ordered spins
contained in the (b,c) plane, making a small angle with the
b axis (f152f3) and having equal magnitude on all sites
(um1u5um3u). The structure can be described in terms of
antiferromagnetic chains alongb with a certain ordering pat-
tern between adjacent chains. Starting with the basic struc-
ture shown in Fig. 4~a! other distinct domains shown in Figs.
4~b!–4~d! can be constructed by changing the sign of either
the b- or the c-spin components, or the relative phase be-
tween chains 1 and 3~for details see the Appendix!.

We find that the measured Bragg intensities can be con-
sistently described by an equal population of A and B do-
mains ofG10. The best fit of the model to the magnetic in-
tensities~for details see the Appendix! is shown in Fig. 5 and
in Table I, and gives a good description of the experimental
data. A single-domain structure of either A or B type as de-
fined in the Appendix and shown in Fig. 4 is unable to ac-
count for the results.

Assuming spin moments confined to the (b,c) plane
(q15q350) and equal ordered moments on all sites
(um1u5um3u) the best-fit results aref1515(5)°, f35
215(5)°, and afraction of A domaina50.48(3) with the
sum of discrepanciesx252.55. The obtained value fora
; 1

2 demonstrates that domains A and B occupy the sample
in equal parts. It will be shown in Sec. IV B that those two

FIG. 3. Integrated intensity of the antiferromagnetic
(0,0.5,21.5) reflection vs temperature in zero external field. Inten-
sity units are the same as in Table I. The solid line is a guide to the
eye. The inset shows the Bragg-peak intensity as a function ofC
~left! and 2Q ~right! at temperatures below~solid circles! and above
~open circles! the transition temperatureTN5217 mK. Solid lines
come from a two-dimensional fit to the data in the (C,2Q) plane as
described in the text.

FIG. 4. Magnetic structure of Cs2CoCl4. Spins ~indicated by
arrows! order antiferromagnetically along chains@shown by dashed
lines in ~a!#. Ordered moments are contained in the (b,c) plane and
make a small angle with theb axis ~see text for details!. Relative
ordering of the chains leads to degenerate domains~a!–~d! belong-
ing to the same irreducible representationG10 with eigenvectors
given in Eq.~A5!. Labels 1–16 in~a! indicate the 16 spins in the
magnetic unit cell~1–4 label the four atoms in the chemical unit
cell shown in Fig. 2!. Solid and open circles are Co21 ions with
height along thea axis close to 0.25 and 0.75, respectively.
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144432-4

Figure 3.5: This table of figures shows the magnetic structure of Cs2CoCl4 obtained
using neutron scattering techniques12. Every sub figure (a)-(d) shows four chemical
unit cells, containing the sites 1-4 from Fig.3.1, which form the magnetic unit cell
containing 16 sites (labeled 1-16). Solid and open circles are Co2+ ions with different
height above the bc plane, around 0.25 and 0.75 respectively (see Eq. (3.2) and Eq.
(3.3)). In (a) the chains are indicated with dashed lines and the spins (depict by
arrows) order antiferromagnetically. The local ordered moments m are lying in the
bc plane having a small angle with the b axis. A certain relative ordering of the
chains to each other lead to different sub figures (a)-(d). Taking the structure in (a)
as a basic structure, following operations on the b- and/or c-component {mb,mc}i
lead to the figures (b)-(d):
(b): → {

{mb,mc}i i=1,2
−{mb,mc}i i=3,4

}; (c): → {−mb,mc}i; (d): → {
{−mb,mc}i i=1,2
{mb,−mc}i i=3,4

}.
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3.1 Physical input and geometry of Cs2CoCl4

there is non frustrated coupling between site 1 and 2 as well as between site 3 and
4. Additionally there are two planes, parallel to the bc-plane, corresponding to solid
and open circles. Each plane contains only sites which couple frustratedly (Jbc) in the
bc-plane (see Fig.3.7b). Thus one can identify two kinds of planes, one plane contains
chains with sites 1&4 respectively 2&3. An other plane is defined by the ions labeled
with 1&2 and in parallel 3&4, which contains non frustrated chains (Jac). The last
interaction direction Jab is between sites of even or odd label.

This lattice is represented in the space group Pnma. As a remark, there is an other
material Cs2CuCl4 which has the same symmetry group as Cs2CoCl4 mentioned by
Carlin et al.28. This symmetry group contains eight operations on the spatial com-
ponents and on the magnetic moments. There are eight additional operations related
to time reversal and combinations with it. This operations can be found in the paper
of Starykh et al.29. They can be represented in two irreducible representation using
2×2 matrices. With the application of these operations to the several moments, posi-
tioned at the given sites, one can specify which representation applies to the following
condition. The application of symmetry operations should map the unit cell back on
itself. Surely a cell shifted by a unit vector applies as well. By this one can specify
the irreducible representation of the symmetry group.

One can diagonalize this representation and use the eigenvectors to test several config-
urations. To do so one defines a projector into trial states ∣ν⟩ using the usual definition
P ≡ ∣ν⟩ ⟨ν∣. The interesting components are the staggered magnetizations. Given the
eigenvectors ∣λ⟩, one can check if the chosen configuration of staggered moments is
allowed by symmetry. This is done by the evaluation of ⟨λ∣P ∣λ⟩. If it evaluates to a
finite scalar, the trial state is allowed. This analysis can be used to show which terms
can be added to the interaction fulfilling the symmetry conditions.

With these considerations one can construct a three dimensional model of coupled
spin chains of two different types, A(site 1&3)- and B(site 2&4)-type. Deforming
the real unit cell in the following way: y0 ≡ 1/4 ≡ z0 (see Eq. (3.2) and Eq. (3.3))
(motivated by the analysis of the Cs2CuCl4 29), one can think of a model of chains in
planes, where these chains are coupled differently. The intra chain coupling is labeled
with J . Basically there are two basic planes parallel to the ab-plane, containing the
same structure, but different constituents. This planes are shown in Fig.3.6, where
one plane contains the sites 3&4 and the other plane the sites 1&2. In these planes
the moments couple non frustratedly, labeled with J ′′, as they form a square lattice
(see Fig.3.7a). Beside the relative orientation of these two planes, they are continued
exactly on top each other in the c-direction. This means every second plane is a copy of
its after next neighbouring plane. The relative orientation of the planes is such, that a
corresponding site of one plane couple frustratedly to a site of the neighbouring plane
labeled with J ′ (see Fig.3.7b). The figures Fig.3.7a and Fig.3.7b can be understood
as two similar copies of the same situation indicated with the site indices in brackets.
This situation forbids the interaction of staggered moments between the considered
basic planes, especially terms like φst1 φ

st
4 . Using symmetry considerations one can

construct the following map: φst1 φ
st
4 → −φst1 φ

st
4 . This shows that the mentioned term

has to vanish (see Starykh et al.29).
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3 Mean Field Concept

[

Figure 3.6: Shown is a sketch of the geometrical setup for the numerical cal-
culation in 3d. Three non frustrated basic planes are drawn. They are
parallel to the ab-plane and contain spins of two types. The spins corre-
spond to the types A (l) and B (l), which are indicated by their colour.
Each type contains two individual sites, so that in total four different types
appear (underscript 1-4). They form chains in the b-direction, which is
indicated with solid lines. The dashed lines stand for different interchain
couplings. The corresponding lines in the mentioned plane represent the
non frustrated couplings J ′′ in a-direction. The diagonal dashed lines in
the bc-plane are standing for the frustrated coupling J ′. The specific in-
dices numbering each spin and the unit vectors translating the unit cell is
specified in Fig.??.
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3.2 Concept of Mean Field Theory

The numerical calculations are done on a reduced lattice. The four individual sites are
restricted to two kinds of sites, A and B-type. By these considerations, the interplanar
coupling of staggered moments is suppressed. In the figures Fig.3.6 - Fig.3.7b the
setup for the calculation is sketched. Referring to the restricted setup, each set of
indices (ijk), counting the continuation of the unit cell, contains two sites, one site of
each chain type. This is labeled with the capital letters A and B. In reference to the
initial system described above, the unit cell would contain four sites, labeled partially
in brackets with 1, 2, 3 and 4. In the following only the restricted version will be
considered.

(a) ab-plane (b) bc-plane

Figure 3.7: In figure (a) the planes of Fig.3.6 are drawn. Every site is definitely
defined by the specific indices {ij} and the type A or B-type. The unit vectors
n̂i(n̂j) in b(a)-direction are added to illustrate the counting direction of the
indices. Because the unit cell contains two spins the index j corresponds to
two chains. Moreover the corresponding coupling constants, the chain coupling
J and the non frustrated coupling J ′′, is shown. The third unit vector, n̂k =

(1,1/2,1), is not only in the c-direction. With figure (b) one can imagine the
direction of this unit vector. In this figure one of the planes perpendicular to
the a-direction is shown. The index j refers to two planes, one with A and B
interchanged. Additionally the index k for the counting in the c-direction is put
into place. In the case of four individual sites, both sub figures of this figure has
to be thought of two copies of the same geometric structure, but this structure
is occupied by different constituent spins, labeled with 1-4.

3.2 Concept of Mean Field Theory

The usual Mf theory is a concept to deal with many-body-systems on the level of one
body problems. The influence of all particles on one specific particle is approximated
via a well chosen Mean field. In the case of spins, one has to think about an additional
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3 Mean Field Concept

magnetic field. In total the many-body interaction is described by an effective Mf field
(Mffs)16 on one particle.

The concept used to describe the situation is an advanced Mf approach. Basically
there a two additional ideas which were used: the notion of spin chains and theire
selfconsistent interaction. The whole cloud of spins is divided in spin chains of finite
length. Every chain and its constituent spins will order according to occurring external
magnetic fields. This fields are first of all, the external magnetic field Bx and besides
this, there are additional fields created by the neighbouring chains. As chains can
have either a uniform magnetization or a staggered magnetization, one can think of
two additional fields to the external one. In turn these magnetizations will influence
the local configuration of every single spin. But on the other side these spins give rise
to additional fields. This leads to the idea of self consistent solutions to equations
connecting fields and magnetizations.

Up to this stage the interaction of spins in several chains with one specific spin is
described via two additional fields. As long as one uses usual Mf theory one can
speak of an one site approximation. The method used in this work is an extended
version of this approach. In contrast to usual Mf, the problem is formulated such that
every chain forms additional Mffs. This approach leads in principle to independent
additional fields occurring from each chain separately.

To do this technically first of all one has to define a reference Hamiltonian HMf rep-
resenting one spin chain in external fields. Basically one can choose an arbitrary
reference Hamiltonian, but as it is used to do the calculation of the partition sum ZMf
and the expectation values ⟨S⟩Mf, one chooses an exact solvable reference Hamilto-
nian. As mentioned in section 2.1 the anisotropic 1d chain in a transversal field can
not be solved exactly. This means that one has either to use approximations (like a
Mf approach) or use numerical exact diagonalization schemes to obtain information
about the system. By doing so one can calculate the uniform and staggered magneti-
zation of a 1d chain in specific fields. This magnetizations causes fields, which have to
be adjusted such, that the arising self consistent equations are solved. To find these
equations one can use a minimum condition for the free energy. In general it will be
shown that the minimization of this free energy is equivalent to solve the Mf equations
self consistently.

Theorem

This minimum condition is provided by the Bogoliubov inequality:

F ≤ F̃ ≡ FMf + ⟨H −HMf⟩Mf. (3.7)

Here H denotes the full Hamiltonian and HMf the approximative Mf Hamiltonian.

To proof (c.f. Sachdev16) this inequality one needs a concept of the trace and to build
expectation values. With tr[Ô], the sum over all eigenstates of the operator Ô will be
denoted:

tr[Ô] ≡
2L

∑
n=1

⟨n∣ Ô ∣n⟩ (3.8)
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3.2 Concept of Mean Field Theory

with ∣n⟩ the eigenstate of Ô. A definition of an expectation value can be given in the
following way:

⟨Ô⟩ ≡
tr[e−βHÔ]

Z
=
∑n ⟨n∣ e−βHÔ ∣n⟩

∑n ⟨n∣ e−βH ∣n⟩
(3.9)

with β ≡ 1/T and the partition sum Z ≡ tr[e−βH]. The partition sum is the starting
point for the following computation.

Z = tr[e−β(H−HMf)−βHMf] (3.10)

= ZMf⟨e−β(H−HMf)⟩Mf (3.11)

where the basic properties of the tr[⋅] operation and Eq. (3.8) was used. Because the
exponential function is convex the following inequality is valid:

⟨e−Ô⟩ ≥ e−⟨Ô⟩. (3.12)

This provides with the free energy F = −β−1 lnZ and therefore Z = e−βF the following
statement about Eq. (3.11):

Z ≥ ZMf e−β⟨H−HMf⟩Mf (3.13)

Taking the logarithms of both sides of Eq. (3.13) and the multiplication by −β−1 proofs
Eq. (3.7)o

The minimization condition with respect to an arbitrary Mf parameter H̃ is:

d F̃

dH̃
=
dFMf

dH̃
+
d ⟨H −HMf⟩Mf

dH̃
= 0 (3.14)

with the definition F̃ ≡ FMf+⟨H−HMf⟩Mf. This variational principle applied to the Mf
free energy leads to self consistent equations for the fields or chosen Mf parameters.
To solve this equation one has two options. The first option is to solve the occurring
equations self consistently. This is one reason why this Mf theory sometimes is called
self consistent field theory. But there is an additional way of solving this problem.
Namely minimizing the Mf free energy4. In the numerical part of this work the
occurring equations are solved iteratively as well as by the minimization of the free
energy.

