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Abstract

Chiral paramagnet are materials which are characterised by a lack of inversion
symmetry. Due to strong correlations in chiral paramagnets, a new region arises
in the phase diagram in addition to the magnetically ordered phases, namely the
fluctuation disordered (FD) regime [Il, 2, B]. Resonance experiments in the FD
regime show a shift to higher frequencies compared to the paramagnetic phase [4].

We address the fluctuations by applying perturbation theory up to second order
and calculating the self-energy in this approximation. We use the self-energy to
renormalise the susceptibility and qualitatively compare the position of the maxi-
mum as a function of magnetic field with the experiments. We show that including
the self-energy shifts the maximum of the imaginary part of the susceptibility
to higher frequencies for small magnetic fields. This is in accordance with the
experimental observations. For higher fields, however, we are not able to reproduce
the experimental behaviour.

Furthermore, we investigate the processes taking place as well as the type of the
fluctuations, i. e. if they have a helical or even a skyrmionic nature. We will show
that the fluctuations consist of three overlapping helices. Their pitch vectors build
triangles. However, skyrmion type fluctuations appear not to be dominant. The
dominant processes are those where two magnons are absorbed and one is emitted
or vice versa, i.e. where two are emitted and one is absorbed.
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Part 1.
Introduction

Since in 2009 skyrmions were measured for the first time in MnSi, great research
activity started in the field of chiral magnets [5]. Skyrmions are topologically stable
field configurations of the local magnetisation.

In chiral paramagnets such as MnSi, lattice structures occur which are not inversion
invariant. This allows for an additional term in the free energy, which is only
invariant under a combined rotation in spin space and real space, the Dzyaloshinskii-
Moriya interaction [6, [7]. This term is of the form

DM-(VXM).

The local magnetisation M is the order parameter of the theory. In contrast to the
kinetic term, the one proportional to M 2 this term favours a spin configuration
with neighbouring spins being perpendicular to each other. This gives rise to
different magnetic structures such as helices in the conical and helical phase or
skyrmions in the skyrmionic phase [3] 2].

For high temperatures compared to the critical point at T, = 29 K , the Dzyaloshin-
skii-Moriya interaction can be neglected. This is the case in the paramagnetic and
the field polarised regime. However, when decreasing the temperature, it becomes
more dominant.

In 2013 research groups from Munich and Cologne investigated the phase transitions
in chiral paramagnets [1I, 2, [3]. They found that, due to strong fluctuations, the
critical temperature is suppressed and the phase transition between the paramag-
netic phase and the conical or skyrmionic phase is driven to first order. This gives
rise to a new regime between these two phases, the fluctuation disordered (FD)
regime. In this thesis, we are interested in the fluctuation disordered regime.

At the Technische Universitat in Munich Ioannis Stasinopoulos performed resonance
experiments in the FD regime [4]. He observed a deviation from the Lamor frequency
Weerro Which is present in the paramagnetic regime. The experimentally observed
maximum position in the FD regime is shifted to higher frequencies compared to
the ferromagnetic resonance frequency [4].

The aim of this thesis is to explain theoretically the experimental behaviour observed
in these resonance experiments. The width of the observed peaks increases with
decreasing field. What we are thus looking for is not a singularity in the imaginary
part of the susceptibility, in which case we would expect a sharp delta peak. We
are looking for a broader maximum.

We ask the question, whether the strong fluctuations that occur in the FD regime,
could give rise to this resonance behaviour. In the FD regime the Dzyaloshinskii-
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Moriya interaction cannot be neglected anymore. Therefore, short range helical
or even skyrmion type fluctuations can appear. They are not stable and they do
not extend over the whole crystal. However, they can influence the behaviour in
resonance experiments.

The excitation modes of skyrmions lie above the ferromagnetic resonance frequency.
Therefore, skyrmions could well be responsible for the shift of the resonance to
higher frequencies.

To describe chiral paramagnets, we use the Ginzburg-Landau theory with the
Dzyaloshinskii-Moriya interaction term. The theory for chiral magnets will be intro-
duced in [Part TIl In [Part TII] we address the fluctuations by applying perturbation
theory up to second order in the parameter u, which is the factor in front of the
interaction term, i.e. the quartic term in the fields.

To calculate the resonances, we add dynamics to the model in a way similar to the
one that yields the ferromagnetic resonances in the limit of a vanishing frequency
and momentum. Meanwhile, we neglect any damping terms. This will be presented

in [section 3
In [section 4] we will take a closer look at the Green’s function. We examine the

spectrum for the static case without and with an external magnetic field and for
the dynamical case.

We calculate the self-energy in [section 5 The results are discussed in more detail
in [section 6] We use the calculated self-energy to renormalise the susceptibility
in We focus on the imaginary part of the susceptibility since we are
interested in the absorption. The maximum of this curve should be the frequency
measured by the experimentalists.

We show that helices contribute to the self-energy. They always appear in groups
of three and their pitch vectors build triangles. However, we do not observe any
exceptional contribution from equilateral triangles lying in the equatorial plane.
These would correspond to skyrmions. Skyrmion type fluctuations are therefore
not the reason for the resonance shift.

In the imaginary part of the susceptibility we observe a deviation of the maximum
from the Lamor frequency to higher frequencies for small external magnetic fields.
To make the connection to the experiments, one needs to keep the perturbation
parameter v in mind. It needs to be sufficiently small to stay in a regime where
perturbation theory is valid. The experimental value of u given in [I] does not
comply with that restriction. We can hence give a qualitative explanation of the
experiments, yet we cannot reproduce quantitative results with this model.

For higher magnetic fields the calculated maximum position shifts to zero before
approaching wee, for high fields. These processes are neither experimentally
nor physically plausible. This remains an open problem and requires further
investigation. However, for high fields or small u the self-energy just broadens the
delta peak at wgmo as expected in the paramagnetic phase.



Phase diagram

Part 11.
Theory of chiral paramagnets

This part introduces the basic theoretical concepts and the theory we use to describe
critical chiral paramagnets.

For this whole thesis it is assumed that the external magnetic field points in
z-direction.

1. Phase diagram

Figure [I] shows the phase diagram of bulk MnSi, which is a chiral paramagnet
[2]. The phases depend on the temperature and the external magnetic field. It is
investigated in [2], [5] and [I].
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Figure 1: Phase diagram of MnSi [2]

For low temperatures T' < T, the magnetisation forms a helical structure. At zero
magnetic field, these helices lack a mean magnetisation (helical phase). Increasing
the magnetic field, one passes a crossover into the conical phase. There the spins
are twisted in the direction of the magnetic field, and, therefore, the helices do
obtain a mean magnetisation. Said crossover, which separates the two regimes,
depends on the crystalline direction, i.e. the anisotropies in the crystal, and the
direction of the external magnetic field [8]. When increasing the magnetic field
further, one finally arrives at a second order phase transition to the field polarised
(FP) regime.

Following the mentioned second order phase transition, one arrives at the tricritical
point (TCP) where the second order transition becomes first order due to fluctua-
tions. In the fluctuation disordered regime (FD) there occur strong correlations
which drive the transition to first order and lower the critical temperature of the



Phase diagram

transition in comparison to mean-field theory (green dots). This regime can be
described by the Brazovskii theory (cf. [subsection 2.2). The mean-field line defines
the crossover to the paramagnetic regime (PM).

For a certain range of magnetic field and temperature close to T, there occurs
another area in the phase diagram, namely the skyrmion lattice phase (red pocket).
In this region a skyrmion lattice forms and remains stable.

1.1. Skyrmions

Skyrmions in solids were measured for the first time in 2009 by S. Miihlbauer [5].
This was the beginning of intense research in the field of skyrmions in the following
years until today. However, Tony Skyrme originally introduced skyrmions in the
context of high energy physics already in 1961 |9} [10].

A skyrmion is a field configuration which is smooth and topologically stable. Its
winding number W is defined as

dx dy A A A
W—/ Q- (8xQ><8yQ> , (1.1)

with 0 = M/]M| being the direction of the magnetisation, and B pointing in
z-direction. It can either have the value 1 or -1. This means that it is impossible to
smoothly change from one skyrmion (winding number +1) to no skyrmion (winding
number 0). Thus, the skyrmion is topologically stable. The skyrmion has no
winding at infinity. One can identify the skyrmion density with

Pskyrm = ﬁ Q- (&EQ X ayQ) (1.2)

since this counts how many skyrmions are present when integrating over it [5, [11].

In the skyrmion phase the skyrmions build a two dimensional triangular lattice
perpendicular to the magnetic field. A skyrmion can be described by a superposition
of three helices where the pitch vectors build an equilateral triangle in the equatorial
plane. This relation will become more obvious in [subsection 1.2]

Figure [2] shows an image of a skyrmion and its projection on a sphere. Figure [24]
shows a chiral skyrmion in real space. The arrows denote the local magnetisation.
The external magnetic field points in z-direction, i.e. up. In the middle, the
magnetisation points in opposite direction, namely down. When increasing the
distance to the center, the magnetisation twists around until it points up. The left
sphere, figure 2D} is the inverse stereographic projection of a Néel skyrmion, i.e. a
non-chiral skyrmion. The center is thereby projected on the south pole and infinity
on the north pole. This looks like a hedgehog. In this thesis we are considering
chiral or Bloch skyrmions. The inverse stereographic projection of a chiral skyrmion
is shown in figure . Here, the hedgehog is combed in ¢-direction (in standard
spherical coordinates). Chiral skyrmions are stabilised by the Dzyaloshinskii-Moriya

10
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interaction, which is represented by a term of the form DM - (V x M ) in the free
energy [0, [7, [IT].

(b) Néel skyrmion (c) Bloch skyrmion

Figure 2: (a) is a real space picture of a chiral skyrmion and (c) shows its projection
on a sphere. (b) shows the inverse stereographic projection of a Néel
skyrmion.

In the skyrmionic phase, there exist three excitation modes that can be excited
by ferromagnetic resonance experiments. The skyrmions can rotate clockwise or
anticlockwise in the clockwise respectively anticlockwise gyration mode. In addition,
they can change in size in the breathing mode [12]. These modes are illustrated in

figure [3]

In [12] the theoretical prediction for the excitation modes are given and compared
to the experiments. In figure 4 one can see the resonance frequencies in the different
phases of a typical chiral magnet as a function of the magnetic field. In the skyrmion
phase (pink) one can observe the three modes described above. The ferromagnetic
resonance frequency corresponds to the continuation of the straight line defined by
the frequencies in the field polarised (FP) region. The anticlockwise gyration mode
and the breathing mode are located at higher frequencies than a ferromagnetic
resonance would be at the corresponding magnetic field.

11
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Anticlockwise Clockwise Breathing

g/L=1 v/L=1

v/1e =1

Figure 3: Skyrmionic excitation: the anticlockwise (left) and clockwise (middle)
gyration modes and the breathing mode (right) [12].
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Figure 4: Excitation spectrum for a spherical sample [12].
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1.2. Signature of the magnetic structure in neutron
scattering experiments

When doing neutron scattering experiments to investigate the magnetic structure,
one performs measurements in the momentum space.

In the conical phase one can observe two Bragg peaks, one at the north and one
at the south pole of a sphere with radius (). @) is determined by the constants of
the theory (see . Otherwise, when there is no magnetic field switched
on, there is no preferred direction and the helices are pinned by anisotropies in
the helical phase. Figure [5b|shows the measured Bragg peaks in the conical phase.
We notice that a helix in the conical phase is represented by two Bragg peaks in
momentum space [13]|. Figure |paj shows the FD regime at zero field where there is
no preferred direction and hence the fluctuations are soft on the whole sphere [1].
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Figure 5: Neutron scattering results in the different phases. In the FD regime at
zero field (a) the fluctuations are soft on the whole sphere, in the conical
phase (b) two Bragg peaks are located at the poles and in the skyrmionic
phase (c) six Bragg peaks are lying in the plane perpendicular to the
magnetic field.

