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Chapter 1

Introduction

1.1 Motivation

The physics of metals at very low temperatures has attracted much attention over the last
decades. Since the discovery of superconductivity in mercury by H. K.Onnes in 1911, [1],
it has been a constant challenge for physicists to understand the properties of metals in
full detail.
In this thesis we will consider a special phase of metals which is called the ’nematic phase’.
It is characterized by a hybridization between the conduction electrons and the localized
electrons that effectively leads to a quadrupolar distribution of the conduction electrons
w.r.t. the ions. Meanwhile the translational symmetries of the system are preserved. Here
we will describe this phase in an effective Ginzburg-Landau theory which was introduced
in [2].
The first experimental evidences for nematic phases in metals were provided in 1999 by [3].
They observed an anisotropic restistance tensor in an electronic configuration in the first
Landau level of a two-dimensional electron system. These measurements were interpreted
in [4] as the occurence of special kind of nematic phase which is called the “stripe nematic
phase”.
The central question we want to answer in this thesis is what happens if we couple the
electrons to strain fields of the underlying lattice. At low temperatures this coupling can
have a large effects for the system. The most popular phenomenum is the occurence of
a superconducting phase. In our system the anisotropy of the nematic phase leads to
hybridization effects between the density fluctuations of the Fermi liquid and the strain
fields of the lattice. The quantum fluctuations in the Fermi liquid only become relevant in
the vicinity of a quantum critical point where the thermal fluctuations are weak. Hence
it is necessary to calculate the properties of the uncoupled Fermi liquid at the isotropic-
to-nematic qunatum critcal point. This has been done in two dimensions [5], [6] via a
Hertz-Millis theory. Here we will adopt these calculations to derive the properties of the
three dimensional Fermi liquid. In contrast to the two dimensional case, it turns out that
the Hertz-Millis theory in three dimensions always converges.
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2 1.2. OUTLINE

1.2 Outline
We start with an introduction to the basic principles of elasticity in crystals. Thereby
we follow the historical route and first build up the elasticity theory for homogeneous
macroscopic objects. The basic quantities will then be modified for the correct treatment
of deformations in crystals. Strain in crystals can be seperated into static and dynamic
strain. On the one side the physics of static strain lead to criterions for the macroscopic
stability of the crystal. On the other side the dynamic strains, which are nothing else than
acoustic phonons, determine the thermodynamic properties of the lattice. After the basic
principles of lattice transformations are explained, we compare the specific heat of stable
crystals with the specific heat at a lattice transition point.
The next chapter describes a Fermi liquid with quadrupolar interaction. The Fermi liquid
model is the standard model for electrons in metals at low temperatures. A detailed
discussion of the Fermi liquid and the interaction with phonons can be found in [7]. We
will not repeat the basic definitions but focus on the effects of the quadrupolar interaction.
Via a Hubbard-Stratonovich transformation we can describe the interaction effects by
bosons which resemble quadrupolar strain fluctuations of the Fermi sphere. The result of
this chapter is an effective action for these bosons. It predicts large fluctuations of the
bosons when the Fermi liquid is close to the quantum critical point.
With the knowledge about the two systems we are then ready to analyse the coupled system
of phonons and electrons. The interaction is thereby mediated by the quadrupolar bosonic
excitations. The symmetries of the strain and the bosons lead to important enhancement
effects in the coupling. In the action this is resembled by a bilinear interaction term between
the critical bosons and the lattice degrees of freedom. These will be analysed in detail. For
that we calculate the free energy and the specific heat of the full system. We end up with
two terms corresponding to the Fermi liquid and the lattice with renormalized parameters.
One of the central results is the identification of the boson mass r as a tuning parameter of
the coupled system. At the critical value r0, which is completely defined by the crystal, the
electrons induce a symmetry transformation of the lattice for low temperatures. Meanwhile
the criticality of the Fermi liquid is suppressed for T → 0. Finally we analyse the fermionic
self energy correction for the coupled system and the effective electron-phonon vertex.



Chapter 2

Crystal Elasticity Theory

In this chapter the description of deformations of crystals via the elasticity theory is pre-
sented. The analysis of deformations is a long studied topic in physics. Originally it was
developed for macroscopic homogeneous objects, e.g. steel beams in buildings.
In the end we want to describe the strains and stresses inside crystals. The idea is to do
this by using the formalisms of the elasticity theory. For that we have to consider the
effects of the lattice symmetries of the crystals.
In the following we start with an introduction into the classical elasticity theory. The basic
definitions are based on the books [8] and [9]. Thereby we focus ourselves on the most
important quantities which are relevant for the description of crystals. These will then be
used to develop the crystal elasticity theory. Finally we end up with a description of the
dynamics of strain, i.e. of phonons.

2.1 Elasticity

Elasticity here means the response of a solid to strains or stresses which are induced from
outside. The deformations can be described by a displacement field uuu(rrr, t) . It describes
the displacement of the solid at the place rrr and time t. In crystals this would describe the
difference between the new position of the atoms at place rrr′(rrr, t) and its original position
rrr. From here on it will be assumed that the differences of the displacement between two
neighbouring atoms is small, i.e. ∂xu� 1.

2.1.1 The Strain Tensor

We start with the consideration of a general strain field uuu(rrr, t). All informations about
the strain are contained in this field. So in general it is possible to use it as the central
quantity. But in practice it turned out that it is better to use the so called strain tensor.
The advantage of this quantity is that it only measures the local change of distances in
the solid. All homogeneous displacements, which don’t change the properties of the solid,
are not contained.
So we consider now two places rrr1 and rrr2 in the undeformed material with distance drrr =
rrr1−rrr2. The solid shall now be deformed according to the strain filed uuu. The square of the

3



4 2.1. ELASTICITY

new distance is given by

dl2 =
(
drrr + uuu(rrr1)− uuu(rrr2)

)2

≈dxidxi + 2
∂ui
∂xj

dxidxj +
∂ui
∂xj

∂ui
∂xk

dxjdxk

=drrr2 +
(∂ui
∂xj

+
∂uj
∂xi

+
1

2

∂uk
∂xi

∂uk
∂xj

)
dxidxj

(2.1.1)

For the approximation the formula uuu(rrr1)−uuu(rrr2) = ∂uuu
∂rrr

(rrr1− rrr2) was used which is valid for
infinitesimal distances.
One can see now that the new distance is completely given by the matrix

∂ui
∂xj

+
∂uj
∂xi

+
1

2

∂uk
∂xi

∂uk
∂xj

and the initial distance drrr. The matrix can be further simplified by neglecting the term of
order uuu2. This leads to the definition of the strain tensor

uij(rrr, t) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
The strain tensor is symmetric and thus has 6 degrees of freedom. Furthermore the tensor
is now invariant under translations of the whole crystal. Hence this is a much more natural
basis for the description of crystals than the original field uuu.

2.1.2 The Stress Tensor

To describe forces on the crystal one uses the strain tensor σij(rrr, t). This tensor is a
symmetric 3x3 matrix and determines completely the stress in the body by the following
relation:
For a given unit-vector nnn the product

FFF j = σijnnni

gives the forces acting on the plane perpendicular to nnn in direction eeej. So the diagonal
elements of the stress tensor σii determine the pressure along the axes. The off-diagonal
parts determine the shear components of the stress. In other words one can say that the
first index denotes the direction in which the force acts and the second one denotes the
direction of the outer normal of the plane on which the force is applied.
In experiments one often considers samples with an uni-axial outer pressure p. The stress
tensor in the sample then has the form

σ =

−p 0 0
0 −p 0
0 0 −p


In general one has also forces, such as gravity, which act on the whole volume and not only
on the surface. But these forces can be considered as homogeneous on our length scales.
Thus they only lead to constant energy shift in the free energy and do not influence the
thermodynamic properties of the system.