Lemma

Given a reference Hamiltonian HMf which contains the bare Hamiltonian H0 and an
additional general force times coordinate term fx. The exact free energy of HMf is
given by:

FMf = −β
−1 log∑

n

⟨n∣ e−β(H1+fx) ∣n⟩ = −β−1 logZMf (3.15)

The derivative of FMf with respect to f gives:

dFMf

df
= −β−1 1

ZMf
∑
n

⟨n∣ (−βx)e−β(H1+fx) ∣n⟩ = ⟨x⟩Mf (3.16)

This relation will be used in the following part, where the Mf equations will be de-
rived.
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3 Mean Field Concept

3.3 Mean field approach in one dimension

In this section the anisotropic Heisenberg chain in a transverse field (see 2.1) is con-
sidered. This model is treated, using a self consistent ansatz to solve the occurring
equations12. In this section the problem is formulated in the language of 2nd quanti-
zation. This means that the usual spin operators are mapped onto fermionic creation
and annihilation operators. Additionally a Bogoliubov transformation is used to map
the problem onto a theory, where the particle number is conserved. The main goal of
this section is to find an expression for the specific heat which was measured on the
Cs2CoCl4 system by Breuning30. The specific heat is calculated via an expression for
the free energy which is used to find the Mf equations, as motivated in Eq. (3.14).

3.3.1 Operator Identities

To start with, the usual spin-1/2 operators are considered:

S±i = Sxi ± iS
y
i (3.17)

Sxi =
1

2
(S−i + S

+
i ) (3.18)

Syi =
i

2
(S−i − S

+
i ) (3.19)

The following equivalence,
∣↑⟩ ≙ ∣0⟩ ∣↓⟩ ≙ ∣1⟩ (3.20)

states that a spin up state is described by an empty state and spin down state refers
to an occupied fermionic state. This equivalence only holds for one site. Concerning
the commutation relations, there is a fundamental difference between the fermion
operators and the spin operators, while fermionic operators anticommute,

{ci, c
†
j} = δij {ci, cj} = 0 = {c†i , c

†
j} (3.21)

where spin operators commute16. The solution to this problem was found by Jordan
and Wigner, namely by the introduction of the so called string operators:

S+i ≡∏
j<i

(1 − 2c†jcj)ci (3.22)

S−i ≡∏
j<i

(1 − 2c†jcj)c
†
i (3.23)

Szi = c
†
ici −

1

2
(3.24)

With the commutation relation as follows:

[S+i , S
−
j ] = 2δijS

z
i [S−i , S

−
j ] = 0 = [S+i , S

+
j ] [Szi , S

±
j ] = ±δijS

±
i (3.25)
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3.3 Mean field approach in one dimension

The notation Eq. (3.22) - Eq. (3.28) is the conventional Jordan Wigner mapping, but in
the specific case, where Sx couples to the external field a π/2 rotated version, Sz → Sx

and Sx → −Sz is useful. This induces the following identities:

Sxi = c
†
ici −

1

2
(3.26)

Syi =
i

2
(S−i − S

+
i ) (3.27)

Szi = −
1

2
(S−i + S

+
i ). (3.28)

3.3.2 Mean-field approach

A first step is to insert the Spin creation and annihilation operators Eq. (3.26) - Eq.
(3.28) into Eq. (2.5).

H =∑
i

(
J+
2

(S−i S
+
i+1 + hc) +

J−
2

(S−i S
−
i+1 + hc) + S

x
i S

x
i+1 +BS

z
i ) (3.29)

with J± ≡
J(∆±1)

2 and J = 1 for instance.

Now substitution of Eq. (3.22) and Eq. (3.23) in Eq. (3.29) yields

H =∑
i

(
J+
2

(c†ici+1 + hc) +
J−
2

(c†ic
†
i+1 + hc) + (ni −

1

2
)(ni+1 −

1

2
) +B(ni −

1

2
)) (3.30)

with (c†i)
2 = 0 = c2

i (from Eq. (3.21)) and ni = c
†
ici. The problematic term is the term

quartic in c. From here Eq. (3.30) isn’t exact solvable. The key to proceed analytically
is to approximate the original Hamiltonian with an one particle Mf Hamiltonian. This
Mf Hamiltonian will depend on new Mf parameters, that could be identified with the
Mffs.

The used choice for a Mf reference Hamiltonian is:

HMf = HMf [H̃, J̃+J̃−] = ∑
i

(
J̃+
2

(c†ici+1 + hc) +
J̃−
2

(c†ic
†
i+1 + hc) + H̃(ni −

1

2
)) (3.31)

with the Mf parameters {H̃, J̃+J̃−}.

The central aspect is how to find the right parameters. For this purpose the minimum
condition Eq. (3.14) for the Mf free energy Eq. (3.7) with respect to the Mf parameters
is used. The difference term in the free energy reads:

⟨H −HMf⟩Mf = ∑
i

J+ − J̃+
2

⟨c+i ci+1 + hc⟩Mf

+
J− − J̃−

2
⟨c†ic

†
i+1 + hc⟩Mf

+ ⟨(ni −
1

2
)(ni+1 −

1

2
)⟩Mf

+ (H − H̃)⟨c+i ci −
1

2
⟩Mf.

(3.32)
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3 Mean Field Concept

One can define several expectation values, following the notation of the paper by
Löw31. There is the on-site magnetization, a kinetic and a superconducting expecta-
tion value term denoted in the following way:

M = ⟨c+i ci⟩Mf −
1

2
K = ⟨c+i+1ci⟩Mf P = ⟨ci+1ci⟩Mf (3.33)

These terms are real per definition, which induce ⟨AB⟩ = ⟨B+A+⟩. By Wicks theorem
(c.f. Altland and Simons32) one can massage the second last term in Eq. (3.32) using
discrete translational invariance:

⟨nini+1⟩Mf = ⟨c†icic
†
i+1ci+1⟩Mf

= ⟨c†ici+1⟩Mf⟨cic
†
i+1⟩Mf − ⟨c†ic

†
i+1⟩Mf⟨cici+1⟩Mf + ⟨c†ici⟩Mf⟨c

†
i+1ci+1⟩Mf

(3.34)

Thus
⟨(ni −

1

2
)(ni+1 −

1

2
)⟩Mf =K

2 − P 2 +M2 (3.35)

and the difference in the free energy becomes

⟨H −HMf⟩Mf = (J+ − J̃+)K + (J− − J̃−)P + (H − H̃)M +K2 − P 2 +M2. (3.36)

With this expression it is possible to find the MF parameters as functions of the old
parameters and the expectation values. This is done by the minimization of the Mf
free energy. In general the derivative reads as:

dFMf

dH̃i

= (J+ − J̃+)
dK

dH̃i

+ (J− − J̃−)
dP

dH̃i

+ (H − H̃)
dM

dH̃i

+ 2K
dK

dH̃i

− 2P
dP

dH̃i

+ 2M
dM

dH̃i

(3.37)

where H̃i ∈ {H̃, J̃+, J̃−}. By construction the expectation values referring to the first
term in the free energy (see 3.16) will be cancelled by the specific derivative for each
parameter H̃i:

Mi +
d (J+ − J̃+)

dH̃i

K +
d (J− − J̃−)

dH̃i

P +
d (H − H̃)

dH̃i

M = 0 (3.38)

With 3.14 one obtains the following system of equations in matrix notation:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dM
dH̃

dK
dH̃

dP
dH̃

dM
dJ̃+

dK
dJ̃+

dP
dJ̃+

dM
dJ̃−

dK
dJ̃−

dP
dJ̃−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H − H̃

J+ − J̃+
J− − J̃−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dM
dH̃

dK
dH̃

dP
dH̃

dM
dJ̃+

dK
dJ̃+

dP
dJ̃+

dM
dJ̃−

dK
dJ̃−

dP
dJ̃−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2M
−2K
2P

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.39)

From these equations one can read of the new parameters:

H̃ =H + 2M J̃+ = J+ + 2K J̃− = J− − 2P (3.40)

Thus the Hamiltonian Eq. (3.30) describing the system, will be replaced by an approx-
imative Mf Hamiltonian:

HMf = ∑
i

J̃+
2

(c†ici+1 + hc) +
J̃−
2

(c†ic
†
i+1 + hc) + H̃(c†ici −

1

2
) (3.41)
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3.3 Mean field approach in one dimension

3.3.3 Exact solution of the effective 1d model

With the usual Fourier transformation cj = 1√
N
∑k ckeikj and ck = 1√

N
∑j cje−ikj Eq.

(3.41) becomes:

HMf = ∑
k

(J̃+ cosk + H̃)c†kck +
J̃−
2

(i sink c†kc
†
−k + hc) (3.42)

with the fact that ∑k cosk c±kc
±
−k = ∑k cos[−k] c±−kc

±
k = 0. This expression can be

rewritten to the following form:

H =∑
k

ωk(cosϑkc
†
kck +

i sinϑk
2

(c−kck − c
†
kc

†
−k)) (3.43)

The next step is to use the Bogoliubov transformation restricted to a particle conserv-
ing theory.

γk = cos
ϑk
2
ck − i sin

ϑk
2
c†−k γ†

−k = −i sin
ϑk
2
ck + cos

ϑk
2
c†−k (3.44)

ck = cos
ϑk
2
γk + i sin

ϑk
2
γ†
−k c†−k = i sin

ϑk
2
γk + cos

ϑk
2
γ†
−k (3.45)

In matrix formulation:

[
γk
γ†
−k

] = [
cos ϑk2 −i sin ϑk

2

−i sin ϑk
2 cos ϑk2

] [
ck
c†−k

]

[
ck
c†−k

] = [
cos ϑk2 i sin ϑk

2

i sin ϑk
2 cos ϑk2

] [
γk
γ†
−k

]

(3.46)

From that point on, one can write the Hamiltonian in a matrix expression:

H =∑
k

ωk
2

[ c†k c−k ] [
cosϑk −i sinϑk
i sinϑk − cosϑk

] [
ck
c†−k

] . (3.47)

where the initial fermionic operators are written in terms of the Bogoliubov particles.
With the Eq. (3.46) the Hamiltonian Eq. (3.47) can be rewritten such that:

H =∑
k

ωk
2

[ γ†
k γ−k ]H1 [

γk
γ†
−k

] (3.48)

where

H1 ≡ [
cos ϑk2 −i sin ϑk

2

−i sin ϑk
2 cos ϑk2

] [
cosϑk −i sinϑk
i sinϑk − cosϑk

] [
cos ϑk2 i sin ϑk

2

i sin ϑk
2 cos ϑk2

] = [
1 0
0 −1

] .

Thus Eq. (3.48) becomes

H =∑
k

ωk
2

(γ†
kγk − γ−kγ

†
−k) = ∑

k

ωk (γ
†
kγk −

1

2
) (3.49)

27



3 Mean Field Concept

This shows, that the γ particles diagonalize the Hamiltonian. One can go further and
specify the parameter ϑk. This is done by the comparison of 3.42 with 3.43 yielding
to:

ωk cosϑk = J̃+ cosk + H̃ ωk sinϑk = −J̃− sink. (3.50)

From that it follows directly with cosx = 1/[
√

1 + tan2 x], that

cosϑk =
1

√

1 + [ J̃− sink
J̃+ cosk+H̃ ]

2
. (3.51)

Again with Eq. (3.50) there is a closed form for the dispersion relation:

ω±k = ±[J̃+ cosk + H̃]

¿
Á
ÁÀ1 + [

J̃− sink

J̃+ cosk + H̃
]

2

=
√

[J̃+ cosk + H̃]2 + J̃2
− sin2 k (3.52)

This result is plotted in the section of the results of the numerical calculation (see
4.3.1). It enables to rewrite cosϑk and sinϑk as:

cosϑk =
1

√
2

¿
Á
ÁÀ1 +

J̃+ cosk + H̃

ωk
sinϑk =

sgnk
√

2

¿
Á
ÁÀ1 −

J̃+ cosk + H̃

ωk
. (3.53)

The sgnk is introduced, to make Eq. (3.44) and Eq. (3.45) valid for all values of k.
Moreover the derivatives with respect to the three parameters become:

∂ ω−k
∂H̃

= −
J̃+ cosk + H̃

√
[J̃+ cosk + H̃]2 + J̃2

− sink2
= − cosϑk (3.54)

∂ ω−k
∂J̃+

= − cosk cosϑk (3.55)

∂ ω−k
∂J̃−

= −
J̃− sink2

√
[J̃+ cosk + H̃]2 + J̃2

− sink2
= sink sinϑk (3.56)

Now one can introduce temperature. For that, one needs the notion of temperature
dependent expectation values defined in Eq. (3.9). From this one can see, that with
the Fermi Dirac distribution f(ωk) = 1