When doing neutron scattering experiments in the skyrmion phase, one observes
six main Bragg peaks lying in the equatorial plane (in contrast to the conical case
where the peaks are located at the poles) as shown in figure They build a
regular hexagon. Since we learned that a helix is represented by two Bragg peaks,
one can identify the skyrmions with three helices. They lie in the equatorial plane
and build an equilateral triangle with their pitch vectors as mentioned above |1, [5].
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Ginzburg-Landau theory for chiral paramagnets

2. Ginzburg-Landau theory for chiral paramagnets

To describe chiral paragmagnets, one uses a Ginzburg-Landau theory, i.e. a ¢*-
theory where ¢ is the order parameter of the system. The crystalline structures we
consider here, for example of manganese silicide, are special since they do not obey
inversion symmetry. MnSi builds a B20 structure, which is not inversion invariant.
It occurs in two versions, a left-handed and a right-handed one, which is shown in

figure [6] ([14]).

Figure 6: The lattice structure of MnSi exists in a left-handed and a right-handed
version. Mn is represented by the violet spheres, Si by orange ones. [14]

Because of the lack of inversion symmetry, there is a further term allowed in the
theory for chiral magnets, namely the Dzyaloshinskii-Moriya interaction [0}, 7],
which is of the form

—

D¢ - (VX @) . (2.1)
The hole free energy density reads

F= 18- = V)64 D3 (VX &)+ W —poud - H. (22)

The last term describes the coupling to an external magnetic field H. The order
parameter ¢ is related to the magnetisation by the factor y = pup/f.u. with the

formula unit f.u. = 24.018 A” for MnSi.
This whole follows the lines of [I].

2.1. Mean-field theory

One can now use mean-field theory to investigate the free energy density . In
the simplest case one makes the ansatz gz?(f) = ngO]:I and minimises the action with
respect to ¢q since in mean-field approximation the mean magnetisation points in
the same direction as the magnetic field does. This ansatz is sufficient to describe
the paramagnetic phase and the field polarised regime and leads to the mean-field

15



Ginzburg-Landau theory for chiral paramagnets

equation
u
réo + gfﬁg = pop . (2.3)

For small fields, i.e. small ¢y, and r > 0 the first term of the left hand side is
dominant. For ¢y then

~ popH
oy

Po

holds. This is the case in the paramagnetic regime. For larger ¢, the second term
becomes the leading one. ¢q is determined by

1/3
b = (M) , (2.5)

u

(2.4)

This is characteristic for the field polarised regime. The crossover between these
two regimes is defined by the field where the two expressions for ¢q are equal,
namely

3!r3
popl =/ ——. (2.6)

One can also introduce a helical element such that one can describe the conical
phase with the following ansatz:

—

5he1(f) = PPy + Vhae €T o ete IO (2.7)

Here é* = (¢ +i é3)/+/2, where the pitch vector @ and ¢, and é, build a dreibein,
i.e. €1 X €3 = (). Yy is the complex amplitude of the helical order. By plugging
the ansatz (2.7 into the free energy (12.2)), one arrives at the mean-field potential

VO = g(Z% + (T + JQ2 - 2DQ) ’whel‘2 + % ((Z% + 2|¢hel’2)2 — Mot (bO H. (28)

Minimising the potential with respect to the pitch length leads to the relation
D =JqQ.

One can now derive the susceptibility, whose inverse is defined by the second
functional derivative of the action S = [ d*xF/(kgT) with respect to the magneti-
sation:
1 528
" 5606,
The index 0 is a reminder that one still remains in the mean-field approximation.
In real space the inverse susceptibility reads

(2.9)

y 1
Xa,zlj<f7 T ) :l{iB_T |:(7n — JV2>§” — 2D€ijnvn
n % (5(5)2519- + 251-(:?)@(5)” o7 —7) . (2.10)

Performing a Fourier transformation and considering only the part diagonal in

16



Ginzburg-Landau theory for chiral paramagnets

momenta leads to

—

L .
—1 - 2\5.. .
Xob(F) =17 [(r + Tk )@j i2D ek
u A u .
+ 30 o3 (%’ + 2¢0,i¢0,j> + 3 |[Vhel|? (2% — Qin):| . (2.11)

Going back to the free energy density, one can see that, when coupling one of the
¢ in the ¢*-term of the free energy to the mean field ¢q, the system can gain
energy when the momentum vectors of the remaining ¢(g) build a triangle. This
term is of the form

> (G- d@) (@) - @) 0@+ 3 +3) . (2.12)

q1,32,33

As described in [5], for the skyrmion phase it is appropriate to make the ansatz
3
P(T) = ¢o + Z Ot (T + AT;) . (2.13)
i=1

&’hel corresponds to the helical ansatz 1) without the constant term ¢0¢A0 and
with the pitch vectors Q);:

qgflel(f) =A [ﬁ’l cos (@Z . f) + 7 sin (@Z . f)] . (2.14)

A is the amplitude. 7!, n% and Ql build a dreibein with the same orientation for
all 7. This ansatz corresponds to three superposing helices. The relative shifts of
the helices AZ; determine the magnetic structure, i.e. whether there is a skyrmion
lattice or something else. For a skyrmion lattice the three pitch vectors build an
equilateral triangle in a plane perpendicular to the external magnetic field, i.e. the
direction of 50.

2.2. Brazovskii theory

Mean-field theory predicts a second order phase transition between the paramagnetic
phase and the magnetically ordered phases. One has to include fluctuations to
understand the first order transition which is observed experimentally. Fluctuations
are included by doing perturbation theory.

In the 80s Brazovskii, Dzyaloshinskii and Muratov investigated phase transitions
and crystallisation. In [I5] they describe the formation of different dimensional
crystalline structures. In the case of chiral magnets, one has periodic magnetic
structures in one and two dimensions. The skyrmion lattice is two dimensional
because of the triangular lattice in 2d. In the third direction there is no periodic
structure but translational invariance. In contrast, the helical phase is only periodic

17



Ginzburg-Landau theory for chiral paramagnets

in one direction, so it forms a 1d structure. Therefore, we can use Brazovskii’s
theory to describe chiral paramagnets [15, [16].

Brazovskii found that triangular configurations of the momentum vectors played
an important role in the investigated crystallisation processes (cf. figure 1 in [15]).

In [I] the authors choose a parametrisation such that the propagator looks like

7 1 - , -~ L L

A and Aj are variational parameters for which they derive self-consistent equations.
This derivation will be sketched in the following. In the paramagnetic phase n
denotes the direction of the magnetic field. For a finite magnetic field it holds
Ay > A;. We will show in [subsection 4.2 that the A;, with ¢ € {_L, ||}, are related
to the energy gaps in the different directions in momentum space.

OO0 <>

Figure 7: Hartree-Fock diagrams

To include fluctuations, one derives self-consistency equations for the energy gaps
by including the Hartree-Fock terms. The diagrammatic approach is shown in
figure [7] This leads to an additional term in the action of the form

. u
- AkgT

Iy

/ d7 [(Trx(f, 1)° + 2 Try (7, f)} . (2.16)

The whole effective two-particle irreducible action is derived by Cornwall, Jackiw
and Tomboulis in [I7]:

—

| 1 .
Seit[d, x] = 5[] + 5 Tr log X+ 5 Tr (o' = x7") x+ e, x] - (2.17)

S [gg] is the original action with the free energy density 1' Xo is the mean-field
susceptibility. ¢ and x are defined by minimising the effective action with respect
to each of them.

Plugging the mean-field ansatz in the conical phase 1D for ¢ and the ansatz for
the susceptibility (2.15]) into (2.17) allows to write down the effective potential,

18
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which is related to the effective action by Seg = VVer/(kpT):

Vet = {g ¢+ (r+ JQ* = 2DQ) [tral* + 77 (8 +2ltnal?)” = popt dg H]

1

3 D(AL,A)) + % {(7‘ —JQ*) + % (05 + 4|tnal®) — AL} D,

1
+3 {(r —JQ?) + 5 (365 + 2fnal?) - A} Dy

+ % {(DL + D) +2 (%Di + Dﬁ)] , (2.18)

with the function

dk e
D(AL,A)) = kBT/WlogdetX (k) . (2.19)

D, (Dy) denotes the derivative of D with respect to A, (4).

Varying the effective potential with respect to the energy gaps A; leads to self-
consistency equations for them, the generalised Brazovskii equations:

A= (r—JQ%) + % (5 + 4nall?) + % (2D, + D)), (2.20)
Ap=(r—JQ% + % (365 + 2lvnal®) + % (D, +3Dy). (2.21)

In [subsection 4.2| we will take a closer look at the physical meaning of the energy
gaps and compare the results of these equations with some experimental data.
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Part 111.
Susceptibility in the fluctuation
disordered regime

In this part we will present the calculation of the susceptibility in a perturbative
approach. For this, we will calculate the self-energy up to the second order diagram
and determine the imaginary part of the susceptibility within this approximation.

There is some experimental motivation to do this calculation. In the group of
Prof. Dirk Grundler and Prof. Christian Pfleiderer at the Technische Universitét
Miinchen resonance experiments were performed by Ioannis Stasinopoulos. He
observes deviations from the ferromagnetic resonance frequency weerro = gupB/h
in the fluctuation-disordered regime [4].

This is shown in figure [8. The left plot shows the path through the phase diagram,
which was used, and the red dots on the right hand side show the peak positions.
The green triangles are the widths of the peaks. They are nearly of the same order
as the peaks. Thus, the observed peaks are not sharp resonances. The gray line
in the field polarised (FP) region denotes wgero,. When entering the fluctuation
disordered regime, the gray line now denotes the positions of excitations, which
one would expect in the conical phase. The red lines show where the skyrmionic
gyration modes would be located in the skyrmion phase (cf. figure . The breathing
mode is only excited by a varying magnetic field parallel to the static magnetic
field and can, therefore, not be observed here [12].

. : ) -H FD FP |
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08 o -\“:-\.~ 9 [}
Na, B - [
con b s \
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28 29 30 31 0.0 0.2 0.4 0.6
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Figure 8: Experimental data (I. Stasinopoulos) [4]. The red line in the left picture
shows a path through the phase diagram for a fixed temperature. This
path is taken in the right plot, which shows the measured resonance
frequencies (red dots) as a function of magnetic field and the corresponding
FWHM (green triangles) at 29 K.
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Electron-spin resonance and precessional dynamics

The experiments show a deviation from wee,, to higher frequencies [4]. The question
is if this can be explained by the calculation presented in the following chapters.

The weight of the ferromagnetic resonance goes down with decreasing magnetic
field since it is proportional to the magnetic field strength B. The question is
whether we can find processes which then can gain influence but are suppressed for
higher magnetic fields. Since the skyrmion excitation frequencies, especially the
anticlockwise gyration mode, lie above wgero, skyrmion type fluctuations could be
a candidate to explain the resonance shift.

The calculation presented in the rest of this thesis is only valid in a certain range
of magnetic field and temperature, namely in the fluctuation-disordered regime
where the Brazovskii theory can be used. Furthermore, the explicit form of the
dynamical term is only valid for finite magnetic fields. For zero magnetic field it
exhibits a divergence and therefore cannot be used in this form anymore.

3. Electron-spin resonance and precessional
dynamics

To describe chiral paramagnets like MnSi, we use the Ginzburg-Landau theory for
chiral magnets described in [section 2] Since we are interested in resonances, we
also have to include dynamics in the theory. We restrict ourselves to precessional
dynamics and neglect any damping terms.

The equation of motion for the magnetisation is

dM oo
— =—M X B. 3.1
= = (3.1)
v is the positive gyromagnetic ratio. This leads to the resonance frequency

B
Wferro = gll/g ) (32)

with the g-factor g and the Bohr magneton pug. This frequency is also a benchmark
and should be recovered by the case ¢ = 0 in the dynamical Ginzburg-Landau
theory. With this in mind, it is possible to derive the exact form of the precession
term in the inverse Green’s function, which we present in this chapter.

3.1. Electron-spin resonance frequency
In this section we will derive the electron-spin resonance at a finite magnetic
field in the quantum field theory language which is used in this thesis. We set

h = 1. In the paramagnetic regime, where the electron-spin resonance occurs, the
Dzyaloshinskii-Moriya interaction is negligible. Therefore, the Lagrange density for
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fermions is
2 O—_» .
LW =90, + )+ J (w* w) + guB (W;/z) ‘B (3.3)
To distinguish the parameter J from the one in the theory for chiral magnets, the

former is marked by a tilde.