CHAPTER 2. CRYSTAL ELASTICITY THEORY 5

2.1.3 Hooke’s Law

Up to now the stress and strain of solids has been treated as separate objects. In reality,
strain of course also leads to stress in the solid and vice versa. The relationship between
these two quantities depends on the microscopic properties of the solid. Later these will
be discussed in more detail. Here we take a more phenomenological point of view. The
lowest order interaction one can consider is Hooke’s Law

σij = Cijklukl (2.1.2)

with a 4-tensor Cijkl. This tensor is called Elastic Modulus Tensor. By its definition
and the symmetries of σij and ukl one can derive the following symmetries

Cijkl = Cklij

Cijkl = Cjikl = Cijlk

By these symmetries the elastic modulus tensor possesses only 21 components. In crystals
there are always certain symmetries of the lattice which further reduces the number of
independent components.
In the following the tensors will represented in the Voigt notation. The idea behind this
notation is to use the symmetries of tensors to represent them as tensors of lower order.
In three dimensions this is done by the bijection

ρ(i, j) = i for i = j

ρ(i, j) = 9− i− j for i 6= j

One can see that this mapping is only well defined, if the original tensor components are
invariant under index exchanges i↔ j.

The stress tensor
(
σij
)

=

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 becomes a vector in the Voigt notation of the

form (
σα
)

=
(
σ1, σ2, σ3, σ4, σ5, σ6

)T
=
(
σ11, σ22, σ33, σ23, σ13, σ12

)T
The strain tensor

(
uij
)

=

u11 u12 u13

u12 u22 u23

u13 u23 u33

 is mapped to

(
uα
)

=
(
u1, u2, u3, u4, u5, u6

)T
=
(
u11, u22, u33, 2u23, 2u13, 2u12

)T
The factor 2 in the last three entries comes from the double counting of the terms with
i 6= j, k 6= l in the free energy F = 1

2
uijCijklukl. It ensures that in the new notation the

free energy can be written as

F =
1

2
uαCαβuβ
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For the elastic modulus tensor one can apply the mapping on the first two indices and on
the last two indices separately. This maps then the 4-tensor to a 2-tensor of the ordering

(
Cαβ

)
=


C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212


With the symmetry Cijkl = Cklij this can be reduced to

(
Cαβ

)
=


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


This form resembles the 21 degrees of freedom of in the elastic modulus tensor. The
Hooke’s law in Voigt notation is now given by a simple matrix-vector product

σα = Cαβuβ

2.1.4 Equation of Motion for Strain

The forces in the body have to add up to zero since we are not interested in the total
motion of the body. So for the i-th component the equation

1

2

∫
V

d3rρ∂2
t ui =

∫
∂V

ds σijnj

has to be fulfilled. On the right hand side we can apply Gauss’ theorem∫
∂V

ds σijnj =

∫
V

d3r
∂σij
∂xj

This leads then to the equation of motion for strain without body forces:∫
V

d3r
[
ρ∂2

t ui −
∂σij
∂xj

]
= 0 (2.1.3)

With Hooke’s law we can write this in the equivalent form∫
V

d3r
[
ρ∂2

t ui −
∂

∂xj

(
Cijklukl

)]
= 0 (2.1.4)
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2.1.5 Free Energy

In general, the free energy F is given by

F = E − TS

where E denotes the internal energy, T the temperature and S the entropy of the body.
We define E to be zero when there is no strain. The internal energy of a given strain field
uuu(rrr, t) can be calculated by considering the process of deforming an initially undeformed
body. The forces which act on the body in this process are applied on the surface.
For these surface forces the rate at which work is done is given by∫

∂V

σijnj∂tuids =

∫
∂V

(
σij∂tui

)
njds

Again one can use Gauss’ theorem to write this as∫
V

d3r
∂

∂xj

(
σij∂tui

)
=

∫
V

d3r
(∂σij
∂xj

∂tui + σij∂tuij

)
(2.1.5)

With the equation of motion the first term on the right hand side can be written as∫
V

d3rρ
(
∂2
t ui∂tui

)
= ∂t

(1

2

∫
V

d3rρ
(
∂tuuu
)2
)

The integral on the right hand side is the kinetic energy in the system. Hence the first
term of eq. 2.1.5 corresponds to the change of the kinetic energy.
Finally, the second term can be identified with the change of the intrinsic energy

U =

∫
V

d3r σijuij =
1

2

∫
V

d3r uijCijklukl

Hence the free energy is given by

F = F0 +
1

2

∫
V

d3r uijCijklukl

where F0 contains the thermal contributions which do not depend on the strain.
With the free energy and the equation of motion we now have the two central formulas
which are needed in the thermodynamic description of crystals. But before these can be
applied one has to clarify its meanings in the non-homogeneous crystals.

2.2 Elasticity in Crystals
In the previous section the basic concepts of the elasticity theory were introduced. Now
we want to apply these on crystals. The most important difference in crystals compared to
homogeneous bodies is that the atoms or molecules are distributed in a lattice structure.
Hence fields in the crystals such as strain fields can only be defined on discrete points, too.
Furthermore the symmetries of the lattice lead to the restriction that all physical quantities
of the crystal also have to satisfy these symmetries. Before going into more detail, the basic
definitions and properties of fields in crystals will be repeated in the following section.
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2.2.1 Definition of Strain Fields in Crystals

The crystal lattice is given by

R =
{
RRRnnn = n1aaa1 + n2aaa2 + n3aaa3

∣∣nnn =
(
n1, n2, n3

)
∈ Z3

}
where aaa1, aaa2, aaa3 are the basis vectors of the lattice. The structure of the atoms or molecules
which lie on the lattice points will not be considered here. We will treat them as point
masses. This is sufficient for our purposes because we are only interested in the low energy
properties of the crystal.
So the crystal is a lattice which is invariant under translations rrr → RRRnnn+rrr. This implies that
any physical quantity ψ(rrr) of the crystal also has to be invariant under these translations,
i.e.

ψ(rrr) = ψ(rrr +RRRnnn) (2.2.1)
The Fourier transformed version of this field is

ψ(rrr) =
∑
qqq

ψqqqe
−iqqq·rrr

Now the equation 2.2.1 implies

eiqqq·RRRnnn = 1 ⇔ qqq ·RRRnnn = 2πm for m ∈ Z

This condition for qqq implies that the momentum has to be an element of the reciprocal
lattice G defined by

G =
{
GGGmmm = m1bbb1 +m2bbb2 +m3bbb3

∣∣mmm =
(
m1,m2,m3

)T ∈ Z3
}

The basis vectors are defined by

bbb1 = 2π
aaa2 × aaa3

det
(
aaa1, aaa2, aaa3

) , bbb2 = 2π
aaa3 × aaa1

det
(
aaa1, aaa2, aaa3

) , bbb3 = 2π
aaa1 × aaa2

det
(
aaa1, aaa2, aaa3

)
Hence the spacial dependence is given by

ψ(rrr) =
∑
qqq∈G

ψqqqe
−iqqq·rrr

The natural next step is to consider the dynamics of such a field. For this one has to know
the forces which are acting in the crystal. In general these can have multiple forms and
origins. Here we will from now on only consider the strain fields.
We start again with the expansion of the internal energy w.r.t. the strain uuu(rrr):

U = U0 +
∑
nnn

∂Unnn(0)

∂unnn,i
unnn,i +

1

2

∑
nnn,mmm

∂2Unnn,mmm(0)

∂unnn,i∂ummm,j
unnn,iummm,j +O(u3) (2.2.2)

The sum is taken over all atoms RRRnnn, RRRmmm. The static term U0 can be set to zero. The first
derivative of the energy w.r.t. the strain has to vanish at the equilibrium position. Other-
wise there would be a state with lower energy which is in contradiction to the definition of
the equilibrium position. So the internal energy to second order in the strain is given by

U =
1

2

∑
nnn,mmm

∂2Unnn,mmm(0)

∂unnn,i∂ummm,j
unnn,iummm,j
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This looks quite similar to the internal energy we obtained in the elasticity theory. The
differences come from the discrete lattice points we are dealing with.