1+eβωk
, following identities appear:

⟨γ†
kγk⟩ = ⟨n̂k⟩ = f(ωk) (3.57)

⟨γkγ
†
k⟩ = 1 − f(ωk) (3.58)

⟨γ†
kγ

†
k⟩ = 0 = ⟨γkγk⟩. (3.59)

Now one can show that the Mean-Field expectation values Eq. (3.33) can be expressed
using the dispersion relation. For this purpose the following notation is used:

Mi ∈ {M,K,P} H̃i ∈ {H̃, J̃+, J̃−} (3.60)

28



3.3 Mean field approach in one dimension

where the expectation values Mi are given in Eq. (3.40). Using this notation the
expectation values can be written like:

Mi = ∫
π

0

dk
2π

∂ ω−k [H̃, J̃+, J̃−]

∂H̃i

(1 − 2f[ω−k [H̃, J̃+, J̃−], T ]). (3.61)

where the parameters H̃i depend on the corresponding initial parameters and expecta-
tion values, e.g. H̃ = H̃[H,M], As a partial proof, the calculation of the magnetization
term is exemplarily shown:

M =
1

N
∑
k

⟨c†kck⟩ −
1

2
=

1

2N
∑
k

⟨c†kck − ckc
†
k⟩ (3.62)

=
1

2N
∑
k

⟨[ c†k c−k ] [
1 0
0 −1

] [
ck
c†−k

]⟩

=
1

2N
∑
k

⟨[ γ†
k γ−k ] [

cosϑk i sinϑk
−i sinϑk − cosϑk

] [
γk
γ†
−k

]⟩

=
1

2N
∑
k

⟨[ γ†
k γ−k ] [cosϑkσ

z − sinϑkσ
y] [

γk
γ†
−k

]⟩ (3.63)

With Eq. (3.57) - Eq. (3.59) one can easily calculate the following expressions:

⟨[ γ†
k γ−k ] [1] [

γk
γ†
−k

]⟩ = 1 (3.64)

⟨[ γ†
k γ−k ] [σz] [

γk
γ†
−k

]⟩ = 2f[ωk] − 1 (3.65)

⟨[ γ†
k γ−k ] [σx,y] [

γk
γ†
−k

]⟩ = 0 (3.66)

Now Eq. (3.63) becomes using 1/N ∑k → 1/2π ∫
π
−π and Eq. (3.54):

M =
1

2Nπ
∑
k

cosϑk (2f[ωk] − 1) = ∫
π

−π

dk
2π

cosϑk (f[ωk] −
1

2
) (3.67)

= ∫
π

0

dk
2π

(− cosϑk) (1 − 2f[ωk]) = ∫
π

0

dk
2π

∂ ω−k
∂H̃

(1 − 2f[ωk]) (3.68)

The calculation of the kinetic and the pairing term goes totally analogous.

3.3.4 Self consistent equations

The calculation above showed that one can write the expectation values in a closed
form, namely:

Mi = ∫
π

0

dk
2π

∂ ω−k [H̃, J̃+, J̃−]

∂H̃i

(1 − 2f[ωk, T ]). (3.69)

This self consistent equations can be solved at least in two equivalent ways, which is
discussed in Sec. 3.2. The goal is to find the set of parameters solving Eq. (3.40).
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3 Mean Field Concept

One way would be to solve the equations iteratively to find the Mf parameters H̃i.
Using this method one has to fix temperature and external field and take an initial
set of expectation values M̃i. With those, one calculates the first set of H̃i and starts
an iteration, in which alternately the Mi and H̃i will be calculated until the Eq. (3.40)
are solved inside an given error. Alternatively one can minimize the free energy which
is given by Eq. (3.36):

F̃ = FMf + (J+ − J̃+)K + (J− − J̃−)P + (H − H̃)M +K2 − P 2 +M2. (3.70)

It was checked that the minimized free energy is indeed minimal at the set H̃i obtained
from the iteration. As this work was initialized by specific heat measurements, the
theoretic results will be compared to it in the next chapter:

CV = −T
d2F̃

dT 2
(3.71)

3.4 Mean field approach for coupled chains

3.4.1 Introduction to the 3d Problem

In this chapter coupling between chains is considered.
The difference is that now the spins interact antiferro-
magnetically with spins on different chains. In addi-
tion to the intrachain coupling J there are interchain
couplings J ′ and J ′′. In these interactions the same
anisotropy is assumed as in the spin-spin interaction in-
side of chains. The construction of the Hamiltonian rep-
resenting interacting spin chains in the Cs2CoCl4 mate-
rial refers to the geometrical situation described in 3.1
and especially to Fig.3.6. The calculation presented in

the following is restricted to only two inequivalent chains, A- and B-type. This is in
contrast to the real situation, where four different chains are present. The goal of this
section is to calculate the phase diagram of this model, involving coupled anisotropic
Heisenberg chains. One has to set up different tools to detect the specific transitions,
as transitions of first and second order will expected. One quantity providing a good
definition of a transition is the Mf free energy (Eq. (3.14)) as a function of external
field. With the aid of differing initial values for the staggered magnetization (mainly in
x- or in y-direction), it is possible to track a level crossing. This crossing labels a first
order phase transition between two ordered phases, at which the system changes its
ground state. There will be a second order phase transition from order to non order.
A good definition for an order parameter is the staggered magnetization. With the
calculation of the corresponding staggered susceptibility one is able to define this tran-
sition as well. It turns out that the system will have two ordered phases corresponding
to predominantly staggered magnetization in either x- or in y-direction.

3.4.2 Construction of the Effective Hamiltonian
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3.4 Mean field approach for coupled chains

Figure 3.8: see Fig.3.4

As already mentioned the calculation is restricted to two
types of chains, A ≙ {1,3} and B ≙ {2,4}. Every chain
(α = A,B) has its own easy-plane and local unit vector n̂α

standing perpendicular on this plane (see Fig.3.4). Fol-
lowing the description in section 3.1 one has several con-
tributions to the spin-3/2 Hamiltonian,

H = Hchain +H3d +HD +Hext (3.72)

where Hchain contains the intrachain couplings, H3d refers
to the interchain coupling, HD is related to the crystal
field energy and Hext couples the spins to the external
magnetic field. The several terms in the Hamiltonian read

in detail:

Hchain = J∑
r

(JAr J
A
i+1,jk + JBr JBi+1,jk) (3.73)

H3d = J
′
∑
r

(JAr (JBi−1/2,j,k+1 + JBi+1/2,j,k+1)

+ JBi−1/2,j,k−1(J
A
i−1,j,k + JAr ))

+ J ′′∑
r

(JAr J
B
r + JBr JAi,j,k+1) (3.74)

HD =D∑
r

((n̂AJAr )2 + (n̂BJBr )2) (3.75)

Hext = −B∑
r

(JAr,x + J
B
r,x) (3.76)

where r is a multi-index r = {ijk} and thus Jαr is a spin-3/2 operator at site {ijk}.
The indices have the following orientation: i ∥ a, j ∥ b and k ∥ c. Additionally applies
in the J ′′ term for even k: i ∈ {0,1,2,⋯} and for odd k: i ∈ {1/2,3/2,5/2,⋯}. The
chains labeled with A have the same easy-plane, they are equivalent, in contrast to
the chains labeled with B (n̂A ∦ n̂B). One chooses the unit vector such that n̂A ∥ ẑ.
This induces n̂B = cosβẑ + sinβŷ with β the relative angle between the easy-planes
(see Fig.3.9). There is a common axes of the inequivalent planes, which is in this
choice the x̂ axis. One would like to describe the spins in local coordinates to have
them quantized to a local ẑ axes.

Rotation

The rotation of one kind of the chains, can be realized by the introduction of new
rotated spin variables for the B-chain

J ′ = R[β]J (3.77)

with R[β] = [
1

cosβ − sinβ
sinβ cosβ

] the usual rotation matrix around the x̂-axis. It has the

property that: R[β]−1 = R(−β). Thus one can replace all spin operators in the B-chain
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3 Mean Field Concept

Figure 3.9: In this sketch the relative angle β is introduced. The
x̂ axis is unchanged in both types of chains (A or B), but
the yB- and the zB-coordinate are rotated along the common
x-direction and thus they contain contributions of both com-
ponents. A more strict definition of this facts can be found in
the text.

to maintain quantization to a local axis:

JB
′

i = R−1(β)JBi

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

JBx
cosβJBy + sinβJBz
− sinβJBy + cosβJBz

⎤
⎥
⎥
⎥
⎥
⎥
⎦i

.
(3.78)

One can check that JB
′

i JB
′

i+1 = JBi JBi+1 and (n̂BJ
B
i )2 = JzB

2

i . Until now all Spin
operators are spin-3/2 operators. One is interested in the limit of large crystall field
D → ∞, as experimentally D ≪ J applies. This is equivalent to take only the lower
lying total spin Sz = ±1/2 doublet. To make this point more clear one considers the
spin-3/2 operators J = {Jx, Jy, Jz}

⊺:

Jx =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
3√

3 2

2
√

3√
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Jy =
i

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
√

3√
3 −2

2 −
√

3√
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Jz =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
1

−1
−3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Projection

The limit mentioned above is obtained by projecting out the Jz = ±3/2 states. The

corresponding Projector is P = [
0

1
1

0
]. In the Hamiltonian every Spin operator is
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3.4 Mean field approach for coupled chains

replaced by PJP . This yields:

PJxP =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1

1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; PJyP =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
−i

i
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; PJzP =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1

−1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus one can write the Hamiltonian in terms of the usual spin-1/2 operators Sαr (see
definition in Sec.2.2). The relative factor of 1/2 in the z-component is incorporated

in the diagonal matrix δ = [
1

1
1/2

]:

PJαr P = 2δSαr (3.79)

In Eq. (3.72) one replaces additionally to the mapping JB
′

→ R−1(β)JB, every Jαr →
2δSαr . As S2 ∼ 1 the D-term in Eq. (3.72) is constant and can be neglected. By now
the notation suppressed, that formally the dot product J ⋅ J should be written J⊺J .
Introducing the matrix

Ĵ[β] ≡ δR−1[β]δ, (3.80)

one can rewrite the dot product concerning the projection mentioned above. This
means that

J⊺J → S⊺Ĵ[0]S (3.81)

and thus the shape of the terms in Eq. (3.72) become:

Hchain = JLjLk∑
i

(S⊺A
i Ĵ[0]SAi+1 +S⊺B

i Ĵ[0]SBi+1) (3.82)

H3d = Lj∑
ik

(J ′′S⊺A
ik Ĵ[β]S

B
ik + J

′S⊺A
ik Ĵ[β](S

B
i−1/2,k+1 +SBi+1/2,k+1) +

A↔B
Ĵ→Ĵ⊺) (3.83)

Hext = −B∑
i

(SAij,x + S
B
ij,x) (3.84)

with redefined couplings J ′, J ′′ and B the mapping JB
′

→ JB and Lj = ∑j respec-
tively. Focusing on the first term in H3d, because of its special character, one can
write

J ′′LjLk∑
i

S⊺A
i Ĵ[β]SBi

=J ′′LjLk∑
i

(SAi,xS
B
i,x + cosβSAi,yS

B
i,y +

cosβ

4
SAi,zS

B
i,z +

sinβ

2
(SAi,yS

B
i,z − S

A
i,zS

B
i,y))

(3.85)

where in contrast to the other terms, the cross product like last term is responsible
for additional features of this model. It causes one main aspect of the 3d model, the
spins can form staggered magnetization along the x-axis until a finite critical field
Bc1 is reached. This fact will be analyzed further when the phase diagram will be
considered. The full form of the Hamiltonian Eq. (3.82) - Eq. (3.84) in the considered
limit of large crystal field is considered to be:

Heff = Hchain +H3d +Hext. (3.86)

33



3 Mean Field Concept

3.4.3 Classical analysis of the effective Hamiltonian Heff

Figure 3.10: A classical spin parametrized in polar coordinates ϑ
and ϕ

In this section the characteristics of Heff are analyzed using a classical spin ansatz
(c.f. Fig.3.10). With this ansatz the transition field Bc1 is derived, at which the
phase transition from staggered magnetization in x-direction into staggered order in
y-direction occurs. One main issue is the effect according to the angle between the
easy-planes β, so that the two terms in Eq. (3.83) containing J ′′ are neglected. Putting
the length of the spin to 1/2, one has the usual expression for the same vector in the
two coordinate systems A and B:

SAi =
1

2
[

cosϑ
sinϑ cosϕ
sinϑ sinϕ

]
i

SBi =
1

2
[

cosϑ
sinϑ cosϕ+β
sinϑ sinϕ+β

]
i
.