To get rid of the quartic term in the fermionic fields, i.e. the (¢Tg¢)2—term, we
introduce a bosonic field ¢ by performing a Hubbard-Stratonovich transformation,

LW, 3 = 0N (0, +€)y + (W%@D) @ — ﬁso + gup (1/)T ¢) B. (34)

The Hubbard-Stratonovich field corresponds, therefore, to
7= Juyiay . (3.5)

We want to shift ¢ such that it couples to the magnetic field instead of Wgz/}, i.e.
b= g— g,uBé. Then we obtain the Lagrange density

—

. 2
LIt v, @) =41 (0, +e)w+(w* w) sa—jjso +g2“—f¢-B—(QZ§) B> (3.6)

Now, it is obvious that the order parameter ¢ corresponds to the magnetisation,
which one can read off from the penultimate term since the magnetisation couples
linearly to the magentic field and without any factor by definition,

M=-2223. (3.7)

One can thus rewrite the Lagrange density using the magnetisation instead of ¢,

7 2j u — J — — —
LIt ] = 41 (0, +€) — == (wfzz/,) e )
guB 2 i
(3.8)
Integrating out the fermionic fields and switching to momentum and frequency

space leads to the effective Lagrange density

2
(G~ )<p+92’“‘—f<5-3 (QE‘) B2, (3.9)

l\')lr—\

L[7] =

The inverse Green’s function at finite momentum ¢ is defined as

00 0 o [0 =10
1 1 0 Q
Gl((j,Q):——~+H:<——~—z)Jl+ﬂu 00 0|+ [1 0 0
2J 272/ Add g o 1) o \o 0 o

(3.10)

with II being the self-energy and v the density of states. ¢ is, therefore, the field
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which describes the fluctuations. It has a finite frequency 2. This expression is
only valid for © < |¢]. ¢o, on the other hand, which occurs in the Green’s function,
corresponds to the homogeneous component of the magnetisation, i.e. the mean
magnetisation at a finite magnetic field. It is given by My = y(Q = 0)B. This
explicit form can only be used for a finite mean magnetisation, which corresponds
to a finite magnetic field. Otherwise, there will occur a divergence in the Green’s
function. For the case of zero magnetic field, the derivation of the Green’s function
cannot be done this way. The explicit form of the self-energy is derived in [I§].

The derivation is sketched in [Appendix A}

For the stationary case, i.e. = 0, it is possible to calculate the susceptibility
simply by integrating out the Hubbard-Stratonovich field. The Lagrangian for
Q0 = 0 reads

_ 1+ Jv o 9k - 5 (guB)? 5

=— = +—¢-B— —— B~ . 3.11
7] AR 5 (3.11)

By shifting the field g — ¢ + ﬂ‘fyé , we can directly integrate out ¢ and get
Leg|B] = - ——1)B*=—=B x(2=0)B. 3.12
B = 2 5 BT =0) (3.12)

It follows that the susceptibility for the stationary case reads
(gus)* v

Q=0)= — . 3.13
X( ) > 1o (3.13)

Now, let us switch on dynamics. For that we go back to the Lagrange density

5 1 1\ guB o = (9#3)2 >
L] ———tpTGltp—i——~<0-B— . B?. 3.14
[ ] 2 ( ) 2J 4] ( )

By shifting the field g — ¢+ %‘—fG, the bosonic fields ¢ can be integrated out like
before, except for the zero mode since it is also present in the Green’s function.
The effective Lagrangian for the magnetic field reads

. 1 2 2
Leg|B] = -5 [(?—j) BTGB + %BQ : (3.15)

Inverting the inverse Green’s function leads to the propagator

1+Jv i

1 —7 Wa, 0 1 000
G = 5 5 sy iQ  _ 1+Jv 0 + 0O 0 O
= . 2 1 v vr|Q
(522) = (v»2) \ o ¢ o) moEtER \o o1
(3.16)

BTy B holds for

The susceptibility can be read off when remembering that £ = %
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the Lagrangian.

1+Jv - i
gug\’ 1 B JZFJ Wagy Y
X = ( = ) 5 5 —iv i 1+Jv 0
2J 1+Jv i Zeo 2J
(57) —(5) \ 0™ 07
1 000 )
+ pts] 000 |+2J1|. (3.17)
T3] 2 4] 0 01

Where does the susceptibility exhibit divergences? With analytic continuation
i€ = w + 40" we obtain the resonance frequency
1+ Jv

Wierro = + ~ ®o , (318)
Jv

where ¢, is the magnetisation at zero frequency. One cannot put in the mean-
field defined expression which is obtained by varying the action with respect
to ¢o. Instead, we have to use the full one given by the susceptibility. Using
My = x(© = 0)B and what we calculated above for the susceptibility x(0), we can
replace @o by ©o = —2.J/(gus)x(0) - B and finally obtain the expected resonance
frequency for electron-spin resonance (Lamor frequency):

Wrerro = gUBB . (3.19)

3.2. Green’s function with precessional dynamics

We want to derive the pre-factor of the precession term in the Green’s function
of the Ginzburg-Landau theory for chiral paramagnets. From the calculation of
the electron-spin resonance (cf. [subsection 3.1)) we know that it should have a
form similar to iv/(2¢y). However, this cannot be adopted directly since the
susceptibility is defined by other constants. Even the field ¢ is not the same as ¢ in
the electron-spin calculation. Also note that the J from the electron-spin resonance
calculation does not correspond to the one in the Ginzburg-Landau theory for
chiral magnets.

Furthermore, we will neglect the damping term proportional to |©2|/|4] in the inverse
Green’s function in the following.

The correlation between the magnetisation M and the field J was already derived

in [subsection 3.1| and reads

- guB
57 7 (3.20)
We also know the correlation between the magnetisation and gg, which we can read
off from the term that couples ¢ to the external magnetic field in the free energy
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density (2.2]). This is given explicitly in [I]:

M=—0¢. 3.21
fou. ( )

The formula unit is f.u. = 24.018 A” for MnSi. Therefore, we arrive at

2J . (3.22)

7= _gf.u.

In the case of chiral magnets the precession term has a pre-factor of the form

N
2J w
— =lin. 2
<gf.u.> 2¢0 o (3:23)

With the expression (3.20)) above, we can substitute ¢y with the mean magnetisation,
for which holds My = xoB. Furthermore, we introduce the conical susceptibility
Xcon in mean-field approximation:

2
HoHp 7
_tols 7, 24
702 fuy2”” (3:24)

Note that it is a constant in the conical phase [19]. This allows us to write

Xcon =

- Xcon 1
X0 Wreerro

N

(3.25)

where
Wrerro — g,UBB (326)

as shown before (with & = 1).

For ¢ = 0 we should recover the electron-spin resonance frequency we, from the
inverse Green’s function. The latter is given by equation (2.15)). Here, all momenta
are measured in units of ) and the factor JQ?* was factored out and dropped. In
the following we will calculate everything with dimensionless quantities. The units
will be recovered at the very end. The parameters A and A are replaced by the
parameters x| and k|, which have the dimension of a momentum and are thus

measured in units of ), too. The relation between the A; and the k; is given by
Ai = JQ2H?.

We consider the inverse Green’s function in the limit ¢ = 0:

L+ wT —iXen
G 0,w) = [d¥en e T+ kT 0 : (3.27)
0 1+ Hﬁ
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From det G~! = 0 follows

Wres = & (1 + /fi) Wferro ; Wrerro - (328)
We can conclude that XX—O =7 +1 . We arrive at the dimensionless inverse Green’s
con R
function
1+ ¢*+ k2 —i (1 +K2) (i) — 2igs 2iqo
G Ug Q) = [i(1+k)(iQ) + 2igs 1+¢* + k3 —2iq ,
—2iqs 2iqq 1+ ¢ + ki

(3.29)
where the frequencies are measured in units of Wgro, 1-€. 2 = W /Weerro, and all
momenta are in units of ().

When performing the calculation in the limit of ¢ = 0 to extract the ferromag-
netic resonance frequency, we can also calculate the weight of this resonance. It
corresponds to the pre-factor of the delta function §(w — Weerro). It reads

7T 1 Wterro
2 JQ? 1+ K%

Since weerro is proportional to B, the ESR weight is propotional to B, and therefore
vanishes for B — 0. Scattering processes including multiple magnons could gain
importance in the limit of small magnetic fields.
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4. Spectrum of the non-interacting system

As we have seen in the previous sections, the propagator has the following form:

1+q¢*+ k3 —i (14 &%) (i) — 2igs 2iq,
G N7 = [ (1+rT) (i) + 2igs 14 ¢* + &% ~%q,
—2iq2 2iq, 14+ ¢*+ mﬁ

(4.1)
The aim of this chapter is to understand this Green’s function better and get a
feeling for the physical meaning of £, and k.

4.1. Static case without magnetic field

First, we consider the static case, i.e. 2 = 0. When there is no external magnetic
field, there is no preferred direction in the system, which means that x; = x| = k.
The inverse Green’s function for this case reads

1+¢@+Kr  —2igs 2iqo
G7(q,0) = 2igs 1+ 4K 2 | . (4.2)
—2iqo 2iqq 1+ q% + K2

The spectrum consists of three modes, namely

M=+ (19— 1) (4.3)
X =2+ (1g1 + 1) (4.4)
As=r24+q2+1. (4.5)

Figure |§] shows the spectrum as a function of ¢ = |¢]. We observe that the
energy gap of the spectrum is determined by 2. Remember that the momenta are
measured in units of @ = D/J. The minimum of \; is on a sphere in momentum
space with radius |¢] = 1, which thus corresponds to Q).

When calculating the Hartree-Fock term to investigate the fluctuation-disordered

regime (cf. subsection 2.2)), as it is done in [I], one has to integrate over the Green’s

function. This corresponds to an integration over the inverse of the eigenvalues
1/X;. For k — 0, the first eigenvalue is of special interest since it vanishes for
|g] — 1. This results in a 1/k-divergence since

n 1 B8
/dqﬁ2+<‘ﬂ—1)2Na+; (46)

in leading order for small K < 1. « and [ are real and finite constants. This
leads to the Brazovskii equation, the self-consistency equation for the momentum
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Figure 9: Spectrum for 2 = 0 and B=0

k corresponding to the energy gap:

K.
HQ = K“i/IF + H:Gl ) (47>

where Kg; is constant and kyp o< (T — Tyr). For vanishing magnetic field the gen-
eralised Brazovskii equations and simplify to the Brazovskii equation
.

That means that for k — 0 the fluctuations become soft on a sphere in momentum
space with radius (). Figure shows exactly this sphere. The colour is related
to the value of TrG. Red corresponds to a high value and blue to a low one. We
observe that the whole sphere is red, i.e. Tr G is divergent on the whole sphere.
This is also observed in neutron scattering experiments shown in figure 1.

()

Figure 10: (a) TrG(q,0) at B = 0 plotted on a sphere in momentum space with
radius Q. (b) shows experimental data where one can observe the
fluctuations becoming soft on the sphere [1, [3].
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4.2. Static case with magnetic field

Now we switch on the external magnetic field but still remain in the static limit, i.e.
2 = 0. We choose the magnetic field to point in z-direction. The inverse Green’s
function reads

1+ ¢+ K2 —2igs 2iqs
G7(q,0) = 2igy  1+¢+rL  —2ip | . (4.8)
—2iqy 2iq, 1+¢%+ /@ﬁ

The self-consistency equations for the energy gaps A | are derived in [I] which is
described in [subsection 2.2l The relation between the parameters A,/ and s, /) is
Ay = JQZKQL/”. Again, we examine the spectrum presented in figure . There
are two different cases. If the momentum vector ¢ is parallel to the magnetic field,
there is a small gap % (cf. figure ) The minimum is located at |¢] = 1. When
¢ is perpendicular to B , the gap A is bigger (cf. figure ) It is not simply mﬁ
but has a more complex form, namely

A= (85 + 1) — (5~ #1)7) (4.9)

The position of the minimum is also slightly shifted.