2.2.2 Continuum Limit

As mentioned before we are only interested in the low energy properties of the crystal. In
terms of phonons this means that we are in the long wavelength limit. There, the short
distances between the atoms become irrelevant. In term of fields in the crystal this means
that we can consider them as continuously defined for all values of rrr.
The internal energy is then given by

U =
1

2

∫
d3r1 d

3r2 ui(rrr1)
∂2U0(rrr1, rrr2)

∂ui(rrr1)∂uj(rrr2)
uj(rrr2)

where U0(rrr1, rrr2) is the continuum version of Unnn,mmm(0). The forces do not depend on the
microscopic structure of the molecules but only act at the center of mass. Hence we can
write ∂2U0(rrr)

∂ui(RRR+rrr)∂uj(RRR−rrr) = Uij(rrr1 − rrr2). In the internal energy we can then introduce new
coordinates RRR = 1

2
(rrr1 + rrr2) and rrr = 1

2
(rrr1 − rrr2) and get

U =
1

2

∫
d3Rd3r ui(RRR + rrr)Uij(rrr1 − rrr2)uj(RRR− rrr)

The interaction becomes irrelevant for large distances. So we can expand the strain fields
in rrr:

U =
1

2

∫
d3Rd3r

[
ui(RRR) +

∂ui(RRR)

∂rk
rk

]
Uij(rrr1 − rrr2)

[
uj(RRR)− ∂uj(RRR)

∂rl
rl

]
=

1

2

∫
d3Rd3r

{
ui(RRR)Uij(rrr1 − rrr2)uj(RRR)− ∂ui(RRR)

∂rk

[
rkUij(rrr1 − rrr2)rl

]∂uj(RRR)

∂rl

}
The integral over rrr in the first term vanishes, i.e. this term is zero. Physically this term
resembles the internal energy from a constant strain which is just a translation of the
crystal. With the definition

Cijkl = −1

2

∫
d3r rkUij(rrr1 − rrr2)rl

The internal energy can finally be written in the form we already know from the elasticity
theory

U =
1

2

∫
d3Ruij(RRR)Cijklukl(RRR)

From the definition of the elastic modulus tensor one can recover the symmetries in the
indices which were used in the elasticity theory. The special feature here is that we still
have lattice symmetries. These imply some features for this tensor which will be discussed
in the following section. Moreover one can see that the Cijkl are space independent.
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2.2.3 Elastic Modulus Tensor in Crystals

If a crystal has a certain symmetry, all quantities of the crystal also have to satisfy this
symmetry. Thus the free energy

F =
1

2

∫
V

d3r uijCijklukl =
1

2

∫
V

d3r uαCαβuβ

has to be invariant under all symmetry transformation and for all possible values of the
uij. The corresponding equations lead to restrictions for the elastic modulus tensor. For
example, in a cubic lattice, it has to be of the form

Ccubic
αβ =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


For a tetragonal lattice one has less symmetries, i.e. there are more degrees of freedom in
the elastic modulus tensor

Ctetra
αβ =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

 (2.2.3)

The equation of motion 2.1.4 then simplifies to∫
V

d3r
[
ρ∂2

t ui − Cijkl
∂ukl
∂xj

]
= 0 (2.2.4)

for i = 1, 2, 3. A complete list of the strain tensors in the different lattices can be found in
appendix A of [10].

2.3 Acoustic Phonons
Later we will analyse the thermodynamics of acoustic phonons at a phase transition of the
underlying lattice. For that we have to understand their treatment within the elasticity
theory. This will be introduced in the following.
Phonons can be considered as strain fields of the form

uuu(rrr, t) = eeeq̂ exp
[
i
(
qqq · rrr − ω(qqq)t

)]
where eeeq̂ denotes the polarization vector. It direction depends on the direction of the
momentum qqq. In the following we will drop the index q̂.
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A very detailed introduction of phonons as strain fields can be found in [9]. The strain
tensor for this field becomes

uij = i(qiej + qjei) exp
[
i
(
qqq · rrr − ω(qqq)t

)]
The corresponding equation of motion

ρ∂2
t ui(rrr, t) = Cijkl∂j∂iul(rrr, t)

then reads in the Fourier transformed way

ρω2(qqq)ui(qqq, ω) = Dil(qqq)ul(qqq, ω) (2.3.1)

where Dil(qqq) = Cijklqjqk.
We see that the solutions of these equations are given by the eigenvectors and eigenvalues of
the dynamical matrix Dij. This matrix is symmetric and positive definite. Hence there
are always three real eigenvalues and eigenvectors. These correspond to three different
dispersion relations ωi(qqq) with its polarization directions uuui.
Form the definition of Dij one can conclude that the relation

ω(qqq) = qv(q̂)

has to be valid where qqq = qq̂, ||q̂|| = 1. This means that we have a dispersion proportional
to q. The function v(q̂) resembles the sound velocity in the direction q̂.
The direction dependence of the dispersion is in general hard to calculate. One has to find
the roots of a polynomial of order three. In principle this can be done analytically, see
appendix A, but leads to very complicated results. They are only used to determine the
general structure for the dispersions.
In practice we only use local approximations for the dispersion. This means that we
consider the dispersion in small neighborhoods around the directions we are interested in.
In these neighborhoods we can then approximate the dispersion by perturbative solution
of the eigenvalue equation 2.3.1. These will have much simpler forms. In the following
section the local approximations for some lattices and directions are presented.

2.3.1 Cubic Lattice Symmetry

For a cubic lattice the elastic modulus tensor in Voigt notation reads as

C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


This is one of the most simplest forms for the elastic modulus tensor in lattices. It is given
here as a basic example. Its corresponding dynamical matrix is

D(qqq) =

C11q
2
1 + C44q

2
2 + C44q

2
3 (C12 + C44)q1q2 (C12 + C44)q1q3

(C12 + C44)q1q2 C44q
2
1 + C11q

2
2 + C44q

2
3 (C12 + C44)q2q3

(C12 + C44)q1q3 (C12 + C44)q2q3 C44q
2
1 + C44q

2
2 + C11q

2
3


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which can be written in index notation as

Dij = (C12 + C44)qiqj + δij
[
C44q

2 + (C11 − C12 − 2C44)q2
i

]
Along the symmetry axes this matrix assumes a much simpler form:

1. qqq ⊥ [1, 0, 0]

D =

C44(q2
2 + q2

3) 0 0
0 C11q

2
2 + C44q

2
3 (C12 + C44)q2q3

0 (C12 + C44)q2q3 C44q
2
2 + C11q

2
3


2. qqq||[1, 1, 0]

D =

C11q
2
1 + C44q

2
1 (C12 + C44)q1q2 0

(C12 + C44)q2
1 C44q

2
1 + C11q

2
1 0

0 0 C44q
2
1 + C44q

2
1


This fact can be used in the local description of the dispersion relations.