Referring to Fig.3.11, the two phases aside Bc1 should be considered. By the analysis
Eq. (3.85), one can see that the exchange couplings are such that antiferromagnetic
order is preferably in the x-direction. Moreover it is obvious that the z-component is
always suppressed (ϕ = 0), due to the smallest prefactor. This induces the conclusion
that in the absence of external fields the system is in the phase called Néelx or AFx.
The last term in Eq. (3.86) implies that there is a finite field upon which the system will
undergo a first order phase transition into the so called spin flop (SF) or Néely phase,
where the staggered magnetization is predominantly in the y direction. This two
cases are sketched in Fig.3.11. To come back to the classical analysis, this structure
is modeled for B = 0 via the following attributions:

AFx ∶ SAi = (−1)i [
SAx
SAy
0

] SBi = −[
SAi,x
SAi,y

0

] (3.87)
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3.4 Mean field approach for coupled chains

Figure 3.11: Drawn is a sketch of the several phases including a T = 0 phase diagram
for the coupled chain model. In a one dimensional model the critical field Bc1 would
be zero. In the 3d model several chains are coupled and the main consequence is
that this field is finite. Additionally the easy-planes of the constituent chains have a
finite angle β and have only one common axis, the x-axis. There are three distinct
cases to consider: 1. For Bx = 0, the spins (indicated with arrows), are free to
order antiferromagnetically (AFx) in the xy-plane. As long as 0 < Bx ≤ Bc1 it is
still favorable to form a antiferromagnetic order in the x-direction, which is the
common axis of both plane types (A and B). In this phase the spins have finite
distribution in the z-component, which is suppressed in the figure. The staggered
magnetization in the x-direction (Mst,x) is an order parameter, being nonzero for
Bx < Bc1. 2. In the case of Bc1 < Bx < Bc2 a finite uniform magnetization in the
x-direction is created determining the staggered magnetization in this direction to
be zero. Additionally staggered magnetization in the y-direction is created (Mst,y).
This phase is called spin flop phase (SF) as the spins form a mixture of uniform and
staggered magnetization, with the staggered magnetization mainly perpendicular to
the field. 3. In the last case where Bx > Bc2 the spins are aligned along the field
direction and thus the material responses parramagnetically (PM).
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3 Mean Field Concept

Where in the Néely case following attribution is used:

SF: SAi = [
SAx

(−1)iSAy
0

] SBi = [
SAi,x
−SAi,y

0

] (3.88)

In the first case the terms Hchain, H3d and Hext contribute as follows to the energy
per spin:

Hchain = −J(cos2 ϑ + sin2 ϑ) (3.89)

H3d = −
zJ ′

2
(cos2 ϑ + cosβ sin2 ϑ) (3.90)

Hext = 0 (3.91)

This is minimized for ϑ = nπ, what implies that in the absence of field, spins are
perfectly antiparallel aligned along x̂ (ϑ = 0) and the energy per spin is:

Ex = −J −
zJ ′

2

, with z the coordination number. In the other case there is β occurring, the terms
are:

Hchain = J(cos2 ϑ − sin2 ϑ) (3.92)

H3d =
zJ ′

2
(cos2 ϑ − cosβ sin2 ϑ) (3.93)

Hext = −B cosϑ. (3.94)

So here the energy is

Ey = J(cos2 ϑ − sin2 ϑ) +
zJ ′

2
(cos2 ϑ − cosβ sin2 ϑ) −B cosϑ

and by minimization of this energy and solving for cosϑ one obtains:

cosϑ =
B

4J + zJ ′(1 + cosβ)
. (3.95)

With this result the minimal energy in the Néely-phase is

Eminy = −J −
zJ ′

2
cosβ −

B2/2

4J + zJ ′(1 + cosβ)
. (3.96)

But more importantly, one can solve now by setting Ex
!
= Eminy for the critical field

Bc1 =
√
zJ ′(1 − cosβ)(4J + zJ ′(1 + cosβ)). (3.97)

For small angles β it scales linearly in β: Bc1 ∼
√
zJ ′

√
2J + zJ ′ β +O(β3) but surpris-

ingly it scales as a square root of J ′ for J ′ < 1: Bc1 ∼
√
zJ

√
1 − cosβ

√
J ′+O(

√
J ′

3
).

The main result of this section about the coupling of spin chains of different type is,
that the critical field Bc1 is found be become finite with finite angle β.
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3.4 Mean field approach for coupled chains

3.4.4 Explicit derivation of the Mean field equations

In the conceptual description in Sec.3.2 the free energy was mentioned as the central
expression to derive the Mf fields (Mffs). One has to define a reference Hamiltonian
HMf, which will contain the several chains, the Mffs and the external fields. The full
effective Hamiltonian Heff (Eq. (3.86)) is given by the sum of 1d chains Hchain (Eq.
(3.82)), a term coupling the spins of several chains H3d ∼ J

′SASB (Eq. (3.83)) and a
term coupling the spins to external fields Hext (Eq. (3.84)).

Heff = Hchain +H3d +Hext (3.98)

One can choose a 1d reference Hamiltonian containing the uniform and staggered Mffs
Hun, Hst to be:

HMf = Hchain +Hext − V
B

∑
α=A

(Hα
unS

α
un +Hα

stS
α
st) (3.99)

with V = LiLjLk and obviously the term H3d will be approximated by the Mffs. Here
the self consistent equations are written implicitly, as the Mffs are coupled to spin
expectation values contained in the Mffs. As already mentioned above, the Hchain can
be solved exactly but the question is to determine the Mffs. For this one minimizes
the free energy with respect to HMf (motivated in Eq. (3.14)). The decisive expression
is the difference (c.f. Eq. (3.83)):

Heff −HMf = LjLkJ
′′
Li

∑
i

(S⊺A
i Ĵ(β)SBi +S⊺B

i Ĵ⊺[β]SAi )

+LjJ
′
LiLk

∑
ik

S⊺A
ik Ĵ[β](S

B
i−1/2,k+1 +SBi+1/2,k+1) +S⊺B

ik Ĵ
⊺[β](SAi−1/2,k+1 +SAi+1/2,k+1)

+ V
B

∑
α=A

(Hα
unS

α
un +Hα

stS
α
st) .

(3.100)

Mean field approximate free energy

The central principle is to take the expectationvalue of the expression Eq. (3.100). In
there expectationvalues of spin operators occur. This expectation values itself are
evaluated with respect to the chosen reference Hamiltonian:

⟨S⟩Mf ≡M =
∑2L

nMf=1 ⟨nMf∣S ∣nMf⟩

ZMf
(3.101)

with S = 1
Li
∑
Li
i=1 Si and ∣nMf⟩ the 2L eigenfunctions of HMf. Every spin expectation

value is a superposition of uniform and staggered magnetization, which can be formally
written like:

⟨Si⟩Mf ≡ ⟨Sun⟩Mf + (−1)i⟨Sst⟩Mf =Mun + (−1)iMst (3.102)
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3 Mean Field Concept

where the indices {jk} are suppressed with the specific choice of Sαk±1 = Sαk . This
particular choice is justified with the fact, that between planes with even and odd k
index there is no fixed relation of the spins.

Because the reference Hamiltonian is an one chain object, which induces ⟨SASB⟩Mf =

⟨SA⟩Mf⟨S
B⟩Mf, Eq. (3.100) deforms under the application of expectation value into:

⟨Heff −HMf⟩Mf

V
=2J ′′(M⊺A

un Ĵ[β]M
B
un +M⊺A

st Ĵ[β]M
B
st )

+ 4J ′M⊺A
un Ĵ[β]M

B
un +

B

∑
α=A

(H⊺α
unM

α
un +H⊺α

st M
α
st) .

(3.103)

The calculation of the first J ′-term in Eq. (3.100) will be shown explicitly:

⟨
Lj

∑
i

S⊺A
i Ĵ[β](SBi−1/2 +SBi+1/2)⟩Mf

=
Lj

∑
i

(M⊺A
un + (−1)iM⊺A

st )Ĵ[β] (MB
un + (−1)i−1/2MB

st +MB
un + (−1)i+1/2MB

st)

=
Lj

∑
i

(MA
un + (−1)iMA

st)Ĵ[β]2M
B
un

= 2LiM
⊺A
un Ĵ[β]M

B
un.

(3.104)

It is obvious that the second part is totally analogous with A↔ B and Ĵ[β] → Ĵ⊺[β]
exchanged. With this derivation, an expression for the Mf free energy per spin (division
by 1/(2V )) is found. This is an important result as it will firstly be used to derive the
Mffs.

F̃ = FMf + ⟨Heff −∑
α

HαMf⟩Mf

= FMf + J
′′ (M⊺A

un Ĵ[β]M
B
un +M⊺A

st Ĵ[β]M
B
st ) + 2J ′M⊺A

un Ĵ[β]M
B
un

+
B

∑
α=A

(Hα
unM

α
un +Hα

stM
α
st)

(3.105)

Mean field fields Hun, Hst

Having the free energy in the considered approximation one can find the Mffs by the
evaluation of the derivatives of the Mf free energy with respect to the specific field
components (c.f. Eq. (3.14)). From Eq. (3.16) it is known that:

dFMf

dHα
un(st)

= −Mα
un(st). (3.106)

The central part is the derivative of FMf. Exemplarily the derivative concerning HA
un

is shown:

∂FMf

∂HA
un

= J ′′
∂M⊺A

un

∂HA
un

Ĵ[β]MB
un + 2J ′

∂M⊺A
un

∂HA
un

Ĵ[β]MB
un +H⊺A

un

∂MA
un

∂HA
un

(3.107)
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3.4 Mean field approach for coupled chains

where the uniform magnetization MA
un from Eq. (3.106) is cancelled by a similar term

in ∂ ⟨Heff−∑αHαMf⟩Mf
∂HA

un
. As all terms are scalar quantities they can be transposed indepen-

dently. The application of transposition to the last term in Eq. (3.107) in combination
with ∂FMf

∂HA
un

= 0 gives:

∂MA⊺
un

∂HA
un

HA
un = −J

′′∂M
A⊺
un

∂HA
un

Ĵ(β)MB
un − 2J ′

∂M⊺A
un

∂HA
un

Ĵ[β]MB
un. (3.108)

This equation demonstrates one nice aspect of this approach, namely that one does

not have to calculate the quantity ∂MA⊺

un

∂HA
un

due to cancellation. So finally the uniform
field in the A-chain created from its neighbouring chains read:

HA
un = −Ĵ[β] (J

′′MB
un + 2J ′MB

un) (3.109)

In analogous way the staggered field on the A-chain can be calculated to be:

HA
st = −J

′′Ĵ(β)MB
st (3.110)

The fields acting on the B-chain are related to the fields of the A-chain by the exchange
of A↔ B and Ĵ[β] → Ĵ⊺[β]. They are for completeness:

HB
un = −Ĵ

⊺[β] (J ′′MA
un + 2J ′MA

un) (3.111)

HB
st = −J

′′Ĵ⊺[β]MA
st . (3.112)

Staggered susceptibility

One main goal is to calculate the phase diagram. This means having the Mffs and
the free energy it is possible to track the transition between the ordered phases. The
question is how to find the transition from the ordered phase into the paramagnetic
phase. Here the determining quantity is the staggered susceptibility, as in general it
describes the magnetizability of a material. In the paramagnetic phase the system its
ability to form staggered magnetization goes to zero. Calculating this susceptibility
gives the possibility to solve the coupled self consistent equations Eq. (3.109) - Eq.
(3.112). In general the susceptibility is defined as

Mα = −χαHα. (3.113)

This means for the staggered part of the Mf equations (Eq. (3.110) and Eq. (3.112))
that the magnetizations can be replaced:

HA
st = J

′′Ĵ(β)χBstH
B
st (3.114)

HB
st = J

′′Ĵ⊺(β)χAstH
A
st (3.115)

and in consequence these equations can be written in matrix form:

[
HA
st

HB
st
] = J ′′ [

0 Ĵ(β)χBstH
B
st

Ĵ⊺(β)χAstH
A
st 0

] [
HA
st

HB
st
] . (3.116)
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3 Mean Field Concept

They are solved for eigenvalues of the matrix χAB ≡ J ′′ [
0 Ĵ(β)χBstHB

st

Ĵ⊺(β)χAstHA
st 0

] equal
to one. As it was mentioned that outside the ordered phase the staggered susceptibility
will be smaller than one, it is possible to find the disorder order phase transition, at
the point where the largest eigenvalue of the staggered susceptibility becomes one the
first time (equivalent with the largest eigenvalue).
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4 Numerical solutions

In this chapter the results obtained by doing several Mf based calculations are pre-
sented. Basically two different ways are used to solve the Mf equations, Eq. (3.69)
respectively Eq. (3.109) - Eq. (3.112). In the first case, where only one chain was con-
sidered, the free energy was minimized. In the other case in a first step every chain
was solved exactly. Numerical tools were used to calculate the interplay between the
chains and to solve for the occurring Mffs.

4.1 Experimental results of measurements on Cs2CoCl4

4.1.1 Specific heat measurements

One of the first measurements for the specific heat of Cs2CoCl4 were done in the
1980’s5 and redone by Breunig et al.30. To do so a low temperature-calorimeter
was built and used in the following. It was constructed to measure the specific heat
down to T = 0.25Kelvin in fields up to 17 Tesla. The measuring technique was the
relaxation method. The measured data is shown in the figures Fig.4.1 to compare to
the numerical result. This work is focused on the theoretical description of a model
describing the same features than the measurements on the material Cs2CoCl4 .