T
8| (a) ¢l B i
61 N
S
< 4 R
2
2 2
0 K1 \ Kkl 0 Y | Y
—2 -1 0 1 2 -2 —1 0 1 2
q qL

Figure 11: Spectrum for ¢ pointing in different directions: (a) ¢|| B and (b) ¢ L B
for (k), k1) = (2.0, 1.0).

When increasing the magnetic field, we observe that the weight of Tr G accumulates
at the poles and finally ends up in the conical phase as shown in figure [5b] for
the experimental case. This process is illustrated in figure [I2] The left sphere is
plotted without magnetic field. Moving to the right, the magnetic field increases
from sphere to sphere.

k1| can be measured. The respective experiments were performed by Jonas
Kindervater in the group of Prof. C. Pfleiderer at the Technische Universitat in
Munich. One can compare the generalised Brazovskii equations ([2.21]) and (2.20]) to
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Y

Increasing magnetic field

Figure 12: TrG(q) with |¢] = 1 for an increasing magnetic field

the experimental data. This is done by using J ~ 2.8 meV/A and ) = 0.039 A_l,
which are the experimental values published in [I]. The mean magnetisation ¢y was
measured as well. Putting all these values into the generalised Brazovskii equations
allows us to fit the theory to the experiments with the fit parameter u. To realise
this, a further approximation is necessary. The function D, which is defined in
equation , is approximated by the part containing the leading singularity
Dging. It is given by (cf. [1])

3 2 .2
o oy Q°kpT 5 5 K1 — K
Ding (W7, 51) = BVo A R e e 2 (4.10)

with

17 14 s? a
y(oz)—\/l—i—oz—;/ds(l—\/ ” arctan,/l_i_SQ). (4.11)

The fit was done by hand since it was already difficult to solely solve the self-
consistency equations numerically. Therefore, it was not possible to do a numerical
fit to the data without bigger efforts. Figure shows the experimental data
(dots) in comparison to the fit (line) for different magnetic fields as a function of
temperature. x| is always plotted in red while s, is plotted in yellow. At zero
magnetic field both are equal. k; = k| = k is then plotted in orange.

One can see that the theory works quite well for small external magnetic fields.
However, it breaks down at a significant increase of the magnetic field. The best
fit was obtained for a value of u & 0.25 meV/ A3, which agrees approximately with
the experimental value given in [I] of u ~ 0.32meV/ A®

For the higher fields x; becomes zero at some point. This would correspond
to a second order phase transition. However, the phase transition between the
fluctuation-disordered regime and the conical or the skyrmion phase is of first order.
The exact position of the first order phase transition predicted by the theory is
not yet calculated for finite fields. For B = 0mT theory predicts a slightly higher
critical temperature than the experimental value of 29 K, namely T, ~ 29.3 K.
However, theory predicts a first order transition for all values of the magnetic field
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Figure 13: Neutron scattering data provided by J. Kindervater (dots) for x, (yellow)
and x| (red) in comparison to the generalised Brazovskii equations (lines)
for different magnetic fields [20)].

and temperature [8]. This is not the case. The experimental phase diagram in
figure |1 shows that there exists a tricritical point at which the transition becomes
second order again. In this phase space region one has to include all diagrams
and cannot calculate self-consistently anymore. It is not sufficient to make the
Hartree-Fock-Brazovskii approximation. The predicted first order transition is an
artefact of this theory which is not applicable in this region of the phase diagram.

The calculated x /| only exist in the fluctuation-disordered regime. If the transition
temperature of the first order transition predicted by the theory lies above the
temperature for which s, vanishes, then the first order transition happens first
and the second order transition does not appear. On the other hand, if the first
order transition temperature lies below the value where x; becomes zero, one may
assume that this is a numerical problem since a first order transition is observed
below the tricritical point in the experiments [II, 21].

390 mT is close to the tricritcal point where the theory looses validity. Therefore,
the deviation between the experimental and theoretical values of x; and x| is
large. The splitting between x| and &, is still predicted but the quantitative
correspondence becomes worse.
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4.3. Dynamical case

Eventually, we can switch on dynamics, i.e. choose 2 # 0. Then we must use the
full inverse Green’s function as written down in equation .

>
>

Increasing frequency

Figure 14: Tr G(¢) with |q] = 1 for increasing frequency at a constant (finite)
magnetic field

We choose a constant magnetic field pointing in z-direction and increase the
frequency. Again, we examine TrG on the sphere in momentum space with radius
Q. This is shown in figure

We observe that the divergence moves across the sphere from the north pole to the
south pole when increasing the frequency from the left (2 = 0) to the right sphere.
Finally, the divergence vanishes and the sphere remains without any divergences
for higher frequencies.
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5. Self-energy for interacting magnons

The dimensionless Green’s function of the theory reads

1+¢*+ k3 —i (14 &%) (i) — 2igs 2iqs
G N7 = [i(1+rT) (i) + 2igs 14+ ¢* +#% 9,
—2iqy 21qq 1+¢%+ /{ﬁ

(5.1)
As before, all momenta are measured in units of () and the frequency €2 is measured
in units of the electron-spin resonance frequency wieo = %. To arrive at a
form in correct units, one has to multiply G~! with JQ?. The calculation in the
following will be done in the dimensionless form.

First we consider the spectrum, i.e. the eigenenergies of the correlation function.
These are obtained by solving det G™' = 0 for Q. Since we have neglected the
damping term in the (3,3)-element, we have two energies, namely

1 2 1+¢%+
() = _ <—2q3i\/<1+q2+ni) —4<q%+q§>&>. (5.2)

14 K2 L4¢* + 5

We use the short hand notation |§| = ¢. These two dispersion relations are
connected to each other by the symmetry €, (¢) = —e_(—¢). €,(q) is positive for
all momenta ¢, i.e. e.(q) > 0.

The energy €, (¢) has a minimum for ¢ pointing in z-direction at g5 = 1, namely

2
K

R (5.3)
1+ k%

€ (7= ¢é3) = €min =
For ¢ lying within the equatorial plane, i.e. g3 = 0, there is a local minimum
which is slightly shifted away from ¢ = 1. The value of this minimum is bigger
than the minimum in z-direction, and it does not have such a nice analytical form.
Therefore, €, (€3) = €min is a global minimum. Figure [15shows €, as a function of
¢ with different parametrisations of the momentum.

Since the Green’s function is the two point function of two real bosonic fields,
namely the magnetisation, it is real in position and time space.

Gij (7, 1) = (:(0,0)¢;(Z, 1)) (5.4)
Fourier transforming this object leads to

GU<(7’ w) = /dt d3l' @(t)<¢l(0, O)¢J (f, t)> Gth_iq.f . (55)

From this, it is obvious that G;;(¢, w) = G,i(—¢, —w)*. Therefore, the imaginary
part of the diagonal elements of the Green’s function has to be odd under the
transformation (¢,w) — (—¢, —w), and the real part is even.
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Figure 15: e, (¢) for different parametrisations of ¢ with (), x.) = (0.22,0.19). In
the second plot ¢ is arbitrary.

To explicitly write down the Green’s function, we have to invert equation (/5.1]).
We can write it in the following form by doing a partial fraction decomposition:

G@.9) = 15— (i)@ + ma—_(eqj)(q-) (@) (5.6)

where

ax(@y = [(1+62)° (1+ ¢+ ) (e4(D) — ()] - (241505 (1+ ¢* + k)
+2igijn(qL)n (L+ ¢ + K1) +iegs (14 ¢+ £7) (14 £1) ex()
=2 (1+ #1) €x(q) (6053 + 4j03) + (835 — 0i3033) (L + ¢* + w1) (1 + ¢° + &j)
F8iatis (14 +13)" = (14 #2) (@) — 4005 (5.7)

and

1

b(§) = — G5 65— .
(ij 3J31+q2+/{ﬁ

(5.8)

The momentum component perpendicular to the external magnetic field is given
by qp = ¢—n(q- 1) = (q1,q2,0)T for B = Bn = Bés. One can show that
a1 (q) = —a* (—¢q). Using the symmetries of the energies discussed above and of
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the matrices a, we can rewrite the Green’s function in the following form.

o a@ ey
G ) = i —+e+(cj) iQ+e(—q) (@) (59

Therefore, there is only one dispersion €, (7) = €(¢) and one spectral function
a+(q) = a(q) left to compute. The Green’s function then reads

. a(q) a*(—q)
G(q,Q) = - — - +b(q) - 5.10
(G:92) =75~ (@) it e(—q (@) (5.10)
In the following, we will neglect the third term, i.e. b(¢), since it does not include
any dynamics.

In the end, what we want to calculate is the susceptibility x, for which

X t=x! -1 (5.11)
holds. II is the self-energy and has to be calculated first. We will do perturbation
theory up to second order. The diagrammatic representation is shown in ((5.12]).
The first term is of first order, and it is called the Hartree-Fock term. It is already
included in the Brazovskii theory but does not contain any dynamics. Thus, the
second order terms gives the first contribution to II(7, 2) at a finite frequency €.

& + v @ o (5.12)

A further diagram, which is not considered here, results when we, again, do
perturbation theory up to second order but then couple two fields to the mean-field,
i. e. the mean magnetisation, one at each vertex. The mean magnetisation is denoted
by a wiggly line. This is the second diagram in the diagrammatic equation (}5.12]).
In the whole calculation we are only considering the case ¢ = 0, and we are looking
for fluctuations composed of triangles. This self-energy diagram consists only of
two Green’s function. No triangular structure can thus be observed. Furthermore,
since it includes two mean magnetisations, it comes with a factor MZ. For small
magnetic fields this will be suppressed. However, the corresponding free-energy
diagram would already include triangles.

We will, therefore, restrict ourselves to the third diagram, the one in the box.

To calculate the self-energy, we make use of Wick’s theorem and arrive at the
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following expression:

—2 E E E :5q1+q2+q3,q w1 Hw2+ws,2

1,42,43 wi,w2,w3 k,l=1
. [Gij(cfl,w1)Gk1(§2,w2)le(sz‘nw3) + G (q1,w1) GG, w2) Gri(q3, ws)
+ G (1, 0) G (@ 02) G, 3| (5.13)
=2 Z Z [ (1, w1)ij T (G (G, wo) G(5, w3) ")

q1,92,493 W1,w2,w3

+ 2 (G((T% w?)G((T?)7w3)TG((717w1>)iji| ’ 5§1+§2+ff3,(f 6w1+w2+w37Q : (514)

Now we can put in the expression for the Green’s function derived above. We will
neglect the b(g)-term as mentioned. Furthermore, we can integrate out the bosonic
Matsubara frequencies wy, ws and ws.

9 Acy 03,0501 B2, G3) 5
o - = Q1+G2+43,9

1,32,q3 01,02,03=% i€ — € (ql) ~ o (Q2) ~ Cos (Cjé)

(e (@) = 10y (@) = €04(5))] [0 (@) — 1(—€0,(35))] ,

’Ql

where Ay, 5,.04(q1, G2, ¢3) is a short hand notation for the matrix part, namely

Avsozioa (@1 Bor @) = 10, (32) T [0 (85) 10 ()] + 2 10 (83) (@) 10, (@)
(5.16)
n(e) = (e’ — 1)7! is the Bose function with 8 = Rwfemo/(kpT) since we are
measuring the frequencies in units of the ferromagnetic resonance frequency. The
symmetries of the matrices a,(q), a,(¢) = —a*,(—q), lead to the symmetry of
AU1,02,U3 (q_)la 02, (73)7 AO’1,0’2,0’3 (‘717 02, (T3> - _A*fgl,ng 70‘3< q1, — G2 QB)
Since we are looking at experiments with a homogeneous magnetic field, we will
only consider the case of ¢ = 0. In order to investigate the processes which take
place, we use the properties of the Bose function and rewrite equation (5.15).