2.3.2 Tetragonal Lattice Symmetry

For a tetragonal lattice the elastic modulus tensor in Voigt notation reads as

C =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66


In comparison with the elastic modulus tensor for the cubic lattice we now have more
independent components, namely C66 and C13. The dynamical matrix then becomes

D(qqq) =

C11q
2
1 + C66q

2
2 + C44q

2
3 (C12 + C66)q1q2 (C13 + C44)q1q3

(C12 + C66)q1q2 C66q
2
1 + C11q

2
2 + C44q

2
3 (C13 + C44)q2q3

(C13 + C44)q1q3 (C13 + C44)q2q3 C44q
2
1 + C44q

2
2 + C33q

2
3


Its form for qqq||[1, 1, 0] is given by

D(qqq) = q2

C11 + C66 C12 + C66 0
C12 + C66 C66 + C11 0

0 0 2C44


The eigenvectors are then given by

vvv1 =
1√
2

(
1, 1, 0

)T
, vvv2 =

1√
2

(
1,−1, 0

)T
, vvv3 =

(
0, 0, 1

)T
with eigenvalues

ω1 =
(
C11 + C12 + 2C66

)
q2, ω2 =

(
C11 − C12

)
q2, ω3 = 2C44q

2 (2.3.2)

This direction will later play an important role. Although we can determine the eigensys-
tem for D(qqq) is general, it will turn out that it is sufficient in many cases to consider only
its local form.
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2.3.3 Phonons within Quantum Field Theory

In quantum field theory the strain field is treated as an operator field. The field operator
form of the strain is

uuu(rrr, t) =
1√
V

∑
qqq

3∑
α=1

eeeα(qqq)
(
u†α(qqq)ei

(
qqq·rrr−ωα(qqq)t

)
+ uα(qqq)e−i

(
qqq·rrr−ωα(qqq)t

))
(2.3.3)

where the eeeα(qqq) denote the eigenvectors of the matrix D(qqq). ppp(rrr, t) := ρu̇uu(rrr, t) can be
considered as the momentum at the position rrr and time t. In accordance with quantum
mechanics the quantization of the field is defined to obey the commutation relation[

pi(rrr, t), uj(rrr
′, t)
]

= −iδ(rrr − rrr′)δij (2.3.4)

From this relation we can now derive the commutation relations for the operators uuu(qqq) and
uuu†(qqq) in momentum space by inserting 2.3.3 into 2.3.4. This leads to∑

qqq,qqq′,α,α′

eα,i(qqq)eα′,j(qqq
′)
(
iωα(qqq)

)
×

×
{[
uα(qqq), uα′(qqq

′)
]

exp
(
i
(
qqq · rrr + qqq′ · rrr′ − t(ωα(qqq) + ωα′(qqq

′))
))

+
[
uα(qqq), u†α′(qqq

′)
]

exp
(
i
(
qqq · rrr − qqq′ · rrr′ − t(ωα(qqq)− ωα′(qqq′))

))
−
[
u†α(qqq), uα′(qqq

′)
]

exp
(
− i
(
qqq · rrr − qqq′ · rrr′ − t(ωα(qqq)− ωα′(qqq′))

))
−
[
u†α(qqq), u†α′(qqq

′)
]

exp
(
− i
(
qqq · rrr + qqq′ · rrr′ − t(ωα(qqq) + ωα′(qqq

′))
))}

=
i

ρ
δ(rrr − rrr′)δij

Here one can read of the commutation commutation relations[
uα(qqq), uα′(qqq

′)
]

=
[
u†α(qqq), u†α′(qqq

′)
]

= 0 (2.3.5)[
uα(qqq), u†α′(qqq

′)
]

=
[
u†α(qqq), u′α(qqq′)

]
=

1

2ρωα(qqq)
δqqq,qqq′δα,α′ (2.3.6)

With this set of equations for the quantum field version of the acoustic phonons, we can
now apply the standard machinery of quantum field theory. A detailed derivation of the
phonon propagator in a general basis for uuu

G−1
ph (qqq,Ωm)ij = ρΩ2

mδij + qkCikljql

is given in [10]. Later we will use the representation of the propagator in the eigenbasis
of D(qqq)

G−1
ph (qqq,Ωm)ij = ρ

(
Ω2
m + ω2

α(qqq)
)
δij

This propagator has a slightly different form compared to the common phonon propagator
G−1

ph, alt(qqq, ω) = ω2
α(qqq)

ω2−ω2
α(qqq)

δij which can be found in textbooks,e.g. [7]. The reason lies in
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the field uuu we are considering. Normally one normalizes the fields such that they satisfy
the canoncial commutation relations. Here this makes no sense because later we want to
describe the three acoustic modes as strain fields. A normalization would lead to different
units for the dynamic and the static parts of the strain.
The resulting action for bare phonons is

S[uuu†,uuu] =
∑
qqq,Ωm

u†α(qqq,Ωm)ρ
(

Ω2
m + ω2

α(qqq)
)
uα(qqq,Ωm) (2.3.7)

2.3.4 Thermodynamics of Acoustic Phonons

2.3.4.1 Free Energy

The free energy density of a quantum mechanical system is defined as

F = −T
V

lnZ

where Z is the partition sum. We already know the action of the acoustic phonons, see eq.
2.3.7. The partition sum can then be calculated via the field integral

Z =

∫
D[uuu†,uuu] exp

(
− S[uuu†,uuu]

)
The action is quadratic in the bosonic strain field. Hence the partition sum is just a
Gaussian integral which yields

Z = detGph =
∏

qqq,Ωm,α

gph,α(qqq,Ωm)

where gph,α(qqq, iΩm) = ρΩ2
m + ρω2

α(qqq) is the propagator of the phonon mode α. In the free
energy this product converts into a sum

F = −T
V

3∑
α=1

{∑
qqq,Ωm

ln
[
ρΩ2

m + ρω2
α(qqq)

]}
So the free energy can be split into three contributions from the different acoustic phonon
modes and each term can be considered separately.
The sum over the bosonic Matsubara frequencies Ωm is evaluated in appendix B. The result
is

F =
3∑

α=1

Fα(0) +
2

(2π)3

∫
d3q
(
T ln

[
2 sinh

(ωα(qqq)

2T

)]
− ωα(qqq)

2

)
2.3.4.2 Specific Heat

With the free energy we can calculate the specific heat via the formula

C(T ) = −T ∂
2F

∂T 2
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Insertion of the free energy of the phonons leads to

C(T ) =
2

(2π)3

3∑
α=1

∫
d3q

ω2
α(qqq)

4T 2
sinh−2

(ωα(qqq)

2T

)
The dispersions are in general linear in the momentum ωi(qqq) ∝ q. After the substitution
qqq → 2Tqqq the specific heat reduces to

C(T ) =
2T 3

π3

3∑
α=1

∫
d3q ω2

α(qqq) sinh−2
(
ωα(qqq)

)
This integral can be written in spherical coordinates. The integral over the momentum
can be evaluated analytically using ωα(qqq) = vα(q̂)q:

C(T ) =
2T 3

π3

3∑
α=1

∫
dΩ

π4

30v3
α(q̂)

=
π

15
T 3

3∑
α=1

∫
dΩ

1

v3
α(q̂)

The remaining integral over the direction of q̂ leads to a constant which only depends
on the elastic modulus tensor. An important feature of this formula is that the main
contributions come from the directions where the velocities are small.
For a dispersion of the form ω2(qqq) = v2

i q
2
i the specific heat becomes

C(T ) = T 3 4π2

15vxvyvz
(2.3.8)

In this section we recovered the common result

C(T ) ∝ T 3

for the specific heat of phonons. We used that the dispersion is proportional to q which
is true in most situation. Nevertheless there are also cases where this is wrong. Namely
close to a lattice transformation one has a modified dispersion. In the following section
the specific heat at the transition point from a tetragonal to a orthorhombic lattice will be
discussed.

2.4 Lattice Transformations

Symmetry breaking phase transitions occur in a large variety of physical systems. In this
section we want to describe a very important class of phase transitions which are the lattice
transformations. Such a transformation can be viewed as the deformation of the unit cell
of the lattice in a certain direction. Hence a good candidate for an order parameter are the
homogeneous strain fields. Our aim is to build up an effective Ginzburg-Landau theory for
these transformations in terms of strain.
We have seen that the symmetries of a lattice are closely related to the form of its elastic
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modulus tensor. Moreover we will show that the stability of a crystal is determined by the
eigenvalues of this tensor. To see this we consider again the free energy of a strain field uuu:

F =
1

2

∫
d3r uα(rrr)Cαβuβ(rrr)

Cαβ is a symmetric, positive definite 6x6 matrix. Hence there is always an orthogonal
matrix U such that