There are several basic features one has to explain. Chiefly, neglecting the low temper-
ature divergences in Fig.4.1, one can see that for every field the specific heat reaches
a maximum. Furthermore one can see that in between, for a specific magnetic field
this maximum is minimal compared to the other ones. In Fig.4.1 one has to distin-
guish the high and the low temperature part of the figure. The divergences in the low
temperature region of the specific heat refer to degrees of freedom related to an inter
chain coupling. The energy scale of such excitation is small compared to the scale
of the intra chain coupling. This explains, that only for small temperatures these 3d
features are visible. Beside this in the high field regime at small temperatures, the
left flank of the curves can be described with an two level system having an energy
gap ∆E (see Section 4.2.2). The high temperature tail and its T−2 power law can be
found exactly (see Section 4.2.3).
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Figure 4.1: Shown are experimental results of the specific heat measurements for the
external magnetic fields indicated, done by Breunig et al.30. Further explanation
can be found in Sec.4.1.1
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4.1 Experimental results of measurements on Cs2CoCl4

4.1.2 Phase diagram of Cs2CoCl4

The second experimental result used as an orientation mark is the phase diagram in
Fig.4.2 measured by Breunig et al.30 as well. This phase diagram is not yet fully
understood, but basic features can be read of. For small fields the system is expected
to be in an antiferromagnetic phase (AF, see Sec.3.4) along the field direction. After
crossing a first order phase transition line, the phase labeled with I is reached. It
is not clear which phase it is, but a mixture of the AF-phase and the subsequent
spin flop (SF) phase can be assumed. The argument for this assumption is based
on the frustrated coupling between the ab-planes (see Fig.3.7b). First of all one has
to use the full unit cell, namely all four sites. One can break the frustration with
additional spin-orbit coupling. This would induce a intermediate phase, in which one
part e.g. all even (index k in Fig.3.7b) planes are in the SF-phase in contrast to all
odd planes remaining in the AF-phase. Above a critical field Hc1, the spins fully order
antiferromagnetically but perpendicular to the field direction (SF) being mainly in
the y-direction (z-direction is suppressed due to the anisotropy ∆). In the performed
calculation no spin orbit term is included and thus the two fields Hc0 and Hc1 fall
together. Above a critical field Hc2 a second unknown phase II was measured. For
this phase again one can construct an explanation proceeding from the inter planar
coupling mentioned above. In the derivation of the Mffs in the previous chapter the
staggered magnetization only interacts with J ′′ in the ab-planes (see Fig.3.7a). There
is no contribution coming from the coupling J ′.

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0
0,0

0,1

0,2

0,3

0,4

0,5

0H H H H 3

specific heat
thermal expansion
magnetostriction

T
 (

K
)

µ
0

H (T) || b

AF

II

SF PMI

Figure 4.2: Experimental results of combined measurements done by Breunig et al.30,
to extract the phase diagram of Cs2CoCl4. Besides the labeled phases the two
phases I and II are unknown. Several assumptions are presented in the text of Sec.
4.1.2
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4 Numerical solutions

This means the staggered magnetizations of several ab-planes have no relation between
themselves, as it is forbidden by symmetry (see Sec.3.1). The idea of spontaneously
broken symmetry can be realized with a tilted external magnetic field (relative to the b-
direction). With this different external field it might be possible that the system favor
a unknown but different configuration than the SF-phase. Basically one can think of
a deformed lattice such that the perfect frustration is broken. One can assume. that
there is a classical transition or crossover line from no order in the phase II, lying in
temperature above the calculated phase transition into the SF-phase. Basically the
two phases I and II has to be studied further to enable clear statements to them.

4.2 Verification of the one dimensional model

In this section the 1d model under consideration, namely aXXZ model in a transverse
field, is checked by several means. One thing is a comparison of the experimental data
to an exact diagonalizing scheme. As the model is not analytically solvable, numerical
tools33 are used to check the model on this basis. It will be shown that the XXZ
model will mainly reproduce the features one can expect from an 1d theory. The main
goal of this section is to verify that the model can describe the physical system. With
the verified validity of the numerical exact diagonalization, it will be used to check the
theory in further limits. Secondly in sufficiently large fields and small temperatures
one can view the model as two level system, involving a gap energy ∆E induced by
the field. This justifies an approximation with a two level system in certain limits. In
the other temperature scenario, where temperature is the dominant energy scale, one
can evaluate and compare the data to high temperature expansion results.

4.2.1 Exact diagonalization

In this part it is shown, that the assumed model can describe the experimental results,
at least for high fields. At this stage only the 1d results are considered and taken to
compare with the experimental data for the specific heat. For this purpose numerical
diagonalization using ALPS33 was evaluated for systems of L = 16 sites in magnetic
fields respectively for L = 18 if Bx = 0. This explicit calculation was also done by
Breunig et al.30 and there are several results obtained running this calculation. A
basic question on such a calculation is if the experimental data is reproduced (see
Fig.4.3). Moreover one can extract the constants involved in the model, such as the
intra chain coupling J or the g-factor. Kenzelmann et al.12 proposed the first to be
J/kB = 2.67K, which can be almost reproduced by the numerical calculation providing
J/kB = 2.6K. The best fit for the g-factor provides a value of g = 2.23. Both values
are calculated under the assumption of the anisotropy term ∆ = 0.25.

In Fig.4.3 the experimental results as in Fig.4.1 are compared to the results of the
described exact diagonalization. The 3d effects are obviously not reproduced in this
calculation, as the calculation is done on a 1d chain. In the lowest part of this figure
(high field part) one can see nice agreement between theory and experiment, involving
the gap mentioned above, which is increasing with increasing field. The intermediate
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4.2 Verification of the one dimensional model

part show worse agreement and a tendency, besides the 3d effects, to underestimate
the absolute value of the specific heat in comparison to the experiment. This becomes
obvious in the first part of Fig.4.3, where the peak in the theoretical data is about
ten percent lower compared to the experimental values.

Figure 4.3: In these figures the specific heat is shown. The indi-
vidual marks are data points obtained by measurements done
by Breunig et al.30. The solid lines are results of exact diago-
nalization. Further description can be found in Sec.4.2.1

.
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4 Numerical solutions

4.2.2 Low temperature and high field

In the domain where the temperature is comparable low T ≪ J and for relatively high
fields B ≫ J , the system can be described as a two level system. The 3d degrees
of freedom become neglectable in the high field limit concerning the excitationenergy
and the basic remaining excitation is a spin flip in a large field. Now one can compare
the energy balance for adding one of this excitation. The initial and the excited state
form a two level system with an energy gap ∆E. Assuming that the dispersion is
constant ω = ∆E, one can calculate the energy expectation value

⟨E⟩ = ∫
π

−π

dk

2π
ωf[ω[k]] =

∆E

e
∆E
T + 1

, (4.1)

with f[ω] = 1/(eω/T + 1) the Fermi distribution function. With the usual formula for
the specific heat CV =

∂ ⟨E⟩
∂T one obtains the following formula for the specific heat:

CV,∆E =
∆E2

T 2

e∆E/T

(e∆E/T + 1)2
. (4.2)

If one assumes, that the description of the system as a two level system is valid, one
implicitly assumes, that T ≪ ∆E. In this limit the specific heat deforms into:

CV,∆E ≃
∆E2

T 2
e∆E/T . (4.3)
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Figure 4.4: l Exact Diagonalization; n Two level approximation
In these figures the specific heat results obtained by exact diagonalization are com-
pared to corresponding results by considering a two level system. The specific
energy gap ∆E for several magnetic fields Bx is indicated in each sub figure. The
corresponding constant prefactors are A = 0.39, A = 0.41, A = 0.42 and A = .42
(from top left to bottom right). The agreement is obviously as better as smaller the
temperature is. This reflects the fact that T ≪ ∆E was used as a approximation.
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4.2 Verification of the one dimensional model

Only for small temperatures, fitting adjustments presented in Fig.4.4 show good agree-
ment with the result of the exact diagonalization. For this purpose Eq. (4.3) was fitted
with a constant prefactor A.

4.2.3 High temperature limit

In this part an estimate for the high temperature regime is derived. This estimate will
be used to be compared with the exact diagonalization results.

The derivation starts from the partition sum written as a power series

Z = tr[e−H/T ] = tr[1] −
1

T
tr[H] +

1

2T 2
tr[H2] + O(

1

T 3
) (4.4)

in the small parameter T−1 and whereH is taken from Eq. (2.5). Inserting spin creation
and annihilation operators one obtains the form (c.f. Eq. (3.29)):

H = J∑
i

(
1

2
(S−i S

+
i+1 + S

+
i S

−
i+1) +∆Szi S

z
i+1) −B∑

i

Sxi . (4.5)

where in this case the rotation is not performed (see Sec.3.3.1).

The dimension of a Hilbert space for a spin-s spin chain of length L, is (2s − 1)L.
This induces for the spin-1/2 model a normalized trace operation tr → tr/2L, so that
tr[1] = 1. With this convention one can evaluate the several traces occurring in Eq.
(4.4).

Linear order

The first two terms in Eq. (4.5) vanish under the trace operation, because there is no
option for a term ⟨sisi+1∣S

±
i S

∓
i+1 ∣sisi+1⟩ to be finite. Basically all term containing the

creation and annihilation operators in linear order vanish. The contribution of the
Szi S

z
i+1 term adds up to zero and the term coupling to the field is zero due to the same

reason than the first terms are zero. This concludes to the fact, that tr[H] = 0.

Second order

The first non trivial contribution to the partition sum arises from the term tr[H2].
With the observation again, that linear orders in the S+ or S− operators does not
contribute, one can express the trace in the following way.

tr[H2] =
1

2L
tr[

L

∑
ij
i=j

(
J2

4
(S+i S

−
i+1S

−
j S

+
j+1 + S

−
i S

+
i+1S

+
j S

−
j+1)

+ J2∆2(Szi S
z
i+1S

z
jS

z
j+1) +

B2

4
(S+i S

−
j + S

−
i S

+
j ))]

(4.6)
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where all terms corresponding to i ≠ j are zero under the trace. Because the trace is
an additive operation and only term involving two spins contribute one can rearrange
the expression Eq. (4.6) to

tr[H2] =
J2

4

L2L−2

2L
(tr2[S+1S

−
1S

−
2S

+
2 ] + tr2[S−1S

+
1S

+
2S

−
2 ])

+ J2∆2L2L−2

2L
tr2[(Sz1S

z
2)

2] +
B2

4

L2L−1

2L
(tr1[S+1S

−
1 ] + tr1[S−1S

+
1 ]).

(4.7)

where L = ∑i and 2L−n is the trace over L − n spins. The reduced trace trn[] is
defined over the reduced Hilbert space of n spins. The several reduced traces in Eq.
(4.7) evaluate to: tr2[S±1S

∓
1S

∓
2S

±
2 ] = 1, tr2[(Sz1S

z
2)

2] = 1/4 and tr1[S±1S
∓
1 ] = 1. This

simplifies the result to
tr[H2]

L
= J2 (

1

8
+

∆2

16
) +

B2

4
. (4.8)

With the usual formula, for the free energy F = −T logZ and for the specific heat Eq.
(3.71), it reads in the high temperature limit:

CV = −T
∂2

∂T 2
(−T log [1 +

1

2T 2
tr[H2]]) ≃ T

∂2

∂T 2

1

2T
tr[H2] = tr[H2]

1

T 2
(4.9)

where log 1 + x ≃ x and ∂2T−1

∂T 2 = 2T−3 was used. With this result the temperature
dependence of the specific heat in the concerned limit is:

CV = J2 (
1

8
+

∆2

16
)

1

T 2
+
B2

4

1

T 2
+O(

1

T 3
) (4.10)

with correction of cubic order.

In Fig.4.5 the resulting specific heat curves obtained from a L = 10 exact diagonal-
ization and the evaluation of the presented high temperature expansion for the XXZ
chain are shown. In the case of Bx = 0.001 the curves lie on top each other down to
one Kelvin. With increasing field, the temperature at which the two theories start to
diverge increases as well. But still the two curves and the corresponding theories seem
to converge to the same prediction for T →∞. This coincides with the taken limit, at
which for high temperatures the corresponding expansion becomes exact.

It was shown, that theXXZ chain model describes the physics, at least the 1d features
are reproduced. Furthermore both temperature limits T → 0 in high fields and T →∞

can be understood from the present theoretical point of view. To understand the small
field and temperature regime, the 3d analysis has to be considered.
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4.2 Verification of the one dimensional model
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Figure 4.5: l Exact Diagonalization; n High temperature expansion
In these figures the high temperature results for the specific heat are compared
with the corresponding exact diagonalization results for several magnetic fields.
The coincidence for high temperatures can be seen clearly. Further explanation are
given in the text in Sec.4.2.3.
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4 Numerical solutions

4.3 Calculation of CV for the 1d system

In this section the Mf calculation of the specific heat and its major steps are presented.
The obtained results are compared to similar exact diagonalization results as described
in the previous section (L = 10, J = 1, g = 2.2). In the previous part it was shown,
that the exact diagonalization provides, in certain limits, a good agreement with the
experimental data. Performing the Mf approach in 1d only the 1d system can be
described. Therefore one cannot expect a better result to the experimental data than
from the exact diagonalization scheme. This justifies that the Mf calculation of the
specific heat is only compared to the exact diagonalization results.