—2 Z Z A0—170-27o'3(q_'17q_)27q_‘})) 5_, — — 0
= . g ot 7. + ’
q1,42,33 01,02,03=% 1) — 0'1€<0'1QI) - UQE(UQQQ) - 0'36(0'3(]3) e

. [(1 + n(o1€(o1q1))) (1 + n(o2e(02G2))) (1 + n(ose(o3qs)))
- n(01€(01€71))”(026(0252))71(%6(03(73))} (5.17)

Using all the symmetries collected for € and A and the property of the Bose function
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n(—e) = —(1 + n(e)), we can rewrite this:

NO.Q=-2 3% 3 #eieed) n(o2e(02) n(o5e(038)) 5o sao
q1,32,33 01,02,03==%
iQ — o1€(01¢1) — 02€(02G>) — 03¢(03G5)
A% r o (@5 B, @)

_ 01,02 a | 5.18
iQ+ o1€(0141) + 026(02G2) + 03€(03G53) ( )

There are four processes possible: Three magnons can be absorbed (07 = 09 =

= +1) or emitted (07 = 03 = 03 = —1), or two can be absorbed and one emitted
(two 0; = 41, one 0; = —1) or vice versa, i.e. two emitted and one absorbed (two
0; = —1, one 0; = +1), depending on the signs ;.

Since fe is small in the regime we are interested in, we can expand three the Bose
functions up to order O(%) and approximate n(e) ~ (8¢)~' — %. Since the term of
order 373 vanishes due to the symmetry of expression (5.18)), the first contributing
order is 372. The self-energy then reads

110, Q) =242 Z Z o1€(01q1) + 026(01G2) + 03€(01G5) 5

201€(01G1) 026(02G2) 03€(03G3) R

q1,42,q3 01,02,03==%

. [ As o300 (@1 Bo: B3)
iQ — o1€(014h) — 026(02G3) — 03€(03G3)

_ AL oo (@1, P25 G3)
iQ + 016(01q1) + 026(022) + 03€(03G3)

(5.19)

First, we want to consider the imaginary part of the self-energy. We do an analyti-
cally continuation of the frequency i€ — Q + i0" since we are only interested in
the retarded part. When taking the imaginary part, one obtains two terms. One is
proportional to Im A,, 4, +5(¢1, @2, ¢3) and one proportional to Re Ay, oy .04 (1, G2, G5 )-
It turns out that the former one vanishes when taking out the momentum integra-
tions for the diagonal elements. Thus, it is sufficient to only consider the latter
term when calculating the diagonal elements.

o€ 01q1 ) + 02€(01G2) + o3€(01G3)
Im g (0, 2) = — - S o
0 [giag DYDY 016(01q1) 026(02(s) o3e(03qs) T HETED

q1,32,33 01,02,03==%
) [(5(9 — 01€(01q1) — 02€(02G5) — 035(03@3))

- 5(Q + 0'16(0-1(71) + 0-26(0-2672) + 0-36(0-3(23))] ReAm,crg,Us ((Tla i27 qg)
(5.20)

This contains an integral over three three dimensional momenta. Their number is
reduced by three due to the condition that they have to sum up to zero, i.e. that
they build a triangle due to momentum conservation. The integration dimensions
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are additionally scaled down by one due to the delta functions. In the end we
are left with a five dimensional integral, which we will investigate numerically via
Monte Carlo integration in the next section.

For the off-diagonal elements, however, the story is different. The part proportional
to Re Ay, 00,05 (1, @2, ¢3) vanishes for all off-diagonal elements. The one proportional
to Im Ay, 5, .04(G1, G2, ¢3) does not, at least for the (1,2)- and the (2,1)-element. The
other off-diagonal elements vanish in both cases.

To calculate the (1,2)-element numerically via the Monte Carlo method, we apply a
little trick to avoid numerical troubles caused by the divergence in the denominator.
This component of the imaginary part of the self-energy reads

o1€ 01Q1 +02€( G) + o3€(01G3)
Im Iy giag (0, 2) E E 0, 4yt
m offdlag( > ﬁ 0'16 U1Q1 0_26(0_2q2) O'36<O'3(f3) q1+q2+q3,0
1

O — o1€(01G1) — 02€(02G5) — 03€(03G3)

q1,42,43 01,02,03==%

. ImAal,ag,og((jlv (227 (jé)) : 73|:

L _ ] | (5.21)

+ —
Q+ 016(01q1) + 026(0202) + 03€(0373)

P denotes the principle value integral. We multiply this by unity, which is repre-
sented by an integral over a delta function,

1= /dw 0 (w — o16(01q1) — 026(02p) — 03€(0333)) - (5.22)

We can exchange now the sums with the integral over w. This allows to rewrite
equation ([5.21)) as

_ YOy Im Agy 00,05 (01, @2, G3)
_ 2 02, » 42,
ImHOff_diag<O, Q) = 5 /dw |:0_16< — 1,02,03 =

01ql) 026(02612) 036(0353)

q1,42,33 01,02,03==%

2Quw ~ . .
) 73—Q2 — 3 6<w — 01€(01q1) — 02€(02Ga) — age(agqg)ﬂ . (5.23)

Numerically, we will only calculate the following object which has the same structure

as the integral of the diagonal elements ([5.20)):

-2 Z Z [ ImAcl,UQ,U;a(CTla(anq_E’))
o1€(01q1) 02€(0242) 03€(03G3)

q1,q2,43 01,02,03==%

. 5(w — 01€(01G1) — 02€(0235) — age(agq_'g))] : (5.24)

To calculate the imaginary part of the off-diagonal self-energy element, we integrate

over w and get
Quw

ST v(w). (5.25)

ImHOff_diag(O, Q) = /de
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The integration over w is done analytically assuming that v(w) is constant in the
intervals which are chosen as step sizes in the numerical part.

Furthermore, it is possible to calculate the real part of the off-diagonal element just
like the imaginary part of the diagonal element and the real part of the diagonal
element like the imaginary part of the off-diagonal element.

The real part of the off-diagonal element reads analogously to equation ([5.20))

_ o16(01q1) + 026(01G2) + 03€(0143)
Relloaing(0,Q) = 8720 > Y O +>+5.0

q1,32,43 01,02,03==% 016(0151) UZE(O_Q(T?) 0-36(0'3(73)

) ImAal,oz,os((jl: B2 G3) [5(9 — 01€6(01q1) — 02€(02G2) — 036(0353))

+0(Q+ o1e(01Q1) + 02€(02G2) + 036(036'3))] : (5.26)

Correspondingly, we can calculate the real part of the diagonal element just like
the imaginary part of the off-diagonal element:

- 2 2 Re A ((Tl (72 (TZS)
B 5 01,02,0 ) 429
ReHdiag(Q) _B /dWPQ2 _ w? Z Z 01€ p—

(01671) 026(0252) 036(0353)

q1,32,43 01,02,03==%

0w — 016(q1) — 096(@) — 03€(G3)) Vit +as0 - (5.27)
It is possible to show that the Kramers-Kronig relation of (5.20)) [22],

1
Q—w’

1
Re Tagag (0,0) = — / 4O T T (0, Q) P (5.28)

™

leads to the same form for the real part of the diagonal element. Analogously,
this holds for the correspondence between the real and imaginary parts of the
off-diagonal elements.
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6. Numerical evaluation of the self-energy

To perform the numerical integration, the matrix elements, over which we would
like to integrate, were exported from Mathematica into a C++ program. To solve
the integral numerically, we use the Monte Carlo method, which is described in
Appendix C| The code for the Monte Carlo integration is taken from [23].

The integration was done for each matrix element separately. It can be observed
that the (1,1)-element and the (2,2)-element show exactly the same behaviour as
expected for a system that is isotropic in these two directions. The (3,3)-element
looks slightly different. The (1,3)-, (2,3)-, (3,1)- and (3,2)-element turn out to be
zero and are, therefore, not considered further.

All results presented in this section are shown in a dimensionless form. For that
reason, the self-energy was multiplied by a factor of JQ?/u®. In the next section
the factors will be discussed in more detail.

I I I I I
- «(1,1)- & (2,2)-element
Ty x (3,3)-element
X
150 H i
E3
x X
—~ x x Xxx ¥ 4
c EI |
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— =K
E S,
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0.5 ™ =y, |
**aex** e,
% fae™ &&x%%
*********)se
ol |
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Figure 16: Diagonal elements of the self-enegy for (x, 1) = (0.22,0.19)

Figure [16| shows exemplarily the result of the integration for the imaginary part
of the diagonal elements. We observe one maximum at {2 ~ 0.6. However, this is
not a sharp peak but has a finite width. On that account its origin cannot be a
singularity remaining after the integration over all dimensions.

In the following, we will discuss where this maximum has its origin, i.e. which
momentum triangles contribute most to the peak and which processes are dominant.
Therefore, the phase space over which the integration is performed was restricted,
e.g. by restricting the angles and the lengths of two of the momentum vectors.
Since the third momentum vector is determined by the other two due to g, +g,+4.0,
it is sufficient to consider the configuration of two momentum vectors.
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6.1. Equilateral triangles in the equatorial plane

To investigate if skyrmion type fluctuations give rise to the resonance behaviour in
the fluctuation-disordered regime, we can integrate solely over equilateral triangles
in the equatorial plane. This means we reduce the five dimensional integral to
two dimensions, one absolute angle and the radius. For numerical reasons, we
effectively integrated over a thin disk instead of a real plane.

The crosses in figure [17] show the result of the numerical integration. We observe a
divergence at 2 = 0.4, which corresponds to the minimal energy for the momentum
vector lying in the equatorial plane.

1074

(Imnll,(oa Q))equilat. A, equat.

0 |
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Q (errro )

Figure 17: Integration over equilateral triangles in the equatorial plane. The crosses
denote the result of the numerical integration, the line shows the ana-
lytically determined behaviour

However, this case can be solved analytically. Since the triangles all have the
same length and lie in the equatorial plane, i.e. all z-components of the momenta
vanish, the absolute values of the energies are equal, |e,, (1) = |€5, (02)| = |€05(G5)]-
The value of the energies only depends on the length of the momentum vectors
as discussed in [section 5 However, the signs can be different depending on the
occurring process. According to equation ([5.15)) and with the Bose functions already
expanded, the imaginary part of the self-energy is proportional to

ImIT o 5(9 — 016(01G1) — 02€(02q5) — 0'36(0'3(73))
016(01G1) + 02€(02G2) + 03€(03G3)

016(01671) 026(02(72) 036(0353)

(6.1)

For 2 > 0, there are only two processes possible, namely all ; = +1 or two +1
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and one —1. We can thus rewrite the delta-function as §(2 — ae(r)), where r is the
length of the momentum vectors and « € {1,3}. Using the delta-function reveals
that the part from the Bose functions is proportional to 1/Q? since 2 = e(r).

ImIT @ 5(Q — ae(r)) (6.2)
There is a minimum for the energies as described in which is a lower limit
for the frequency. We expand the energy around the minimum, which is slightly
shifted away from Q. It is called Q. Since this is a minimum, the first order is
zero and we get

. _ %X o 0. \2
T o 3 6(9 — 0 €(@uie) — 3 € (Quin) (4~ Quin)?)- (63
We can rewrite the delta-function and arrive at
ImII é Qmm !
\/2|€,/ Qmm - 056<Qmin))
X - min ) - 64
Q2 /0 - ae(Qmin) (4= Qoin) (6.4)

This means we observe two divergences, one for « = 1 at Q = €(Qmin) and one for
a =3 at Q = 3¢(Qumn). However, as we will discuss in the next subsection, the
processes with all signs being equal have a much lower weight than the processes
with differing signs. Therefore, we only observe the first divergence with o« = 1.
The line in figure shows the analytically predicted behaviour with only the
pre-factor calculated from one numerical value.

However, the position of this divergence does not correspond to the peak position
observed in the calculation of the whole self-energy. Furthermore, by doing the
integrations over the remaining three dimensions the divergence will be integrated
out. The weight of the integral only over equilateral triangles in the equatorial
plane is very small compared to the weight of the full integral. We can conclude
that skyrmion type fluctuations do not have an extraordinary high contribution to
the self-energy.

6.2. Different types of three-magnon processes

Four processes can take place depending on the different signs 01,05 and o3.
Physically, they correspond to the possibilities that three magnons can be absorbed
or emitted and two can be absorbed and one emitted or one can be absorbed and
two emitted. How much each of them contributes to the total integral can be
examined by only integrating over the respective sum term of the sum over the o;.