UTCU =


C1 0 0 0 0 0
0 C2 0 0 0 0
0 0 C3 0 0 0
0 0 0 C4 0 0
0 0 0 0 C5 0
0 0 0 0 0 C6


So the free energy becomes

F =

∫
d3r
(
UTuuuU︸ ︷︷ ︸

=:εεε

)
α

(
UTCU

)
αβ

(
UTuuuU

)
β

=

∫
d3r ε2

αCα

The strain components εα denote the strain into the directions of the eigenvectors of Cαβ.
The corresponding eigenvalues are commonly called stability parameters. In equilibrium,
the strain vanishes by definition. Now when a crystal is stable under small deformations,
this is equivalent to the fact that strain costs energy. This implies that all eigenvalues of
the elastic modulus tensor have to be positve. Large eigenvalues correspond to a crystal
which is more stable.
Thus a lattice transformation is possible only if at least one of the stability parameters is
going to zero. A detailed classification of all kinds of lattice transformations which can be
described in this way has been made by Cowley [11].
There are transition of first and of second order. The specific type for a given stability

Figure 2.1: The Landau potential for the strain with cubic term (left) and without cubic term
(right) for different potential parameters. One can see that the cubic terms leads to a jump of
the minimal strain ε.

parameter can be derived by considering the effective Landau potential of the associated
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strains. Here we only consider the cases where there is only one eigenvector to the given
eigenvalue. We denote this strain direction by ε:

V(ε) =
r

2
ε2 +

v

3!
ε3 +

u

4!
ε4

The Landau parameter r quantifies the stability of the crystal: it is stable for r > 0 while
it is unstable for r < 0. The key point is now that this potential must be invariant under
symmetry transformations of the lattice. This is in general not true for the cubic term. For
example, the strain term

(
uxx − uyy

)3 in the tetragonal lattice is not invariant under the
exchange x↔ y. Hence the cubic term is forbidden for this direction. Whether this term
is allowed for other lattice symmetries and strain directions can be read off in Cowley’s
tabular on page 4 of [11] in the last column.
When this term is forbidden we have the following minima of the potential

εmin =


0 for r ≥ 0

±
√
−6r

u
for r < 0

Hence we observe a continuous change of the strain at r = 0, i.e. the phase transformation is
of second order. Furthermore the Landau potential becomes very flat around the minimum
for r → 0. This leads to strong fluctuations of ε which are characteristic for second order
transitions.
Now if the cubic term is present we can write the potential in terms of the shifted variable
ε̃ = ε+ u

v
as

V(ε̃) =
r̃

2
ε̃2 +

u

4!
ε̃4 − hε̃

where we skipped the constant term and r̃ = r
2
− v2

4u
, h = rv

u
− v3

3u2 . Now the tuning of r
leads to a variation of the local minimas. A phase transition occurs when the potential has
the same value at the local minimas. The resulting change of the strain is discontinuous.
Hence we have here a phase transition of first order.
In this thesis we are interested in the second order phase transitions because they obtain
critical strain fluctuations near the transition point. Later we will investigate the case
when the fluctuations are excited by a coupled order parameter. The table 2.2 from [12]
contains all possible second order lattice transformations.
Besides being continuous or discontinuous, there is one more important attribute in the
classification of lattice transitions for which a cubic term doesn’t exist. This is the appear-
ance of soft phonons in the vicinity of the transition point. Soft phonons denote phonon
modes whose velocity vanishes in some directions. These directions can be either discrete
points or planes. Cowley classifies the possible cases as follows:

• Type 0: There are no soft phonons at the transition point.

• Type I: There are soft phonons whose velocity vanishes in discrete directions.

• Type II: There are soft phonons whose velocity vanishes if the direction lies in a
given plane.
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Figure 2.2: List of all second order lattice transformations from [12]. The first column denotes
the initial and final symmetries. In the second and third column the strain directions with the
corresponding stability conditions are given. The meaning of the last column is explained in the
main text.

In the following we consider the second order phase transition from a tetragonal lattice
to an orthorhombic lattice in more detail. In preparation for this, in the next section we
introduce the critical exponents. These exponents describe the behaviour of the relevant
physical quantities in the vicinity of the critical point.

2.4.1 Critical Exponents

In this section we introduce the one of the most important concepts in the description of
second order phase transitions, namely the critical exponents. These numbers describe the
scaling of the physical quantities of the system w.r.t. to the reduced distance τ = 1− T

TC
from the critical temperature TC . For example the specific heat satisfies the relation

C(T ) ∝ |τ |−α

The number α then denotes the critical exponent of the specific heat. A notation list for
the most important quantities is given in the following table:

Physical quantity Notation Critical Exponent
Specific heat C α

Correlation length ξ ν
Susceptibility χ γ

Another very important scaling relation is given by the critical values of the tuning pa-
rameter r and the critical temperature TC . It can be written in the form

TC ∝ rzν (2.4.1)

z is the dynamical critical exponent. It can be considered as the critical exponent for the
relation between the energy and the momenta

E ∝ qz
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For acoustic phonons with a linear dispersion we have ω(qqq) ∝ q we have

E(qqq) ∝ ω(qqq) ∝ q

, i.e. z = 1. In the next section we will see, that there are lattice transformations,such as
the tetragonal to orthorhombic lattice transformation, where we get a dispersion relation
proportional to q2 in some directions. This means that have z = 2 at the transition point
for these special momentum directions.

2.4.2 Lattice Transformation: Tetragonal to Orthorhombic

We consider a crystal with a tetragonal lattice symmetry. A lattice transformation can
be induced by an order parameter which breaks the lattice symmetry. Physically this can
be done for example by applying external pressure to the sample or, as considered in the
fourth chapter, by internal mechanisms. Here we will study the properties of the strain in
the transition to an orthorhombic lattice. The elastic modulus tensor is now given in the

Figure 2.3: The tetragonal lattice (left) is deformed into an orthorhombic lattice (right).

form 2.2.3. The eigenvectors are given by

eee1 =
1√
2

(
1,−1, 0, 0, 0, 0

)T
,

eee2 =

√
4C13

(C+ + C−)2 + 4

(
C+ + C−

2C13

,
C+ + C−

2C13

, 1, 0, 0, 0

)T
,

eee3 =

√
4C13

(C+ + C−)2 + 4

(
C+ − C−

2C13

,
C+ − C−

2C13

, 1, 0, 0, 0

)T
,

eee4 =
(
0, 0, 0, 1, 0, 0

)T
,

eee5 =
(
0, 0, 0, 0, 1, 0

)T
,

eee6 =
(
0, 0, 0, 0, 0, 1

)T
with eigenvalues

C1 = C11 − C12, C2 =
C+ − C− + 2C33

2
, C3 =

C+ + C− + 2C33

2
C4 = C44, C5 = C44, C6 = C66
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where C+ = C11 + C12 − C33, C− =
√

8C2
13 +

(
C11 + C12 − C33

)2.
In the tetragonal to orthorhombic lattice transformation the symmetry in the x-y-plane
will be broken. Thus the displacement is directed in eee1-direction. The energy cost for this
strain ε1eee1 is given by

ε2
1

(
C11 − C12

)
We see that this transition happens for

C1 = C11 − C12 → 0

By setting C11 − C12 to zero, one of the three phonon branches of obtain roots for
qqq ∈<1, 1, 0>. The dispersion of this mode in this direction

ω(qqq) =
(
C11 − C12

)
q2

has been calculated in 2.3.2. This is in perfect agreement with the prediction from Cowley’s
tabular of a soft phonons in the limit C11 − C12 → 0 and |q1| = |q2|, q3 = 0.
Later the behaviour of the dispersion around these roots will play an important role. It
can be calculated by the following perturbative approach.
Let q̂‖ a unit vector which lies in <1, 1, 0>. For this direction we can now choose a vector q̂⊥
in the x-y-plane and q̂z parallel to the z-axis, such that the set {qqq‖, qqq⊥, qqqz} denotes a right-
handed basis of the three dimensional vector space of momenta. A general momentum qqq
can then be written as qqq = q‖q̂‖+ q⊥q̂⊥+ qz q̂z. The perturbative solution of the eigenvalue
equation 2.3.1 for the expansion parameters q⊥ and qz around q⊥ = 0, qz = 0 leads in
second order to

ω2(qqq) =
C11 − C12

2ρ
q2
‖ +

(C11 + C12

2ρ
+
C66

ρ

)
q2
⊥ +

C44

ρ
q2
z (2.4.2)

For C11 − C12 = 0 the term proportional to q2
‖ vanishes. This means that we have to

go back to the derivation of the effective potential 2.2.2 and take higher order terms into
account. Doing this effectively leads to correction terms in 2.4.2 that are in lowest order
proportional to q4. The dispersion for |q‖| � |q⊥|, |qz| and C11 − C12 = 0 is thus given by

ω2(qqq) =
C

(4)
‖

ρ
q4
‖ +

(C11

ρ
+
C66

ρ

)
q2
⊥ +

C44

ρ
q2
z (2.4.3)

where the first term now contains the higher order contributions.