4.3.1 1d c++ Program

In Sec.3.3 the theoretical concept to solve the given Hamiltonian Eq. (3.29) in the
framework of Mf techniques was developed, resulting in the following equations:

H̃ =H + 2M J̃+ = J+ + 2K J̃− = J− − 2P. (4.11)

This equations are the heart of the calculation, as they describe the relation between
the parameter in the initial model and those in the effective model which can be
solved exactly. This equations were called the Mf equations, as they are the determin-
ing equations for the Mffs. The derivation of the dispersion relation of the effective
Hamiltonian Heff was shown in Sec.3.3.3 to be of the following form:

ω[k, H̃, J̃+, J̃−] =
√

[J̃+ cosk + H̃]2 + J̃2
− sin2 k (4.12)

The central aspect is how to solve the Mf equations. As mentioned above it is equiv-
alent to find the set of parameters H̃i ∈ {H̃, J̃+, J̃−} (defined in Eq. (3.60)) either by
an iterative approach to the self consistent solutions or by the minimization of the
corresponding Mf free energy. In this part the latter option was used. In a first step
the expectation values Mi are calculated for a given external field and for a initial set
of parameters H̃0

i . This is done with the integral representation of the expectation
values (c.f. Eq. (3.69)) using the dispersion relation. Then having those values, the
free energy (Eq. (3.70)) corresponding to this expectation values is calculated. Having
these expressions one can define a gradient ∇H̃i which contains the three derivatives
with respect to the parameters H̃i. Considering the free energy in the space of these
three parameters one has by this a measure to find a local minima. Followingly the
initial parameters H̃i are updated with the following allocation:

H̃new
i = H̃i − δ∇

H̃
i H̃i (4.13)

with a small constant 0 < δ < 1 to decrease the step size. With the updated set the
expectation values and so forth are repeatedly calculated until the absolute value of
the gradient becomes smaller as a predefined tolerance barrier. After this loop the
H̃i fulfill in certain error estimates the self consistent equations and can be used for
further analysis. Firstly one can consider the structure of the dispersion and whether
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4.3 Calculation of CV for the 1d system

it is gapped or not, or at which field the gap closes. With this calculation the critical
field of Bc = 1.604J proposed by Löw et al.31 at which the gap closes is reproduced (see
Fig.4.6). From these parameters the specific heat (see Fig.4.3.2) can be calculated,
following Eq. (3.70) and Eq. (3.71)

0 Π
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4
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3

4
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w
@kD

Figure 4.6: Shown is the dispersion relation ω[k] as function of momentum k in the 1d
model for several magnetic fields Bx ≤ 2. At k = π the highest curve is at Bx = 2J y

and the five dispersions below correspond to fields Bx/J = 0.001 y, 0.5 y, 1.0 y, 1.5
y and 1.604 y (top to bottom). One can observe, that for the proposed value for
the external field Bc = 1.604J 31 the gap closes. This curves are obtained using Eq.
(4.12), where the parameters H̃i ∈ {H̃, J̃+, J̃−} are obtained using the minimization of
the Mf free energy. Further specification can be found in the theoretical description
(see 3.3) and in the text Sec.4.3.

4.3.2 Exact diagonalization vs. Mean field

As argued in Sec.4.3 the results of the Mf calculation can be compared the best to
exact diagonalization results. This is done in Fig.4.7 for the specific heat as function
of T (J = 1, g = 2.2).

To focus on the disagreement for small fields, again the specific heat result for Bx =
0.001 is shown in Fig.4.8. The low temperature tail coincides nicely, in contrast to the
high temperature tail, that disagrees badly. In the limit T →∞ the high temperature
expansion becomes exact and coincides with the exact diagonalization (considered in
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Figure 4.7: Shown is a comparison between Mf specific heat results
(doted) and exact diagonalization results (solid line) as function
of temperature. Each pair of one colour is the result correspond-
ing to the indicated external field. The results corresponding to
higher fields, coincident more with the validated exact diagonal-
ization. Especially the B = 0.001 case disagrees qualitatively with
the exact diagonalization for temperatures above the peak. The
reason why the Mf approach fails in this limit is, that it breaks
the U(1) symmetry of the XXZ model. This argument is further
explained in the text of Sec. 4.3.2. The second sub figure show the
high field range B ≫ J , in which the coincidence between exact
diagonalization and Mf solution is obvious.
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4.3 Calculation of CV for the 1d system

Sec.4.2.3). For temperatures in which the high temperature expansion is valid, the Mf
specific heat is underestimated. Followingly at a specific temperature, it crosses the
exact diagonalization specific heat and overestimates the specific heat. The reason for
the disagreement in small field was given by Sebastian Caux et al.31. For Bx = 0 the
model reduces to a critical XXZ spin chain with exponentially vanishing staggered
magnetization. The 1d Mf Hamiltonian fails to describe the system in small magnetic
field because the XXZ model has a U(1) symmetry, which is broken by the applied
Mffs. This imply that the Mf approach is not valid in the absence of a external
magnetic field and therefore fails to describe the system in this case.
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Figure 4.8: l Exact Diag.; n Mf approx.; uHigh temperature expansion
In this figure the specific heat is shown for Bx = 0.001. The Mf solution shows
disagreement with the exact diagonalization which was counter checked in both
limits (see Section 4.2.2 and 4.2.3). Basically for high temperatures the Mf calcula-
tion underestimates the specific heat. At a given temperature the Mf specific heat
crosses the exact diagonalization result and followingly over estimates the mentioned
quantity. Further explanation is given in the text 4.3.2.

It remains to emphasize, that for high fields and even intermediate fields, the descrip-
tion delivered by the Mf approach is surprisingly good (cf. Fig.4.7). The presented
data is one main result of this work, as the experimental data Fig.4.1 was the concep-
tional starting point of the whole theoretical work on Cs2CoCl4 presented in this work.
It was shown that for finite fields, the Mf approach is a decent method to describe
the Cs2CoCl4 system in the light of spin chains. For high fields the experimental data
could be reproduced quantitatively. The only restriction of the method is that the
external field has to be finite due to symmetry reasons mentioned above.
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4 Numerical solutions

4.4 Specific heat for coupled chains in the 3d setting

With the minimized free energy F̃ one can calculate the corresponding specific heat us-
ing Eq. (3.71). The results are shown in Fig.4.9. They show the typical Mf behaviour,
as there is a jump in the specific heat curve at the critical temperature. Moreover
the linear behaviour closed to the transition, with different slope is an indication for
the Mf character of the transition. The results of the fitting is presented in Tab4.4.1.
This results can be compared to the experimental results.
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Figure 4.9: n Cv,Mf; y and y Linear fits closed to the transition temperature
Shown are the Mf specific heat results at external fields indicated inside each sub
figure. The linear fits are executed for temperatures close to the transition temper-
ature but either below or above. The jump as well as the linear behaviour close to
the transition are clear indicates for a Mf transition. Further interpretation can be
found in the text.
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4.5 Phase diagram for coupled chains

The numerical results for the slopes are

Bx y : a b y : a b
0 -0.89 5.25 0.16 0.69
0.5 -0.85 5.79 0.08 0.79
1.0 -1.08 6.94 0.14 0.39
1.5 -1.14 7.42 0.30 -0.18
2.0 -0.95 6.84 0.20 0.05
2.5 -0.44 4.58 -0.03 0.77

Table 4.4.1: This table shows the results for the linear fits a + bx, on the specific
heat close to the transition temperature. It is obvious that the slope above the
critical temperature is about one order smaller than the slope below the critical
temperature.

The transition temperatures, indicated with the Mf jump in the specific heat is ana-
lyzed in Sec.4.5, as the same transition temperatures are found using the staggered
susceptibility calculation.

4.5 Phase diagram for coupled chains
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Figure 4.10: Exemplary phase diagram

In this section the calculation of the
phase diagram of coupled XXZ chains
will be presented. The approximative
tool is again the MF approach, where the
external field acts as the tuning param-
eter. As the numerical value of the rela-
tive angle β between the different types
of chains (see Sec. 3.4.2 and Fig.3.9) is
not clear β is varied. Because there are
both kinds of phase transition, first and
second order phase transition, different
techniques to calculate the critical fields
and temperatures are used. In Fig.4.10
an exemplary phase diagram is shown. Beside the special cases (β = 0 and β = π)
the structure of the obtained diagrams is similar. There is the intermediate order to
order phase transition (u). Here the free energy for staggered magnetization in x-
respectively y-direction was used to examine the transition points. The curve sepa-
rating the ordered from the non ordered region is found with the aid of the staggered
susceptibility. Either the field was kept fixed and the temperature was varied (χT , l)
or the opposite (χBx , n). In the following sections the main steps of the calculations
for the phase diagram are presented. In this part of the work not the minimization of
the free energy was used to solve the self consistent equation but rather an iterative
approach.
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4 Numerical solutions

4.5.1 Staggered magnetization and Iteration

Conceptually the first major part of the program is the exact diagonalization of a 1d
chain of specific type (A or B) and its usage to calculate expectation values. Given the
fields Hun and Hst and having the eigenstates which correspond to those fields, one
can calculate expectation values of spin operators. Those expectation values (defined
in Eq. (3.9)) are identified with the corresponding magnetizations (for definitions and
derivation see Eq. (3.102)). From these magnetizations again the additional Mffs are
calculated until a certain convergence in specific errors is reached.

By setting up the iteration one has to break the symmetry by hand. In Fig.3.5 it is
visible, that the staggered component of chains of different type in the ab-plane are
always negative relative to each other. One has to choose arbitrarily one of the two
to be the negative of the other. Concretely this means, to initialize the staggered
fields with opposite sign, where the uniform fields have the same initial value (see also
Sec. 4.5.2). Having the first set of magnetizations a loop follows, which is evaluated
until the largest difference between updated magnetization and old one is below an
convergence criteria. In the figures Fig.4.11 and Fig.4.12 the resulting staggered (x
and y) and uniform (x) magnetizations for the fixed temperature T = 0.2 are given.
This plots provide a first insight where which phase transition will occur. The inter
order phase transition, from the Néel to the Ising phase, will happen at the specific field
at which the main contribution to the staggered magnetization changes (Mx

st →My
st).

This will happen for fields below Bx < 0.75J . For the second order phase transition no
indication as clear as for the first order transition can be found. It was argued, that
for β = 0 and Bx = 0 both contributions are equal (Mx

st =M
y
st), which can be seen at

the very left of the first sub figure. Than still for β = 0 but at finite field, there is only
staggered magnetization in the y direction, and for β = π/2 the opposite applies. The
second figure Fig.4.12 shows the same quantities for a narrow angle interval, especially
at which the two magnetizations are separated. This fact indicates, that the critical
temperature will have a minimum as a function of external field. This can be seen in
Fig.4.16.

Having the magnetizations or the fields respectively one can go one step further and
calculate the corresponding susceptibility (introduced in Eq. (3.113)). Conceptually
one can restrict the ’Mf solver’ to uniform Mf fields and calculate the susceptibility
until the first eigenvalue becomes on, by reducing temperature or magnetic field. At
this point the system undergoes a phase transition into an ordered phase, where stag-
gered magnetization is present. The solution obtained by the restricted ’solver’ is only
valid until the transition temperature or field is reached. More characteristics and
fundamental description can be found in the theoretical foundation of this work (cf.
2.1)

In conclusion, the calculation of the susceptibility provide the possibility to calculate
the outer Tc line (l and n in Fig.4.10) for a given temperature. The remaining
part is the interior first order phase transition, which goes from order (staggered
magnetization in x direction) into different order (staggered magnetization mainly in y
direction). This transition can be defined through the free energy of the corresponding
phases (u in Fig.4.10).
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4.5 Phase diagram for coupled chains
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Figure 4.11: l Mx
st; n My

st; u Mx
un

Shown are plots of the uniform magnetization (x) and staggered magnetizations
(x and y) as function of the external field Bx for several easy-plane angels β at
the temperature T = 0.2. The ’holes’, e.g. for high angles below Bx = 1.25 or at
fields closed to those at which Mx

st vanishes and Msty emerges, are points where the
iteration process does not find a converged solution.
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Figure 4.12: l Mx
st; n My

st

Here a small angle range at which the staggered magnetizations (for description
see caption of Fig.4.11), separate is shown, again for T = 0.2. In short this fact
indicates, that at the intermediate field, the system already is in the non ordered
phase, where below and above there is still order. For more detailed description see
Sec. 4.5.1.
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4.5.2 Free energy

One has to keep in mind, that this solution depends on the initial magnetic fields.

Figure 4.13: Shown is the free energy as
function of magnetization for the tem-
perature being above T > Tc, exactly
T = Tc and below T < Tc the critical
temperature. The Mf approach artifi-
cially produces two minimas in the free
energy16

First of all the basic feature of the spon-
taneous symmetry breaking mentioned
above should be made explicit. One main
aspect of this fact is, that the free energy
has two minima for temperatures below
the transition temperature. With the ar-
tificial breaking of the symmetry in the
staggered magnetization (see Sec. 4.5.1)
one chooses one of the two minima in the
free energy. This induces the fact, that
there should be an coexistence region in
which both phases Mx

st and My
st can be

finite. This region is not been investi-
gated, but the transition field Bc1 is ex-
amined at which the Mf free energies of
the two phases cross as function of exter-
nal field.