Figure[18 shows these separate integrations. The upper left plot in[1§shows the two
cases when all o; have the same sign. Both cases show exactly the same behaviour.
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Figure 18: Integration over the separate sum terms

They have a maximum at about 2 ~ 4.

When we consider the part in Im Ilg,, that comes from the Bose and the delta
functions, one can investigate which triangles contribute to which frequency. For
the case 07 = 09 = 03 = +1, the smallest frequency possible is for the configuration
when all momenta lie in the equatorial plane and build an equilateral triangle,
where the sides have length Q,,;». For the magnetic excitation-field used here the
minimal frequency is 2 = 1.2. There is no contribution for lower frequencies from
these two terms.

Equilateral triangles in the equatorial plane correspond to skyrmion type fluctu-
ations as discussed previously. For vanishing temperature, i.e. 7' = 0, there are
no magnons present. The only process which can then take place is the case with
01 = 09 = 03 = +1. The frequency-threshold for 7" = 0 is hence due to exactly the
process which was our candidate for the shift in the resonance frequency.

The Bose function part
(@) + €(@) + ()
e(q1) e(@) e(ds)
can be maximised by minimising two of the energies by letting them point to

(6.5)
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the north pole of the sphere in momentum space with radius ). However, this
configuration contributes to higher frequencies than 2 ~ 4. Here, triangles with
one vector in the equatorial plane and one pointing to the northern hemisphere
contribute as well as configurations where one momentum vector vanishes or at
least has a significantly small length while the other points towards the northern
hemisphere. Nonetheless, the main effect for the maximum is that the phase space
grows when increasing the frequency from the minimal frequency. For higher
frequencies the number of configurations with low energies, i.e. a big contribution
from the Bose function part, shrinks and the value of the integral goes down again.

The discussion of the case 07 = 09 = 03 = —1 goes analogously with north and
south exchanged.

The upper right plot in figure [18| shows the two cases where one sign differs from
the other two. As in the previous case, both cases show the same behaviour. Here,
we observe the peak at small frequency (£2 ~ 0.6). The lower plot in figure
shows all four terms in one plot. There it becomes obvious that the cases, where all
particles are absorbed or emitted, have a significantly smaller weight than the other
two cases. This means that the dominant processes are those where two particles
are absorbed and one emitted or two particles are emitted and one absorbed.

Let us, for example, consider the case where 04 = 09 = +1 and 03 = —1. The part
from the Bose functions in ImIl4;,e then reads

@) + (@) — e(—@)
(7) (@) «(—&)

Again, this can be maximised when ¢; and ¢ point to the north pole. Triangles
with ¢; and ¢ pointing somewhere to the northern hemisphere with angles between
them from about 0° to 120° contribute to the peak as well as the cases when one
of the vectors ¢q; and ¢, vanishes, at least almost, and the other points to the north
pole. When slightly varying the lengths or angles of the momentum vectors in
these configurations, the part stemming from the Bose functions stays large for
some time, such that there is a finite phase space volume with high weight around
these maximising configurations.

As discussed in the energy remains flat for quite large angles when
surrounding the sphere from the north pole to the south pole (cf. figure . It
is sufficient that a vector points to the northern hemisphere to approximately

minimise €(¢) and therefore maximise (6.6)).

Triangles with ¢; and ¢ pointing in nearly the opposite direction, i.e. the angle
between them is more than 120°, have almost no contribution. For higher frequen-
cies, here 2 2 5, it is not possible to find configurations with two vectors having
length (). Expression then decreases rapidly and ImIlgi,e becomes small for
higher frequencies.

(6.6)

Again, the case of two o; = —1 and one +1 follows the same lines, only with north
and south exchanged.
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6.3. Magnetic field dependence

To compare the susceptibility with the experiments, we need to calculate the
self-energy in dependence of the magnetic field. As discussed in [subsection 2.2]
the magnetic field influences the energy gaps, i.e. s, and k. The influence of the
magnetic field could therefore be described by solving the generalised Brazovskii
equations and for ;.. However, solving these coupled self-consistent
equations is difficult and leads to numerical problems which could not be solved
without bigger efforts. Therefore, we did an ad-hoc fit to the experimental data
by Jonas Kindervater to mimic the field dependence of the ;. For 29.1 K we
obtained

B 4
ki(B)=0.15+6.17-10""2 (ﬁ> : (6.7)
B 4
k) (B) = 0.15 + 4.46 - 10~ (ﬁ> : (6.8)

Figure 19| shows the experimental data (dots [20]) and the approximated functions
to show that the estimation seems to be reasonable.

2,

1.5

ki (@)

0.5 -

| | | |
0 100 200 300 400
B (mT)

Figure 19: Approximation (line) of the field dependence of the x| (yellow) and
(red) at 29.1 K compared to the experimental data (dots) of J. Kinder-
vater [20].

This allows us to calculate the imaginary part of the self-energy for systematically
varied magnetic fields. Since the aim is to calculate the maximum frequency as a
function of the magnetic field, we increase the field in steps of 10 mT and calculate
the self-energy for each of these fields.

The results for ImII;;(€2) are presented in figure [20] We observe the peak discussed
previously for smaller magnetic fields. When reaching a field where x| becomes
larger than 1, no peak can be observed anymore. The imaginary part of the
self-energy then stays constant for a long time after an increase at the beginning.
The corresponding field is 371.5mT.
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Figure 20: Imaginary part of the self-energy as a function of the frequency for
different magnetic fields: violet: 10 mT; blue: 50 mT; turquoise: 100 mT;
dark green: 150mT; light green: 200mT; yellow: 250mT; orange:
300mT; red: 350mT; dark red: 400 mT.

The integration results for all fields do not approach zero very fast. We will show
in the next subsection that they indeed converge to a finite value. They will finally
go to zero when reaching the momentum cutoff at high frequencies.

6.4. Asymptotic behaviour for high frequencies

The imaginary parts of the diagonal elements of the self-energy do not converge to
zero very fast. They are even close to constant for a long time before decaying due

to the momentum cutoff in an energy region of the order Q ~ ¢2 .

To investigate their behaviour for large frequencies, one has to understand what is
happening for large momenta. Therefore, we examine the asymptotic behaviour in
this limit, i.e. for 2 — co. When the frequency is large, the energies, and thus the
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momenta, have to be large due to the delta function. For the energies we find

1+¢* + K3
_ B, Yo 1 2 2 2_4 2 2\- 4 T ML
=0 Ha( b W MR U wrr:
q2>>1+,$2 2
Ly 1 o (6.9)
1+ k7

The matrix element part is approximated by a constant since the nominator as
well as the denominator of the matrices a+(¢) with the asymptotic performance of
the energies has the maximal power of ¢,

21+ 0 ox=o03

4 Kl 010903

ReAgl 02,03(6117{!2;(]3) — m . 12 01 = 02 7£ o3 . (610)
L 4 01 = 03 7& 09

In this limit we can solve the integral analytically. For further simplification,
we only consider the case 01 = 09 = +1 and 03 = —1 and, as before, positive
frequencies. The integration over the other summands can be performed analogously.
The integral we want to solve reads

¢*>14K] 2 e(q1) + (@) — e(=g3) Lo
ImHll — 22 Z - — — ReAUl,JQ,m(Ql q2, Q3)
o cl@) (@) (=)
5((") - E(Q1) 6( 2) ( CE;)) 551-&-‘?2-1-5370 . (6'11)

As in we have used the symmetries of the energies e, and e_, e () =
—e,(—q) = —e(—q). Exploiting the delta function, this can be rewritten as

>4 2 wReA,, o0 (G100, — 01 — G
i, — 2 /d3q1d3q2 {— @ ) ( )(Zl( 3 ;) ),
2
S(w—e(@) —e(@) +e@+ D). (6.12)

Since we only consider the limit of large momenta, we only integrate over |g?| >
1+ /iﬁ. We choose our lower integration boundary to be ¢, = N+/1 + £% where
N is a sufficiently large constant to ensure that the approximations are valid.
Using spherical coordinates and the approximations for the energies, and further
performing the integrals over all angles except for the relative angle of the two
momenta, we obtain

ImII;

s 2q1g2cos(6)
> 1453 B 1673 3W6( ( + w(l+r7) ))
— df sin(6 dq1 dgo :
(2 2 (62 + &3 + 2q1gzc0s(9))

0 1412 Ny/1+82

(6.13)
We can now rescale the momenta with ¢;5 — /w(1 + &7 ) q1/2 and get rid of all
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frequencies in the integrand.

2> 1442 1673 3 5 142 0
ImII; ! ! /d@ sin(# /dq1 /dq2 @12005( ))
B2(1+w2) q1'+‘q2‘+’QQ1Q2COS(0))
N/Vw N/Vw

(6.14)

For w — oo the lower integration boundaries go to 0. Therefore, the result will be

independent of w and N as we observe it to be in the numerical calculations for
high frequencies.

™ o0

2> 1+4k2 1673 T 30(14+2 cos(
ImIl; ! ! 21 T /d@sm / / ( N2 )
B ( + ’%J_ Q1 + ¢ + 2(11Q2COS<9))

(6.15)
The remaining integral can be solved by using the delta function for the integration

over the angle and then integrating over the radii. The result is a number, namely

0

@>1+st 1 1673

ImHll -
B2 1+ kK%

2.78 . (6.16)

We can make a prediction for the constant to which ImIly;(2) converges for high
frequencies within this approximation by including all other combinations of o;.
Figure 21| shows examplarily the case for 100mT.
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Figure 21: Comparison between the calculation in the limit ¢% > 1+ /fﬁ (light blue
line) and ImII;;(€2) (dark blue crosses) at 100 mT.

We observe that the constant corresponds quite well to the value to which the full
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integral converges. However, this prediction only works for sufficiently small fields.
For higher magnetic fields there are deviations from the calculated constant up to
a factor of five for 400 mT.

Not included in this estimation are triangles with two momenta being large and one
small or all momenta being small. It is possible to show, that these configurations

do not contribute for w — oo. These cases are sketched in .

For high energies, there exists an increasing number of configurations of the momenta
that are not considered in the numerical integration due to the cutoff ¢.x = 100.
Thus, Im1IIy; falls below the value of this calculation for the asymptotic behaviour
at some point at high frequencies. Furthermore, we slightly overestimated the
constant since we included also triangles where ¢; and ¢ have approximately the
same length and show roughly in the same direction. Then, ¢3 is small and the
estimation that g3 < 1+ x| is not valid.

There are different processes which ensure that the integral nevertheless decays for
high frequencies. For high energies, the approximation of the Bose functions as an
expansion up to second order is not valid anymore. It is necessary to include all
orders for high energies since there e(q) is not small anymore.
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Figure 22: Im1ly;(Q2) with the full Bose functions (green) and with series expansion
of the Bose functions up to order 372 (blue).

Figure shows the case with the full Bose functions (green) compared to the
approximated one (blue). One can see that the effect is quite small. Since the
energies are measured in units of Awgero, 0 has to be dimensionless and reads

gupB
= . 1
5] . (6.17)
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For B = 115mT and T' = 29.1 K, one gets 5 = 0.0051. Within the energy region
plotted in figure [22| the approximation of the Bose function by the series expansion
up to order 32 stays valid. Higher order terms become more important for
frequencies larger than €2 ~ 200.

Furthermore, the high energy cutoff, i. e. the cutoff in the momentum space, also
forces the integral to converge to zero for high frequencies. The cutoff could be
lowered, for example, by introducing a g*-term to the Lagrangian which corresponds
to a higher order kinetic term.

In a more realistic model the integral should converge to zero instead of a finite
constant for high frequencies.

6.5. Real parts and off-diagonal elements of the self-energy

In the next section we can now finally calculate the correction of the susceptibility
due to the self-energy and compare the results with the experimental data. The
imaginary part of the susceptibility contains the whole self-energy and not only
Im TT;;, which was discussed in this section so far. The off-diagonal (1,2)- and
(2,1)-element needs to be calculated as well as the real part of the self-energy.