2.4.2.1 Specific Heat

Now we want to derive the behaviour of the specific heat when our lattice obtains a phase
transition.
We have seen in the previous section that smaller velocities are more relevant in the specific
heat. To calculate the influence of the soft phonons we consider again the formula for the
specific heat from the previous section

C(T ) =
2

(2π)3

3∑
α=1

∫
d3q

ω2
α(qqq)

4T 2
sinh−2

(ωα(qqq)

2T

)
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Figure 2.4: Plot of the sound velocities vα(q̂) of the three different phonon modes for
C11 − C12 = 0 and φ ∈ (π/2, 3π/2), θ ∈ (0, π). The dispersion modes have been calcu-
lated analytically via the methods described in app. A. The green dispersion has a roots for
φ ∈ {π/4, 3π/4, 5π/4, 7π/4}, θ = π/2

For two of the phonon modes the relation ωα ∝ q is still valid. For these modes the old
result for the specific heat remains unchanged.
For the third mode which is soft in the <1, 1, 0> directions we don’t have this proportion-
ality. There we can use the approximation 2.4.3 for the dispersion. Although this is only
valid in the vicinity of the soft direction, it is sufficient since the small velocities dominate
the specific heat. In general one can state that this approximation is sufficient for the
specific heat as long as we only have one small eigenvalue of the elastic modulus tensor.
Now we do the substitutions q⊥ → 2Tq⊥, qz → 2Tqz, q‖ →

√
2Tq‖. The soft dispersion

then obtains a prefactor 2T which leads again to a temperature independent integrand:

Csoft(T ) =

√
2T 2.5

π3

∫
d3q ω2(qqq) sinh−2 ω(qqq)
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The remaining integral can be calculated analytically and yields

Csoft(T ) = T 2.5 7

2

Γ
(

7
2

)
ζ
(

7
2

)
π2

ρ3/2√(
C11+C12

2
+ C66

)
C44

√
C

(4)
‖

(2.4.4)

Instead of the T 3 we get here a specific heat which is proportional to T 2.5 when the crystal
is close to the transition point, i.e. when the order parameter r = C11 −C12 is very small.
A comparison of the normal 2.3.8 and critical form of the specific heat 2.4.4 yields the
crossover temperature

T∗ =
(105

8

Γ(7/2)ζ(7/2)

π4

)2 2r√
C

(4)
‖

So the crossover temperature is proportional to the tuning parameter r. We know that
here we have the dynamical critical exponent z = 2. With relation 2.4.1 we thus get ν = 1

2

for the critical exponent of the correlation length.

Figure 2.5: Phase diagram of the tetragonal to orthorhombic lattice transition.



Chapter 3

Fermi Liquid with Quadrupolar
Interaction

In this chapter we will derive an effective model for the electronic part of the crystal. In
metals there are the bounded electrons around the ions and the nearly free conduction
electrons. For an isotropic metal we would have an isotropic distribution of the electrons
around the ions. The effective action of this system would be S[Ψ†,Ψ] =

∫
d3xdτ

{
Ψ†g−1

f Ψ
}

where gf is the free fermion propagator. This model is called the free electron gas. From
this model we can derive the Fermi statistics that describe the distribution of the electrons
in momentum space.
Taking also collisions between the electrons into account, we end up with the Fermi liquid
model. This model was developed in 1956 by L.D.Landau, see [8], to describe the low
temperature behavior of the electrons. He recognized that interaction between the elec-
trons lead to important effects in the thermodynamic properties of the electronic system.
Especially at low temperatures there are large discrepancies between the naive Fermi gas
model and the experimental results, that are resolved by the Fermi liquid model.
Here we now construct a Fermi liquid model for a special class of metals, where the dis-
tribution of the electrons is not isotropic around the ions. The exact structure can be
explained as follows.
In some materials we have a groundstate degeneracy of the 4f orbitals of the bounded elec-
trons, [13]. These orbitals are associated with quadrupolar electric fields. In the unordered
phase at high temperatures we would have equally occupied orbitals. Now in the ordered
phase, where the electrons occupies a fixed orbital, rotation symmetry is broken. A special
property of the compounds we are considering here is, that this leads to a nematic order.
Hence we call this phase, where the rotation symmetry is broken, the nematic phase. In
the literature this phase is also called the ferroquadrupolar phase.
The central aspect of this phase which makes physically interesting is that the bounded
electrons interact with the conduction electrons. Effectively this leads to an anisotropy
in the electronic density. Experiments have already measured some effect of this feature,
such as an anisotropic restistance, seeresistance.
To date, nematic phases have been observed in ruthenates [14],[15], pnictides [16],[17],[18],[19]
and Fe-based superconductors [20].
Here we now want to derive the thermodynamic properties of these systems at the tran-
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sition point. Therefore we will construct an effective action that suitably describes the
interaction effects of the electrons. This already has been done in two dimensional systems
by [5], [6], [21]. In there dimensions we adopt the basic setup that has been made in
these papers. There are some peculiarities in the perturbative description of these phase
transition in two dimensions, see [5], that don’t occur in three dimensions. The reason will
be that the higher critical dimension provides the convergence of the effective theory in
the vicinity of the critical point.
We start with the action for electrons in metals with a quadrupolar interaction as used in
[6]:

S[Ψ†,Ψ] =

∫
d3xdτ

{
Ψ†g−1

f Ψ +
F2

2

(
Ψ†Q̂ijΨ

)(
Ψ†Q̂jiΨ

)}
(3.0.1)

g−1
f denotes the free fermion propagator and F2 is an interaction constant. The quadrupolar
interaction operator is defined by its representation in momentum space

Qij(kkk
(m)) = 3

k
(m)
i k

(m)
j

|kkk(m)|2
− δij

where kkk(m) = kkk+kkk′

2
denotes the center of mass momentum of Ψ†n(kkk) and Ψm(kkk′). The

quadrupolar density in momentum space is thus given by

Ψ†kkkQij

[
(kkk + kkk′)/2

]
Ψkkk′ (3.0.2)

The expectation values 〈Qij〉 of the different quadrupolar modes 3.0.2 give us a set of
order parameters for the nematic phase. In three dimensional space there are five linear
independent quadrupolar modes. As stated before, the non-vanishing quadrupolar density
is a consequence of the anisotropies induced by the groundstate orbits of the bounded
electrons. Hence in the unordered phase we have 〈Qij〉 = 0. In the nematic phase we
have 〈Qij〉 6= 0 for some, not necessarily all, of the quadrupolar modes. The specific form
of the anisotropy in the nematic phase depends on the properties of the compound. In
practice there are always modes which are energetically preferred. A detailed analysis of
the interplay between two modes can be found in [22].
In the end we want to consider the effect of the anisotropies of the nematic Fermi liquid for
a coupled tetragonal lattice. In the previous chapter we have seen that the second order
tetragonal to orthorhombic lattice transformation is associated with the critical strain
fluctuations εxx − εyy. The relevant coupling between the electrons and the lattice will be
the coupling of these strain fluctuations to the quadrupolar electron-density fluctuations
of the same symmetry. Therefore, it is sufficient to consider the case where we have the
single mode

Q(kkk) =
1√
3
Qxx(kkk)− 2√

3
Qyy(kkk) =

√
3
(
k̂2
x − k̂2

y

)
which has the same symmetries as εxx−εyy. Of course the linear combination of quadrupo-
lar tensors is again a quadrupolar tensor. The nematic phase is then described by the order
parameter 〈Q〉. It vanishes in the unordered phase whereas it is finite in the nematic phase.
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Figure 3.1: Deformation of the Fermi sphere in the kx-ky-plane due to the quadrupolar interaction
Q. The plus and minus signs denote the sign of Q in the different momentum regimes. One can
see that the points on the diagonals are fixed.