For this purpose consider the Fig.4.14
where the level crossing for different an-
gles β is shown. The several curves are
obtained by a restriction of the Mf so-
lution to the specific phases. The state-
ment of these curves is, that the Mf solution, or the iterative approach can not decide
at every point which of the two minima is the global minima. This is the case at each
curve where both free energies do not coincide. Both curves represent solutions to the
Mf equations, but the corresponding free energies does not coincide generally. The
difference is induced through different initial fields, favouring staggered magnetization
either in x or y-direction.

In Fig.4.14 (β = 0.2π, β = 0.25π) at a finite distance to the critical field the free energy
of the higher level falls down on the ground state free energy. This are the points at
which the Mf solution finally converges to the right solution, namely the minimal free
energy solution. If one would zoom in, one would find the crossing of the corresponding
Mf free energies up to an angle β = π/2. In the special case, where β = 0 only for zero
field the system forms staggered magnetization in x-direction. The reason for this fact
is, that for β = 0 there is no compensation process for the anti parallel aligned spins,
which constitute the Néelx phase.

Concluding it is shown, how one can determine the expected phase transition line
in the given model of coupled anisotropic Heisenberg chains. It was calculated the
susceptibility and additionally the Mf free energies to extract the transition lines.
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Figure 4.14: Mx
st ; My

st

Shown are the free energies of the two phases as function of external magnetic field,
theMx

st and theMy
st phase. The specific shape of the curves is explained in the text

of Sec. 4.5.2. The central aspect for each curve is the point of level crossing, e.g.
for β = 0.25π at Bx ≃ 0.6, showing that the ground state changes.
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4.5 Phase diagram for coupled chains

4.5.3 Phase diagrams

In this section the resulting phase diagrams are presented and classified in a more
general context.

The relative angle between the easy-planes is varied to be 0 ≤ β ≤ π/2. For an angle of
β = 0 the system immediately is in the yz staggered phase, also called spin flop phase.
As mentioned above an angle of β = π/2 is the point at which the antiferromagnetic
phase is the ground state for all external fields, up to the critical field which induce
the paramagnetic order. The case of β > π/2 is represented in the mentioned interval,
and thus the two limits β = 0 and β = π/2 are the limits to consider. From Sec.
4.5.2 one can see, that one does not have to calculate at these borders the order to
order phase transition, as the system is either in the spin flopped phase (β = 0) or in
the antiferromagnetic phase (β = π/2). Another aspect concerning numerical values
of parameters is the absolute value of the inter chain coupling. In the paper from
Dmitriev et al.19 it was proposed that the inter chain coupling is about 10−2J , namely
J ′′ = 0.0147J . The difference to the presented work is, that for this proposition,
parallel chains of equal type were assumed. This in contrast to two types of chains,
which are coupled frustrated and non frustrated in the presented work. In the paper
of Starykh et al.29 concerning the material Cs2CuCl4, it is claimed, that J ′ ≃ 0.34J
and J ′′ ≃ 0.05J . In the calculation done for the presented work the two parameters
were set equal J ′ = J ′′. Due to finite size effects, only inter chain couplings of around
J ′ ≃ 0.3J could be accessed. For smaller values the Mf equations and their iterative
solution does not generate staggered magnetizations. This is related to a gap which
is induced by the finite length of the considered chain and has to be overcome by the
inter chain coupling. This is only fulfilled for J ′ > J/L. This certainly restricts the
considered inter chain coupling from below to certain values.

There are several limitations related to calculation time and file size. As in every
iteration step the mentioned expectation values are calculated (by means of numerical
diagonalization techniques) the calculation had a time constrained by this. Moreover
only systems of the size of L = 6,8 could be calculated, due to the mentioned reasons.
At this stage it would be meaningful to redo the calculation with a c++ program to
enable calculation for system sizes such as L = 12. As there is a temperature scale
defined through the system size, the interchain coupling itself is restricted to certain
values. This is the reason why only such unrealistic values for J ′ were accessible.

The diagrams obtained by the procedure described above are presented in Fig.4.16.
Except the special cases β = 0 and β = π/2 the diagrams show the following qualitative
behaviour. Coming from Bx = 0, the critical temperature decreases with increasing
magnetic field until a local minimum of the critical temperature is reached. The transi-
tion line (u) separating the two ordered phases end at this minimum. At this point one
can ask how the three lines touch, which could be examined using a Ginzburg-Landau
theory. Moreover the critical temperature has a maximum in the Ising ordered phase
at a finite field Bc1 < Bx < Bc2. Above the critical field Bc2 there is no order anymore.
Additionally one can examine how the critical field in between the two ordered phases,
behaves as function of β and J ′′. This qualitative behaviour will analysed and checked
for convenience in Sec.4.5.4.
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Figure 4.15: l χst[T ]
!
= 1; n χst[Bx]

!
= 1; u F̃x

!
= F̃y

In this figure the phase diagram of the coupled XXZ chain in an transverse field
for varying angle β is shown. The inter chain coupling is set to J ′ = J ′′ = 0.3J . This
is the smallest numerical value, allowing staggered order to develop. One can see
nicely the maximum in the critical temperature, which is explained in Sec.4.5.4.
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Figure 4.16: l χst[T ]
!
= 1; n χst[Bx]

!
= 1; u F̃x

!
= F̃y

In this figure the phase diagram of the coupled XXZ chain for a fixed the inter
chain coupling J ′ = J ′′ = 0.5J and varying angle β is plotted. In contrast to Fig.
4.15 the maximum in the critical temperature is mostly suppressed. In general all
critical quantities (temperature and field) is shifted to larger values in comparison
with the results for smaller J ′′. Because one has to set the interchain coupling to
such values (finite size effect) one can not compare quantitatively the critical fields
obtained by the numerical approach with the experimental data.
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An other aspect is the comparison with the experimental phase diagram. The phase
diagram shown in Fig.4.2 contains much more structure than the XXZ model can
explain under the condition it was considered. Possible explanations for the emergence
of the phases I and II were given in Sec.4.1.2. To make a comparison between the
numerical and experimental results, one has to make several identifications. One can
identify the T = 0 critical fields Bc1 and Bc2 in Fig.3.11 with the critical fields in the
theoretical results Fig.4.16. In turn this fields correspond in the following relation to
the fields in Fig.4.2:

AF↔ SF: Hc0 =Hc1 → Bc1 (4.14)
SF↔ PM: Hc3 =Hc2 → Bc2. (4.15)

The equalities Hc0 = Hc1 and Hc3 = Hc2 occur because the used Mf approach cannot
distinct the mentioned phases I and II (described in Sec.4.1.2). From a quantitative
comparison of the mentioned fields one can not expect much insight. As the critical
quantities depend strongly on the chosen interchain coupling (cf. Fig.4.15 and Fig.
4.16). Because this parameter had to be chosen in a unrealistic regime one can not
assume to reproduce realistic quantitative results.

Behaviour of the spin flop field Bc1

One can verify, that the spin flop field Bc1 is linear in the angle β as proposed in
Eq. (3.97) in Sec.3.4.3. For this purpose for a fixed arbitrary temperature T = 0.085
the critical field Bc1 obtained by the free energy calculations is shown in Fig.4.17. A

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4
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Β @ΠD

B
c

Figure 4.17: l Bc1; Linear fit
Shown are the critical fields Bc1 for several angles β at the temperature of T =

0.085K. A line fit shows the almost perfect linear behaviour as derived in Eq. (3.97)
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4.5 Phase diagram for coupled chains

numerical fit gives the following result:

Bc1 ≃ 1.68β, (4.16)

for J ′′ = 0.5J . This result is comparable, there is a deviation of 6% with the result
of the linerarised equation 3.97 which gives Bc1 ≃ 1.58β for z = 2. In principle using
this formula one could give an estimate for the angle manifested in the material.
This estimate would work, if a realistic inter chain coupling could be chosen, which is
obviously not the case for the system sizes considered in the calculation.

4.5.4 Scaling estimates

In this section, scaling estimates will be used to classify the characteristics in the
obtained phase diagrams, mentioned in the previous section. In certain limits the
coupled XXZ model maps onto different known models. One specific limit is the
case where the angle between the easy-planes is zero. Here the two limits 1.B = 0:
quasi long range order (qAF) and 2.0 < B ≤ Bc2: SF or Ising phase (see Fig.3.11) are
considered. In the paper of Dmitriev et al.19 beside other things a similar analysis
can be found. In a third regime, the AF or Néelx phase: β ≠ 0 and 0 < Bx ≤ Bc1, with
staggered magnetization along the x-direction, is studied.

qAF: β = 0 and Bx = 0

In the case where Bx = 0 the XXZ system can be described by a Luttinger liquid
theory, shown by Peschel et al.34. This can be used to show, that the critical tem-
perature is finite in the vicinity of small fields, or more exactly that the system has
a finite Bx = 0 transition temperature. In the Luttinger liquid model the spin-spin
correlation functions, in the limit ∣i − j∣ → ∞, have the following asymtptotics35:

⟨S
x(y)
i S

x(y)
j ⟩ =

A1

∣i − j∣ϑ+1/ϑ +
(−1)i−jA2

∣i − j∣ϑ
(4.17)

⟨Szi S
z
j ⟩ =

A3

∣i − j∣2
+

(−1)i−jA4

∣i − j∣1/ϑ
(4.18)

Where the A1 and A2 are constants, and the exponent ϑ is given exactly to be:

ϑ = 1 −
arccos ∆

π
with ∆ = 0.25 ϑ ≃ 0.580. (4.19)

All parameters have to be thought as function of the anisotropy ∆. In the following
all stated numerical values of certain parameters are evaluated for ∆ = 0.25. The
parameter ϑ is connected to the Luttinger parameter K = (2ϑ)−1 ≃ 0.861. The non
alternating term in Eq. (4.17) provides scaling dimensions for the spin operator Sx to
be d = 1

2(ϑ + ϑ
−1). In the book of Gogolin et al.36 a formula for the mass gap as

function of external field is given to be:

m[B] ∼ Bν
x where ν =

1

2 − d
=

2

4 − ϑ − ϑ−1
≃ 1.179 (4.20)

65



4 Numerical solutions

Moreover Dmitriev et al.15 state that the staggered magnetization in the y direction
behaves as:

⟨Syi ⟩ ∼ (−1)imϑ/2 with Eq. (4.20): ⟨Syi ⟩ ∼ (−1)iB
ϑ

4−ϑ−ϑ−1
x (4.21)

Now one can think of a small perturbation δH to the Luttinger liquid theory created
by the staggered fields. Especially the staggered magnetizationMy

st ≡ L
−1∑i⟨S

y
st,i⟩ will

be used. A staggered spin operator is defined through Syst,i = (−1)iSyst. This staggered
magnetization enters the Hamiltonian via the Mf treatment of J ′′ described in Sec.
3.2 using Eq. (4.17):

δH = J ′My
st

1

L
∑
i

Syst,i ∼ ⟨Syst,iS
y
st,j⟩ = (−1)i+j⟨SystS

y
st⟩ (4.22)

With Eq. (4.17) and taking only the alternating or staggered part one obtains, that
δH ∼ ∣i − j∣−ϑ. Now one can use the notation of Peschel et al.34 where the correlation
functions are written time dependent. Basically the absolute value of the difference
appearing in Eq. (4.17) is written to be ∣i − j∣. Followingly one uses the definition of
the staggered susceptibility, which is in this notation:

χst = ∫ ⟨Syst,iS
y
st,j⟩dxdt ∼ −

∣i − j∣2−ϑ

1 − 3ϑ + ϑ2
(4.23)

With the new exponent ϑ′ = 2 − ϑ this reads in the initial notation:

χst ∼ ∣i − j∣ϑ
′

ϑ′ = 1 +
arccos ∆

π
≃ 1.420 (4.24)

Via the length scale a∣i − j∣ ∼ T−1 on can introduce temperature in Eq. (4.24):

χst ∼ (
1

T
)
ϑ′

∼
1

J
(
J

T
)
ϑ′

(4.25)

Where J was introduced due to dimensional reasons and as there is only this energy
scale available. As mentioned above, at the critical temperature the product of inter-
chain coupling and susceptibility becomes unity J ′′χst = 1. Using this fact with Eq.
(4.25) one obtains an expression for the critical temperature:

Tc
J

= (
J ′′

J
)

α

with α ≡
1

ϑ′
≃ 0.704 (4.26)

This derivation provides an expression for the critical temperature for the Néelx phase.
The evaluation of Eq. (4.26) for the above mentioned value of the interchain coupling
J ′′ = 0.0147J results in the critical temperature of: Tc/J = 0.039. This derivation
shows, that the critical temperature is finite for Bx = 0.
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4.5 Phase diagram for coupled chains

Ising: β = 0, Bx ≠ 0 and β ≠ 0, Bc1 < Bx < Bc2

If there is a finite angle one can still think of the Ising phase to be realized for field
values: Bc1 < Bx < Bc2. In this phase the system gains energy from tilting the
spins towards the field direction. In contrast to this it loses energy, because partially
the are parallel in conflict with the favoured antiferromagnetic ordering. Starting at
Bc1, the external field suppresses fluctuations and thus it is obvious that the critical
temperature firstly increases with increasing field. At a specific field the gain due to
the suppression of fluctuations is overcome by the loss due to the parallel alignment.
At this point the critical temperature is maximal and followingly decreases. This can
be concluded to the fact that the critical temperature firstly increases in the Ising
phase until a maximum is reached. Secondly it decreases witch increasing field. At a
specific field the spins are totally align parallel and thus no long range order except
the mentioned paramagnetic order is present and thus the transition temperature
vanishes.