As discussed in the previous section, we can calculate the real part of the diagonal
element directly or by using the Kramers-Kronig relation. Both methods show
slight deviations from each other due to the different numerical steps. In particular,
using Kramers-Kronig produces errors when the original function Im II has not
converged to zero, yet.
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Figure 23: Rell;;(€) calculated directly (red) and with the Kramers-Kronig realtion
(orange) at 250 mT
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Numerical evaluation of the self-energy

Figure [23| shows the real part of the diagonal element calculated with the different
methods. The red curve is calculated directly like it is presented in equation
(5.27). The orange curve is calculated by using the Kramers-Kronig relation for the
imaginary part. We can show that these methods are equivalent. However, both
curves do not match exactly. This indicates that the integration intervals do not
match due to the different numerical starting points.

We observe a maximum at zero frequency in both cases. One reason for this is
discussed in [I]. Equation (B38) in [I] gives an estimate for the correction due to
the second order diagram to the Brazovskii equation at zero magnetic field. It is
argued that, without the second order diagram, the energy gap A at B = 0 scales

like
3/2

A:r—JQerf;%, (6.18)

which corresponds to equation (4.7)).The Ginzburg energy e¢; is defined as

5 uksTQ*\
gt = (—M> . (6.19)

367 JQ?

The second order diagram gives rise to a correction of the right hand side of (6.18))

of the form
3
€Gi

This holds for 2 = 0. For k — 0 and thus A — 0, there will be a divergence which

(6.20)

021 : ‘Reﬂl‘g(Q) directly
- Rell2(€2) Kramers-Kronig
g i S pi ey : Im T35 (€) |
~ g % 7 Y=
=l ez %,
E O[Ty i ——
= IH % st e
g\ —0.1] Hﬂﬁ% %%ﬁ = .
= [ f = i
3 g, Hﬁgﬂ@gﬁ%ﬁ%ﬁﬁﬁﬁ%ﬁ%ﬁﬁ i
%ﬂ%ﬁ ﬁﬁ
03] i

Q (errro )

Figure 24: (1,2)-element at 150 mT: Rellys calculated directly (light green), ReIl;s
calculated with Kramers-Kronig (dark green) and Im1Il;5 (blue)
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leads to a maximum at € = 0. This explains the large values of ReIl;;(£2) at small
frequencies for small magnetic fields.

However, the maximum of the orange curve is nearly twice as high as the red one.
This is due to problems with Kramers-Kronig. The imaginary part of II;; does not
converge to zero very fast, as discussed in the previous section. Kramers-Kronig can
only be used for functions which converge to zero. The imaginary part converges
only for really high frequencies to zero. The frequency calculation was just cut off
at some point. The non-zero constant value for high frequencies leads to the much
higher maximum with this method. For the calculation of the susceptibility we will
use the direct method, which was used for the red curve.

Not all off-diagonal elements vanish. The (1,2)- and (2,1)-element renormalise the
ferromagnetic resonance frequency. As for the diagonal elements, we can calulate
the real part directly or by the Kramers-Kronig relation from the imaginary part.
Like before, the result is not exactly the same. Figure [24] shows the imaginary part
of the off-diagonal element (blue) and the real part calculated with Kramers-Kronig
(dark green) and directly (light green). We will use the direct method to calculate
the susceptibility to avoid the convergence problems of Kramers-Kronig.
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7. Calculation of the susceptibility

In this section, we will eventually calculate the imaginary part of the susceptibility
and compare the position of its maximum to the experimental measurements.

7.1. Susceptibility for different magnetic fields

The susceptibility can be calculated from the bare Green’s function y, and the
self-energy II using the relation

X =xo 1. (7.1)
Up to now, everything was calculated in dimensionless units and the pre-factor
of the self-energy coming from perturbation theory was not yet included. Now,
however, it is needed, since we want to compare the self-energy to the Green’s
function yq.

To get the original inverse Green’s function in the right physical dimensions of
energy density, one has to multiply by JQ? The experimental values of the
parameters are given in [I]. The pitch length is @ = 0.039 A7 and the coupling
constant J = 2.8meV /A.

In the self-energy there are three Green’s functions multiplied. This gives an overall
pre-factor of (JQ?)™%. The combinatorial factor of the second order diagram in
this case is 4 - 4 - 2. From the expansion up to second order we get 1/(5%V?)(u/4!)?
with 8 = (kgT)~!. To reduce confusion, we write the former 3 from the expansion
of the Bose functions explicitly as (Awserro)/(kgT). From going to the continuum
limit, and from performing the integration over dimensionless momenta there is a
further factor of (Q3V/(27)3)? present. The imaginary part of the diagonal terms
of self-energy, for example, then reads

un 2 .1 QS 2 Nwserro -
Tm giag (0, Q) = — <I> 4-4-2.7(JQ?) 3@ <(27r)3) ( kT )

. Z Z o16(01q1) + 026(01G2) + 03¢(0143)

016(01471) 026(0252) 036(03673)

5@1 +q2+G3,0
@1,32,43 01,02,03==%

: ReAa1,a2,03 ((?17 627 Ji’)) |:5(Q - 0'16(0'1q_»1) - 0-26(0-2(72) - 0-3€<0-3(i:3))

— 6(Q+ o16(01G1) + 026(02() +03€(U3%))} : (7.2)

In [I] there is given a value for u, namely u = 0.32 meV/Ag. However, we are
applying perturbation theory in u, so it needs to be small compared to J@Q? ~
0.004 meV / A’ Otherwise, the approximation is not valid. Thus we have to use a
much smaller value u to calculate .

The inverse Green’s function with momentum ¢ = 0 defines x;'. We analytically
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Calculation of the susceptibility

continue €2 — Q + ie.

1+ k% —i(1+x%)(Q+ie) 0
X0 '(0,Q) = JQ? [ i(1+ K%)(2 + ic) 14 K2 0 (7.3)
0 0 1 +/£ﬁ

The self-energy has only off-diagonal entries for the (1,2)- and the (2,1)-element
and therefore, the (3,3)-component of the susceptibility decouples from the rest.
The (2,2)-element and the (1,1)-element are equal. It is sufficient to calculate the
(1,1)-element, which reads

Im x11(92) =Im [(JQQ(l + k%) — (Rell;1(Q) + iImHll(Q))>
: ((JQ2(1 +52) — (Rellyy (Q) + ifm 113, ()’

+ (i(1+ £1)(Q +ie) + (Rell1o(Q) + iImle(Q)))Q)_l] . (74)

where € < 1 assures convergence.

For a small perturbation parameters u = 0.0032 meV / A? and high enough fields,
we find a sharp peak at the ferromagnetic resonance frequency €2 = 1. This peak
is slightly broadened due to the self-energy. For smaller fields, the weight of the
electron-spin resonance shrinks since it is proportional to the magnetic field (cf.
equation (3.30])). The self-energy can then gain influence, which leads to the peak
position being shifted. As will be discussed later, the maximum first approaches
zero before it is shifted to higher frequencies 2 > 1. Figure [25| examplarily shows
the broadened delta peak at a higher field and the shifted maximum position for
smaller fields for this small value of w.
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Figure 25: Susceptibility with u = 0.0032 meV / A? at two magnetic fields. At higher
fields (left, here at 150 mT), the delta peak at weeo is broadened by I1
but does not change the position. At small fields (right plot at 10 mT),
the peak position is shifted to higher frequencies.

Figure 26 shows the susceptibility as a function of frequency for different magnetic
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Calculation of the susceptibility

fields for two different larger perturbation parameters u. The first two plots are for
u ~ 0.0081 meV/A37 and the lower row is for u ~ 0.015 meV/AS. The experimental
value given in [I] is v ~ 0.32 meV/Ag. To get to a regime where perturbation
theory becomes valid, u has to decrease at least by a factor of 20 compared to the
experimental value. Even the values for u used here are quite big compared with
the value of JQ2.
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Figure 26: Susceptibility for different magnetic fields and different perturbation
parameters u:
(a) & (b): u ~ 0.0081meV /A’
(¢) & (d): u~ 0.015meV/A°.

In both cases for low fields the maximum is at high frequencies. When increasing
the field, the maximum position approaches the ferromagnetic resonance frequency,
which is at €2 = 1 here.

When continuing to increase the field, the maximum position drops below 1. The
second plot for each u shows the behaviour for larger fields. We observe that the
maximum even approaches zero. This is unrealistic since the electron-spin resonance
frequency is a reference point for the peak position. This strange behaviour mainly
comes from the huge value of Relly; for 2 = 0. The constant parts contribute to
the integrals and increase the value for small 2. However, the calculation should
not predict unphysical behaviour. This issue requires further investigation.
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For higher magnetic fields the maximum position shifts towards 2 = 1 again.
This is what we expect, because for high fields we enter the paramagnetic phase.
The Dzyaloshinskii-Moriya interaction then looses importance and the resonance
frequency becomes exactly weero. The self-energy leads to a broadening of the peak
but not to a shift.

At which fields the maximum position reaches the ferromagnetic resonance fre-
quency, decreases to zero and approaches (2 = 1 again depends on the value of
the perturbation parameter u. Since we do not have any experimental input for
this, we cannot make any quantitative statements that could be compared to the
experiments.

7.2. Discussion of the maximum frequency

To answer the question whether the fluctuations addressed by the second order
self-energy diagram give rise to the shift of the resonance frequency in the FD
regime, one has to determine the maximum position of the imaginary part of the
susceptibility.

To achieve that, we fit a Gaussian to the susceptibility for each magnetic field. The
fit function is of the form

f(@)=n-exp[—a(z—b)?] +c. (7.5)

There are four fit parameters: the normalisation n, the factor a in the exponent,
which relates to the variance o via 0 = 1/v/2a, the peak position b, and the
background c.

In the regime where the maximum position approaches zero, it is not possible to
make a reasonable fit to the susceptibility. It becomes possible though for higher
fields. However, due to the small variance of the peak there, the fitting results are
not totally convincing. The values for the peak positions are good but the results
for the variances should not be taken too serious in this regime for the two larger
values of u.

The fitting results for the maximum position, which corresponds to the fit parameter
b, are represented by the red dots in figure[27] For high magnetic fields the influence
of the fluctuations is weak and the weight of the electron-spin resonance is big. The
correction of the susceptibility due to the second order diagram of the self-energy
is therefore small. This is the paramagnetic regime. When coming from high
magnetic fields we observe that the peak position is close to the ferromagnetic
resonance frequency for sufficiently small u. For u ~ 0.0032 meV/ A? it even lies
exactly at the ferromagnetic resonance frequency. The peaks are only broadened
by the self-energy in this case.

When decreasing the magnetic field, we run into troubles described in the previous
section. The maximum position goes to zero, and there is no reasonable fit possible.
This is due to the large contribution of Relly; (0).
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Calculation of the susceptibility

When further decreasing the magnetic field, the maximum position starts to shift
to higher frequencies. For u ~ 0.015 me\//A3 this is at about 270mT, for v ~
0.081 me\//A3 at around 190 mT and for u ~ 0.0032 meV/A3 at approximately
20mT. The resonance frequency even increases for a decreasing magnetic field up
to a maximum. Then, it decreases slightly. However, the frequencies are still much
higher than the ferromagnetic resonance frequency at these magnetic fields.
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Figure 27: Peak position and FWHM of the susceptibility for different u. The gray
line denotes Weerro(B), the red points mark the peak positions and the
green triangles the full width at half maximum.

Figure @ shows the corresponding experimental results at T' = 29 K. s, and x| we
used in the calculation were measured at 17" = 29.1 K. The gray line also denotes
the ferromagnetic resonance frequency in the field polarised region and corresponds
to the gray line in figure 27, The crossover to the FD regime in this case takes
place at about 400 mT. We cannot modify the perturbation parameter u such
that the beginning of the shift to higher frequencies in the calculation is also at
400 mT without leaving the region where the perturbation theory is valid. In the
experiments the maximum position approximately stays constant for a range of the
magnetic field range between 150 and 400 mT. This does not correspond to the
results of the calculation. Here, the frequency is shifted to much higher values than
in the experiment. The increase of the frequency for small fields in the experiments
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can be explained by the entering of the helical phase.