3.1 Effective Action for Quadrupolar Fluctuations
We start with the action 3.0.1. To calculate the thermodynamics for this action we would
have to integrate of the fermionic field Ψ, which is not possible for in an exact analytical
manner, because of the interaction terms proportional to Ψ4. A classical perturbative
approach for such an action is to perform a Hubbard-Stratonovich transformation. The
idea is to introduce a new bosonic field as a free parameter to get rid of the quartic terms
in Ψ. For that one uses the general identity

exp
[
− λvvv†v

]
=

∫
Dw exp

[
− 1

4λ
w2 + vw

]
where v and w denote arbitrary real fields. A more detailed description of this transfor-
mation can be found in [23],page 243ff. In our problem we identify v ↔ Ψ†QijΨ and get
for each mode the equation

exp
(F2

2

(
Ψ†nQ̂ijΨm

)(
Ψ†nQ̂jiΨm

))
=

∫
Dφij exp

[
− 1

2F2

(
φijφij

)
+ φij

(
Ψ†nQ̂ijΨm

)]
So we defined for each quadrupolar mode of the fermionic fields an associated real bosonic
field with the same symmetry. These new bosons will play a central role in the coupling
of the electrons to the lattice. Physically they can be understood as volume preserving
deformations of the Fermi sphere of quadrupolar symmetry.
With these steps we can rewrite the initial partition sum as follows

Z =

∫
D[Ψ†,Ψ] exp

[
− S[Ψ†,Ψ]

]
=

∫
D[Ψ†,Ψ] exp

[ ∫
d3xdτ

{
Ψ†g−1

f Ψ +
F2

2

(
Ψ†Q̂ijΨ

)(
Ψ†Q̂jiΨ

)}]
=

∫
D[Ψ†,Ψ]DΦ exp

(
− S[Ψ†,Ψ,Φ]

)
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where the mixed action has the form

S[Ψ†,Ψ,Φ] =

∫
d3xdτ

{
Ψ†g−1

f Ψ− 1

2F2

φijφij − φij
(
Ψ†Q̂jiΨ

)}
and Φ denotes the set of all bosons φij. This action contains now the bosonic fields as
new degrees of freedom. To get back to the initial action we would have to integrate out
these fields. Here we take another route and formulate a theory in terms of Φ. For that we
evaluate the integral over the fermionic fields Ψ†,Ψ. The final action for Φ then contains
all informations about the full system.

Z =

∫
DΦ det

(
g−1
f + φijQij

)
exp

[ ∫
d3xdτ

−1

2F2

φijφij

]
=

∫
DΦ exp

[ ∫
d3xdτ

−1

2F2

φijφij + tr
{

ln(g−1
f + φijQij)

}]
An expansion of the logarithm in the field φ via the sum

log(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
= x− x2

2
+O(x3)

leads to

Z =

∫
DΦ exp

[ ∫
d3xdτ

−1

2F2

φijφij + tr
{

ln(g−1
f )
}

+ tr
{
gfφijQij

}
− 1

2
tr
{

(gfφijQij)
2
}]

The first term tr
{

ln(g−1
f )
}
gives a constant contribution to the effective action. It is not

necessary to calculate it in detail because it will not influence the dynamics of the field Φ.
The next term is tr

{
gfφijQij

}
which, because of energy and momentum conservation, is

given by ∑
kkk,ωn

gf
(
kkk, iωn

)
φij(0, 0)Q(kkk)

The fermionic propagator does not depend on the direction of kkk. When replacing the sum
over the momentum by an integral in spherical coordinates one gets a result proportional
to ∫

dΩQij(k̂) =

∫ 1

−1

d(cos θ)

∫ 2π

0

dϕ
(
3k̂ik̂j − δij

)
= 0

Hence this term vanishes. This is in accordance with the quadrupolar form of Q.
So the first relevant term is the term quadratic in the bosonic fields

− 1

2
tr
{

(gfφijQij)
2
}

=
−1

2

∑
kkk,qqq,ωn,Ωm

gf(kkk + qqq, iωn + iΩm)φij(q, iΩm)Qij(kkk + qqq) gf(kkk, iωn)φkl(−q,−iΩm)Qkl(kkk)

=
−1

2

∑
qqq,Ωm

φij(q, iΩm)φkl(−q,−iΩm)
∑
kkk,ωn

gf(kkk + qqq, iωn + iΩm)Qij(kkk + qqq)gf(kkk, iωn)Qkl(kkk)

=
−1

2

∑
qqq,Ωm

φij(q, iΩm)φkl(−q,−iΩm)Πijkl(qqq, iΩm)
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The quantity Πijkl(qqq, iΩm) is called the quadrupolar polarization. It resembles the first
non-vanishing correction to the effective propagator of the bosons φ.

3.2 Effective Action for φ
The polarization for the interaction mode Q is to first order in Ωm

vF q
given by

Π(qqq,Ωm) = −2mkF
45π2

+ E(qqq) + γ(q̂)
|Ωm|
q

The derivation of this quantity is presented in appendix C.
The second term

E(qqq) := A2
(
q2
x + q2

y

)
+B2q2

z

is the kinetic energy. It is symmetric under rotations in the x-y-plane. The anisotropy is
a consequence of the anisotropic Q.
The last term is the Landau damping term. Its direction dependence is contained in
the function

γ(ϕq,Θq) =
3

1024π

(
41 + 9 cos(4ϕq) + 4(5− 3 cos(4ϕq)) cos(2Θq) + 6 cos2(2ϕq) cos(4Θq)

)
(3.2.1)

The crucial point about this prefactor is, that it vanishes in the directions
(
±1,±1, 0

)T
,
(
±1,∓1, 0

)T .
In the common abbreviation we can say that the Landau damping vanishes for qqq ∈<1 1 0>.
<1 1 0> denotes the set of all vectors which can be mapped to the direction

(
1√
2
, 1√

2
, 0
)T

via symmetry transformations of the lattice.

The partition sum for the fluctuations now has the form

Z =

∫
Dφ exp

(
−
∑
qqq,Ωm

{
φ(qqq,Ωm)

( 1

2F2

− 2mkF
45π2

+ E(qqq) + γ(q̂)
|Ωm|
q

)
φ(−qqq,Ωm)

})
So the propagator for the bosons φ is given by

g−1
b (qqq,Ωm) = r + A2

(
q2
x + q2

y

)
+B2q2

z +
γ(q̂)

q
|Ωm|

where r = 1
2F2
− 2mkF

45π2 is the effective mass of these bosons. We see that the mass vanishes
for

F2 =
45π2

4

1

mkF

This point resembles the quantum critical point of the Fermi liquid. There the fluctutations
of the Fermi sphere become critical, i.e. they are strongly enhanced. So in the vicinity of
this point we expect modifications of the ordinary properties of the Fermi liquid. These
are called non-Fermi liquid behaviour.
In the following we will consider the thermodynamic properties close to the critical point.



28 3.3. QUANTUM PHASE TRANSITIONS

Figure 3.2: Plot of the Landau damping prefactor γ(q̂). The prefactor strongly decreases close
to its roots in the <1,1,0> directions. In the other regimes there is only a small variation of its
values.