Assuming the system to be deep in the Ising phase it will be shown that the critical
temperature has a maximum as function of external field. In this phase the staggered
susceptibility is given as an exponential of the massgap m[Bx]:

χst = em[Bx]/T (4.27)

depending itself on the external field. This formula provides the proof that there is
a maximum in the critical temperature. The susceptibility in Eq. (4.25) depends on
T as a power law, but in Eq. (4.27) it depends exponentially on temperature. Thus
the susceptibility in the Ising phase becomes unity for higher temperatures than in
the qAF phase. Again with the dimensionality argument and the criticality condition
J ′χst = 1 one obtains the critical temperature for the Ising phase:

Tc
J

=
m[Bx]

logJ/J ′
with J ∼m

Tc
J

≃ 0.217 (4.28)

This last value is about five times lager then the zero field Néel temperature of Tc/J =

0.039. Exactly this fact explains the maximum in the phase diagrams.

AF: β ≠ 0 and Bx < Bc1

In this regime, one expects the critical temperature firstly to decrease until the external
critical field Bx = Bc1 is reached. This fact can be understood in the light of an
energy balance. The spins per chain gain energy by their antiparallel alignment (AF).
Simultaneously there is an energy loss, due to every second spin pointing against the
field. This loss is overcome by the finite angle β and in order to that, by the gain of
antiferromagnetic energy by interchain coupling. It is obvious, that with increasing
external field, the energy loss increases as well. In other words, the energy scale at
which the system stays in the ordered phase becomes smaller with increasing field.
This can explain, why the critical temperature, as a measure of the fundamental
energy scale decreases with the field strength.
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4 Numerical solutions

The same applies for the Ising phase and the decrease of the critical temperature
reaching the critical field Bc2. Here as well the energy scale for which the ordered
phase survives is reduced by approaching the critical field.

The previous section can be summarized by the following statements. It was shown,
that the obtained phase diagrams reproduce the features occurring in the experimental
data. The critical temperatures have the right order. Moreover the theoretical scaling
estimates provide a full agreement between the theoretic limits and their integration
in the obtained numerical results.
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Summary

In the presented work the Cs2CoCl4 system was used as a starting point for several
theoretical considerations. Experimental data obtained by Breunig were a motivation
to calculate the specific heat of the mentioned system. Furthermore the phase diagram
was calculated and compared to experimental data. In this summary the used concepts
and their results should be presented.

The mentioned physical system Cs2CoCl4 can be described as a compound of weakly
coupled spin chains. First of all the picture of local spin-spin interactions on a one
dimensional chain was developed. This considerations were related to several Heisen-
berg chains with varying anisotropy term ∆. The influence of such terms as well as
the effects of a coupled external magnetic field was considered. At this stage it is
fundamentally important to distinguish between longitudinal and transversal fields.
The different ground states of this several models are discussed in dependence on ∆,
β and Bx.

In the second chapter of this work the principle of Mf theory for specific cases is
developed. This principle was used to describe the behaviour of the spins in the chain,
as well as to describe the effects occurring through the coupling of those chains. One
central aspect of the work is the Bogoliubov inequality F ≤ F̃ ≡ FMf + ⟨H −HMf⟩Mf.
It gives an upper bound of the free energy for a well chosen reference system HMf.
It was necessary to develop certain approximations such as the used Mf approach to
solve the considered models. Two particle terms are decoupled using the evaluation of
expectations values with respect toHMf. With the definition of a reference system new
parameters were introduced. This so called Mf fields or parameters can be determined
as follows. First of all, there can be found a relation between the new parameters
and the expectation value of involved operators. This is done using the minimum
condition of the Mf free energy F̃ , where this is used as a approximation to the free
energy. From this self consistent equations arise, which can be solved iteratively or
equivalently by minimization of the free energy with respect to such parameters.

This values obtained by the mentioned techniques can be used e.g. to calculate ther-
modynamic quantities. The comparison of the numerical data with the experimental
data show surprisingly good coincidence for high fields. For small fields there is a
discrepancy which can be understood considering a symmetry argument.

Basically in the same way, self consistent equations were derived in the case of coupled
chains. In contrast to further works on this material, different chain types are consid-
ered. The specific type is defined through the orientation of the corresponding easy-
plane. The self consistent equations derived by this, are solved iteratively to obtain
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the phase diagram. It was possible to qualitatively reproduce the theoretical predicted
response of the material. For fields below Bc1 the system orders antiferromagnetically
in the field direction, this phase is called Néelx or simply antiferromagnetic phase.
With increasing field (temperature) the system undergoes a first order quantum phase
transition into the so called spin flop (SF) or Ising like (paramagnetic (PM)) phase.
In the SF-phase all moments have a finite staggered component perpendicular to the
field direction and in addition they are tilted towards the field, which result in a fi-
nite uniform magnetization. The basic difference between the first phase and the SF-
or PM-phase with finite magnetization in the same direction induces, that the phase
transition has to be first order. The SF-phase is additionally bounded by a second
order phase transition line. For fields above Bc2 and temperatures above the given
critical temperature the system transits into the paramagnetic phase.

Further remarks

With lager system sizes the described features of the phase diagram are expected to
be more pronounced. This is because J ′ can be chosen more realistic. Moreover one
can use a cluster calculation to obtain the real lowest upper bound for the free energy,
where the presented calculation only calculates a free energy approximation for the
length L system. Moreover without the restriction to two types of chains (A and B →
{1,2,3 and 4} sites) one could introduce realistic effects by an spin-orbit term. This
would allow a interaction of the staggered moments between the planes and thus it is
expected, that the phase I in Fig.4.2 can be reproduced.
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Deutsche Zusammenfassung

In der vorliegenden Arbeit wurde das Cs2CoCl4 System als Ausgangspunkt theoretis-
cher Betrachtungen benutzt. Die experimentellen Daten, welche von Breunig gemessen
wurden, waren eine Motivation die spezifische Wärmekapazität auf theoretische Art
und Weise herzuleiten. Weiterhin wurden ermittelte Phasendiagramme mit ebenfalls
gemessenen verglichen. In der hier angefertigten Zusammenfassung sollen die verwen-
deten inhaltlichen Konzepte dargestellt werden. Weiterhin soll beschrieben werden,
mit welcher Zielsetzung und welchen Ergebnissen diese entwickelt und ausgewertet
werden konnten.

Das betrachtete physikalische System lässt sich als schwach gekoppelte anisotrope
Spin Ketten beschreiben. Zunächst wurde das Bild der lokalen Spin-Spin Wechsel-
wirkung im Sinne von in eine Richtung gekoppelte Atome im Allgemeinen betrachtet.
Diese Betrachtung bezog sich auf verschiedene Heisenberg Modelle, mit einem vari-
ierenden Anisotropie term ∆. Es wurden sowohl die verschiedenen Einflüsse dessen
beschrieben, als auch die unterschiedlichen Effekte, die ein angekoppeltes Magnetfeld
Bx haben kann betrachtet. Hier ist es von entscheidender Wichtigkeit, zu unterschei-
den, ob das Feld longitudinal oder transversal in Relation zum Anisotropieterm ist.
Aus diesen allgemeinen Betrachtungen wurden die verschiedenen Grundzustände der
sich ergebenden Modelle (in Abhängigkeit von ∆, β und Bx) beschrieben.

Im zweiten Abschnitt der Arbeit wurde das Prinzip der Mean field Theorie für die
entsprechenden Fälle entwickelt. Das genannte Prinzip wurde genutzt, um sowohl das
Verhalten der Spins innerhalb der Ketten zu beschreiben als auch die Effekte, die aus
der Kopplung der Ketten entspringen, aufzuspüren. Als ein zentraler Aspekt dieser
Arbeit kann die Bogoliubov Ungleichung F ≤ F̃ ≡ FMf + ⟨H −HMf⟩Mf betrachtet wer-
den. Sie gibt eine Obergrenze der freien Energie an, wobei ein geschickt gewähltes
Referenzsystem HMf gewählt werden muss. Da das untersuchte System nicht exakt
lösbar ist, wurden Näherungsmethoden, die der Mf Theorie zugeschrieben werden, be-
nutzt. So werden nicht lokale Operatoren beziehungsweise zwei Teilchenterme durch
die Bildung des Erwartungswertes bezüglich HMf entkoppelt. Mit der Definition und
Festlegung eines Referenzsystems werden auch neue Parameter eingeführt. Diese soge-
nannten Mf Felder oder Parameter im Allgemeinen, können wie folgt bestimmt werden:
Zunächst lässt sich ein formaler Zusammenhang zwischen den neu eingeführten Pa-
rametern und entsprechenden Erwartungswerten über die Minumums Bedingung des
Ausdrucks FMF finden. Die sich so ergebenden selbstkonsistenten Gleichungen lassen
sich entweder iterativ oder durch die Minimierung des genannten Ausdrucks in Bezug
auf die erhaltenen Parameter lösen.

Die auf diese Art gefundenen Parameter können genutzt werden, um z.B. thermody-
namische Größen zu bestimmen. Der Vergleich mit den experimentellen Daten zeigte
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überaschend gute Übereinstimmung mit den numerischen Daten für hohe Felder.

Im Prinzip wurden auf dieselbe Weise selbstkonsistente Gleichungen für den Fall von
gekoppelten Ketten hergeleitet. Anders als in bereits erschienenen Arbeiten, wur-
den hier verschiedene Arten von Ketten gekoppelt. Die Verschiedenheit ist über die
Ausrichtung der Easyplane der entsprechenden Kette definiert. Die so erhaltenen Mf
Gleichungen wurden iterativ gelöst, mit dem Ziel der Berechnung des Phasendiagrams.
Theoretisch erwartet und numerisch bestätigt wurde, dass das Material zunächst an-
tiferromagnetisch (in Feld Richtung!) reagiert. Diese erste Phase, welche bis zu einem
endlichen kritischen Feld Bc1 und einer kritischen Temperatur Tc Bestand hat, wurde
als antiferromagnetische Phase bezeichnet. In Abhängigkeit vom externen Feld (Tem-
peratur) findet ein Quantenphasenübergang erster Ordnung statt. Der Grundzustand
ändert sich abrupt in die SF- (PM-)Phase, in welcher sich die Momente senkrecht
zum Feld ausrichten. In der SF-Phase können sich, im Gegensatz zur ersten Phase,
endliche Magnetisierungen in Feldrichtung ergeben. Allerdings sind die Komponenten
der Momente in der Ebene senkrecht zur Feldrichtung antiparallel ausgerichtet. Die
Tatsache, dass der Phasenübergang zwischen der ersten Phase (antiparallele Ausrich-
tung der Momente in Feldrichtung) und der SF- oder PM-Phase (endliche uniforme
Magnetisierung in Feldrichtung) stattfindet, macht deutlich, dass es sich hier um einen
Übergang erster Ordnung handeln muss. Des Weiteren wird die SF-Phase von einem
Quanten Phasenübergang zweiter Ordnung begrenzt. Für entsprechende Felder oder
Temperaturen, geht das System in den, als paramagnetische (PM) Phase bezeichneten
Zustand, in welchem nur uniforme Magnetisierung in Feld Richtung erzeugt wird.

Da in jedem Iterationsschritt die Erwartungswerte mit Hilfe numerischer Diagonal-
isierung berechnet wurden, waren die Berechnung durch Laufzeiten und Speicherka-
pazitäten stark limitiert. Es konnten nur kleine Systemgrößen L = 6,8 betrachtet
werden. An dieser Stelle wäre es sicherlich sinnvoll, die bestehende Rechnung in
einem c++ Programm zu wiederholen. Hier wären Systemgrößen bis L = 12 sicher-
lich möglich. Da durch die Systemgröße auch eine Temperaturskala definiert ist, wird
somit auch die Zwischenkettenkopplung auf einen bestimmten Wertebereich festgelegt.
Dies erklärt, warum nur unrealistisch große Werte für J ′ genutzt wurden. Mit der
Berechnung der Phasendiagramme für größere Systeme kann erwartet werden, dass
auch die beschriebenen Eigenschaften deutlicher werden, da J ′ realistischer gewählt
werden kann. Weiterhin ist es möglich ohne die Beschränkung auf zwei Kettentypen
(A und B → {1,2,3 und 4} sites) realitivistische Effekte über einen Spin-Bahn Term
einzuführen. Dieser würde eine Wechselwirkung zwischen den gestaggerten Momenten
verschiedener Ebenen erlauben. Dies wiederum könnte die mit I in Fig.4.2 bezeichnete
Phase reproduzieren.
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