Figure 28: Resonance frequency as a function of magnetic field measured by I.
Stasinopoulos [4]

The green triangles in figure 28 correspond to the full width at half maximum of
the peak. We can compare these widths to the ones of the fitted bumps shown by
the green triangles in figure 27 In the experiments the width is always smaller than
the peak position. In the field polarised phase it is approximately constant and
starts to increase when entering the FD regime. We find this for the case of u ~
0.0032 meV/ A3, too. As described above, it was not possible to make reasonable
fits for the paramagnetic regime for larger u. Therefore, the widths in figures
and ¢ are jumping around a lot in this region.

When entering the FD regime the peak broadens in the experimental results in
figure [28| as well as in the theoretical ones in figure . For u ~ 0.015meV/ A at
about 250 mT, for v ~ 0.0081 me\//A3 at about 200 mT and for v ~ 0.0032 me\//A3
at about 20mT, we observe an increase of the widths in all cases. It reaches a
maximal width and then decreases again. However, these widths are huge compared
to the ferromagnetic resonance (gray line) and also to the maximum positions. This
is in contrast to the experiments. On the one hand, this is due to the problems
with the fitting of the calculated susceptibilities. On the other hand, it means that
we can barely call these fitted broad features peaks at all.
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Part 1V.
Conclusion

Chiral paramagnets have been well studied over the past years. One special phase
only arising in chiral magnets is the so called fluctuation disordered regime. In
this phase space region three-magnon processes give rise to a shift of the resonance
frequency compared to in the paramagnetic phase.

The aim of this thesis was to investigate the influence of strong fluctuations in the
fluctuation disordered regime. We examined the impact on the imaginary part of the
susceptibility and, therefore, on the resonance frequency measured in experiments.
These correlations are caused by the Dzyaloshinskii-Moriya interaction present in
chiral magnets. We calculated the self-energy using perturbation theory up to
second order in the parameter u, which is the pre-factor of the ¢*-term in the
Ginzburg-Landau theory. We calculated the correction of the imaginary part of
the susceptibility induced by the self-energy.

Without the correction to the second order self-energy diagram, the peak position

remains at the electron-spin resonance frequency

gpsB
Wierro = 7 .

Here, only one magnon is involved. The second order diagram includes three
magnon processes. For finite temperature, processes where two magnons are
absorbed and one is emitted or where two magnons are emitted and one is absorbed
dominate the self-energy. Processes with three quasi-particles being absorbed or
emitted contribute only insignificantly.

At small magnetic fields we observe that the position of the maximum of the
imaginary part of the susceptibility is shifted to higher frequencies compared to the
electron-spin resonance frequency. For higher magnetic fields when entering the
paramagnetic regime, the peak position approaches the ferromagnetic resonance.
The Dzyaloshinskii-Moriya interaction becomes negligible and the chiral magnet
behaves like an ordinary paramagnet. However, in the calculation presented in this
thesis the paramagnetic behaviour is not reproduced exactly. We run into troubles
when increasing the magnetic field. The maximum position approaches zero before
being shifted to wiero again. This unphysical behaviour can be explained by the
large contribution of Rell;;(0). It remains an open problem which requires further
examination.

The experimental resonance measurements show an approximately constant maxi-
mum frequency in the fluctuation disordered regime [4]. This frequency is higher
than wero. The shift of the resonance frequency to higher values can be explained
by three magnon processes. However, we are not able to reproduce the exact
behaviour seen in the experiments. Furthermore, we can only make qualitative

63



Calculation of the susceptibility

statements since we have to choose a comparably small value for the perturbation
parameter u for the final calculation. The experimental value presented in [I]
exceeds the ones consistent with perturbation theory.

The original hypothesis was that skyrmion type fluctuations are the reason for
the behaviour in the resonance experiments. We proved that this is not the case.
The contribution from skyrmionic fluctuations is negligibly small. When increasing
the frequency these fluctuations are the first which can arise at zero temperature.
However, for higher frequencies they are again not dominant.

Apart from the peak falling below w.,, there are more open questions in the
calculation, which we were not able to answer yet. The Kramers-Kronig calculation
does not precisely agree with the direct calculation of the respective elements. Total
agreement and a lower value at zero frequency of Rell;; could also not be achieved
by introducing a higher order kinetic term proportional to ¢*, which effectively
corresponds to an earlier high energy cutoff. Further investigations will be required
to solve the problem of the maximum position of Im x;; approaching zero.

The Gaussian fits to the susceptibility do not have a high accuracy, especially for
magnetic fields between 200 and 400 mT and higher values of w. This leads to
mistakes in the maximum positions as well as in the widths. The low accuracy of
the fit notwithstanding, the widths obtained from the perturbative calculations are
already much bigger than experimentally observed. They are even bigger than the
maximum positions.

Obviously, this calculation does not give a full answer to the question what exactly is
happening in the fluctuation disordered regime. Higher orders of magnon interaction
will contribute. The whole calculation was done at zero momentum, i.e. for a
perfectly homogeneous magnetic field. In Munich experiments were performed at
finite momentum. In a next step, one could include ¢’ # 0 and repeat the calculation.
The second diagram in equation could no longer be neglected in this case.

We could not reproduce exactly the experimentally observed behaviour. For a
totally satisfying explanation of the experiments it is necessary to find a solution
such that the maximum position does not approach zero. Nonetheless, we can
conclude that in the fluctuation disordered regime three magnon processes give rise
to a shift of the resonance frequency to higher frequencies at low magnetic fields.
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Part V.
Appendices

A. Derivation of the self-energy in the paramagnet

In this appendix we will outline the derivation of the self-energy for the param-
agnet. This is used in the calculation of the electron-spin resonance frequency in
lsubsection 3.1} The calculation is taken from [I§].

We consider the effective theory for metals where we have a spin-spin interac-
tion between the electrons. The effective Lagrange density in imaginary time
representation is given by

N
clov =10+ o+ 7 (w50 (A1)
We do a Hubbard-Stratonovich transformation and arrive at
) i\ Lol
LW, 3] =91 (0: +e)p + (wgw) ~90—4—jso2- (A2)

By varying the action with respect to the Hubbard-Stratonovich field, we find

G=Jylay. (A.3)

@ is the order parameter of the theory. When integrating out the fermionic fields,
we get the effective Lagrange density for the order parameter:

1 15 U Lon2
E[¢]=§¢TG YAt (P7)7 (A4)
The inverse Green’s function has the form
1
2J

Therefore, we have to calculate the self-energy II. Perturbation theory and Fourier
transformation lead to

I (q, Q) = % S T o) ol gF + T+ Q)] (A0)
ko wn

where the frequencies w,, and €, are Matsubara frequencies, o' is the i-th Pauli
matrix and the electron Green’s function is given by

—

g;ﬁl<k7wn) =1lwy — € — SBO : 0_3015 . (A?)
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This holds only in the presence of a finite gy, the order parameter at zero frequency.
To calculate the self-energy, we need to invert this object:

» 1 1= 53 Fas
aFw)=S" = . A8
Jap (ks wn) 2 im —at v (A8)

Inserting this into the self-energy, evaluating the trace, and integrating out the
Matsubara frequency w, leads to

; (€ — sp0) — n(€prqg — S'po) [1+ 88" ;. §'—s .. .
HJ 0+ e™
;Ss’zﬁ:lZQ —ek+q—|—ek—|—(5—|—5)g00 2 2 %
+ 58’ (@hgh — 5“)} . (A.9)

When ¢y and ¢ are small, we can approximate » , —n’(ex) ~ v and arrive at
k

ij (7 v-q—2 : an P ij
H”(%%)zZ[UZ. B (8@6ijn¢o—(¢owé—5]))

- Szilen—v-q—i-ngoo

U i Al
+VZQn_77 —»900900:| * ( N O)

v is the density of states. The velocity ¢ has the same direction as l;:, ie. U= v/%,
where k = k/|k|. We choose the magnetic field, and therefore @, to point in the
z-direction as we have done in this whole thesis. Then we can write down the
self-energy in matrix form.

, (100 1/7T|Q|000 q [0 10
H(qun):—5 0 1 0f+- =0 0 0 +ivg “11 0 0]. (A11)
00 1 [ \o o 1 Yo\o 0 0

This is the form of the self-energy, which is used in [subsection 3.1] to calculate the
electron-spin resonance frequency.
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B. Behaviour for high frequencies -
neglected configurations

In [subsection 6.4 we investigated the asymptotic behaviour of Im II;; (w) in the
limit of w — oo. We assumed that ¢; > 1+ /{ﬁ for all 7, i. e. we considered triangles
with all three sides being large.

However, triangles which have at least one short side could also contribute. In this
appendix we will show that this is not the case.

When all momenta are small, i.e. ¢; <

~Y

1+ Iiﬁ V i, there will be no solution for

arbitrary large frequencies of the delta function & (w — o16(w — 01G1) — 02€(0245) —
0'36(0'3@5),)). This means that there is no contribution from small triangles to large
energies w — 0Q.

It is not possible to construct a really large vector by adding two small ones. It
remains the case of two large vectors in a configuration such that the third one is
small to consider.

For simplicity we assume that ¢ is the short one, i.e. |ga| S 1+ /{ﬁ. For ¢; and ¢3
thus holds the asymptotic behaviour derived in [subsection 6.4] The matrix element
only depends on ¢, since the argument of a still converges to a constant value for
¢, and ¢3. We will write Re A(¢2) as a short hand notation. Again, we consider the
case 0; = 09 = +1 and 03 = —1. The argument works for any other combination
of the o; analogously.

We consider the imaginary part of the diagonal element of the self-energy in this
limit.

2m €(q ) (@) — e(—q) L.
ImH - —= - = Rerl 092,03 I 6ﬁ1 72443,
11 E [ <q2) ( 3) 02, (Q1 q2 Q3) q1+G2+43,0

0 (w—€(qr) — €(@) + e(—))

3 —wReA(R) _ @ — el S 22
ﬁQ/d(h/ U G TR R )<§>
1

For w — o0, €(¢) is negligible in the delta function. We introduce spherical
coordinates for ¢, integrate over the angle ¢ and choose 6 to be the relative angle
between ¢; and ¢>. This leads to

or)? A 7 5(1+2
Il - — 20 /d3 ReA() / /d981n + 20142 c05(0)) (B.2)
B ) q + @ + 2¢1q2 cos(0)

1+/€
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Using the delta function and ¢; > ¢o allows us to write

92 A cos(9)+ “
ImH11—>—( ™) / d? Re q /dq1 /d@sm 2q1q2> . (B.3)

232 67 Q1 (C.I% —w)

1+/~c

Performing the integral over  gives a lower limit for ¢;, which is larger than the
original one for sufficiently high frequencies. We can perform the integration over
¢, and obtain

(27)? / P Re A(¢) 7
ImIly; - ——5- d
ST @ ) et
w/(2g2)
(27)2 / s ReA(q) ( ) ( w? )
462 = 326(2) 443 443
220 (B.4)

In the limit w — 0o we can neglect w compared to w? and the two logarithmic
terms cancel. Therefore, it was reasonable to consider only triangles with solely
large momenta in [subsection 6.4
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C. Monte Carlo integration

Since it is not possible to analytically integrate the five dimensional integral, at
which we arrive in part [T, we do it numerically. We use Monte Carlo integration
which we implement in a C++ program.

To solve an integral numerically with Monte Carlo integration, one picks N points
out of the volume randomly and approximates the integral by a sum over the
function values at these points [24].

In the one dimensional case this approximation reads

L N

- /dxf(x) = 23 fw). (C.1)

0 =1

with z; € [0, L] randomly distributed. The error can be estimated by the standard
deviation:

I N , N 2
Al = N (;f (ﬂfz)) - <; f(%)) : (C.2)

The more points one chooses, i.e. the larger N gets, the better the approximation
since the error is proportional to 1/N.

This method can be directly generalised to higher dimensional integrals. The
dimensionality is denoted by n. Now, the points Z; are randomly picked out of the
volume V', Z; € V', and the approximation looks exactly the same as in the one

dimensional case:
N

= /V P () = 5 D0 (C3)

The error is estimated by

bl (r)-Era) . e

The Monte Carlo integration is implemented in the program using [23].
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