3.3 Quantum Phase Transitions

In classical continuous phase transitions we have a certain type of thermal fluctuations that
become stronger while approaching the critical transition point. This point can be reached
by tuning the tuning parameter r and the temperature T to its critical values r = 0 and
T = Tc. An example is the lattice transformation that have seen in the previous chapter.
Thereby the thermal fluctuations have been the strain fluctuations of the lattice.
Now a quantum phase transition is a phase transition whose critical temperature is zero.
This implies that the critical point, now called quantum critical point (QCP), can only be
reached asymptotically. It indicates the boundary between two different quantum phases
at zero temperature. The fundamental difference now lies in the critical fluctuations. The
thermal fluctuations of classical phase transitions are absent at zero temperature. Hence
the critical fluctuations at a quantum phase transition have to be quantum fluctuations in
the sense that they are a consequence of the Heisenberg uncertainty principle.
Although the QCP lies at T = 0 it can influence the physical properties at finite temper-
atures. The reason is that the quantum fluctuations are not instantly suppressed by the
thermal fluctuations when going to finite temperatures. The ratio between these two types
of fluctuations depends on the tuning parameter r and the temperature T . A comparison
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of the typical orders of the fluctuations leads to the inequality

kBT > ~ωc ∼ |r|νz

It determines the temperatures where the thermal fluctuations dominate the system. The
resulting quantum phase diagram is plotted in 3.3. We will see in the next section that

Figure 3.3: Quantum phase diagram for a isolated quantum critical point
.

the nematic Fermi liquid is one example of a system which obtains an isolated QCP.
Up to now we assumed that we an ordered phase that only exists for r < 0 and T = 0.
In practice one is often interested in systems where the QCP is the endpoint of a classical
phase transition. This means that we have transition line rC(T ) in the phase diagram
that distinguishes two classical phases and reaches the QCP at T = 0. Close to this
line the thermal fluctuations are dominating. This leads to the quantum phase diagram
plotted in 3.4. The tetragonal to orthorhombic lattice transition is one example where
such a quantum critical endpoint is present. There we had the temperature-independent
critical value rC = 0 for the tuning parameter. More details about the theory of quantum
phase transitions can be found in [24],[25]. In the next chapter will calculate the quantum
phase diagram of the nematic Fermi liquid. The Fermi liquid is one of the major examples
where the quantum criticality can drastically change the physical properties of the system.
These effects are commonly called ‘non-Fermi liquid’ behaviour. A detailed derivation of
non-Fermi liquid behaviour can be found in [7].

3.4 Critical Thermodynamics

One way to understand the characteristics of a phase transition is to calculate the thermo-
dynamic quantities of the system. Here we will calculate the specific heat C(T ) = −T ∂2F

∂T 2

of the bosons close to the quantum critical point r = 0.
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Figure 3.4: Quantum phase diagram for an quantum critical point endpoint. The straight line
denotes at phase transition. Around this line we have a classical regime in the sense that there
the quantum fluctuations are suppressed by the thermal fluctuations.

3.4.1 Free Energy

For the free energy we have to evaluate the integral

F = −T
V

lnZ = −T
V

ln

[∫
dφ exp

(
− S[φ]

)]
= −T

V
ln

[∫
dφ exp

(
−
∑
qqq,Ωm

φ(qqq,Ωm)g−1
b (qqq,Ωm)φ(−qqq,−Ωm)

)]

The effective action of the bosons is quadratic in φ. Therefore we can use the formula for
Gaussian integrals and get

F =
T

V

∑
qqq,Ωm

ln
(
gb(qqq,Ωm)

)
≈ T

∫
d3q

(2π)3

∑
Ωm

ln
[
r + E(qqq) + γ(q̂)

|Ωm|
q

]
To transform the frequency sum into a complex integral one has to take care of the absolute
value which is not holomorphic over the complex plane. Here we circumvent this problem
by splitting the sum into positive and negative frequencies. This leads to

F = T

∫
d3q

(2π)3
ln
[
r+E(qqq)

]
+T

∫
d3q

(2π)3

{ ∑
Ωm>0

ln
[
r+E(qqq)+γ(q̂)

Ωm

q

]
+
∑

Ωm<0

ln
[
r+E(qqq)−γ(q̂)

Ωm

q

]}
The first term is the Ωm = 0 term. The sums can be written as complex integrals∮

C+

dz

2πi
g(z) ln

[
r + E(qqq)− γ(q̂)

iz

q

]
+

∮
C−

dz

2πi
g(z) ln

[
r + E(qqq) + γ(q̂)

iz

q

]
where g(z) = βnB(z) and C± are the paths plotted in fig. 3.5.
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Figure 3.5: The deformation of the initial integration paths (left) to the new paths (right) doesn’t
change the integral.

The contribution from the half circles vanish for infinitely large radius. The integration
along the real axis can be written as∫ ∞

−∞

dx

2πi
β
(
nB(x+) ln

[
r + E(qqq)− γ(q̂)

ix+

q

]
− nB(x−) ln

[
r + E(qqq) + γ(q̂)

ix−

q

])
for x± = x + i0±. The integrands are continuous around the real axis for x 6= 0. On the
real axis we have ln

[
r +E(qqq)− γ(q̂) ix

q

]
= ln

[
r + E(qqq) + γ(q̂) ix

q

]
. Thus the difference just

gives the imaginary part of the logarithm Im
[

ln(x+ iy)
]

= arctan
(
y
x

)
.

−
∫ ∞
−∞

dx

2πi
βnB(x) arctan

( γ(q̂)x
q

r + E(qqq)

)
The free energy now has the form

F = T

∫
d3q

(2π)3

1

r + E(qqq)
−
∫ ∞
−∞

dω

π
nB(ω) arctan

( γ(q̂)ω
q

r + E(qqq)

)
(3.4.1)

Performing a partial integration in the second term simplifies the free energy to

F = T

∫
d3q

(2π)3
ln
[
r + E(qqq)

]
+

∫ ∞
−∞

dω

π
T
[

ln
(
2 sinh

ω

2T

)
− ω

2T

] γ(q̂)
q

(
r + E(qqq)

)(
r + E(qqq)

)2
+
(γ(q̂)

q
ω
)2

(3.4.2)

3.5 Specific Heat
We are interested in the second derivate of the free energy w.r.t. T . Hence we can ignore
the term linear and T and focus on the second term. The first derivative of the free energy
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in the form 3.4.1 is given by

∂F

∂T
= −

∫
d3q

(2π)3

∫ ∞
−∞

dω

π

ω

2T 2
csch2

( ω
2T

)
arctan

( γ(q̂)ω
q

r + E(qqq)

)
Before calculating the second derivative we perform the substitution ω → 2Tω

∂F

∂T
= −

∫
d3q

(2π)3

∫ ∞
−∞

dω

π
2ωcsch2(ω) arctan

( γ(q̂)2Tω
q

r + E(qqq)

)
The second derivative of the free energy w.r.t. T is

∂2F

∂T 2
= −

∫
q≤Λ

d3q

(2π)3

∫ ∞
−∞

dω

π
2ωcsch2(ω)

γ(q̂)2ω
q

(
r + E(qqq)

)(
r + E(qqq)

)2
+
(
γ(q̂)2Tω

q

)2

Rescaling qqq → (2T )1/3qqq gives

∂2F

∂T 2
= −2

∫
q≤ Λ

(2T )1/3

d3q

(2π)3

∫ ∞
−∞

dω

π
ωcsch2(ω)

γ(q̂)2ω
q

(
r

(2T )2/3 + E(qqq)
)(

r
(2T )2/3 + E(qqq)

)2
+
(
γ(q̂)ω

q

)2

Here one can read of the scaling relation

T ∼ r3/2

between the order parameter r and the temperature. The exponent 3
2

= νz can be identified
with the product of the critical exponents ν = 1

2
and z = 3.

In the limit r → 0, i.e. at the quantum critical point, the integration over q gives

∂2F

∂T 2
=− 2

∫
dΩ

(2π)3

∫ ∞
−∞

dω

π
ω2csch2(ω)

γ(q̂)

3e2(q̂)
ln
( e(q̂)Λ3

2Tγ(q̂)ω

)
=− α ln

(Λ3

2T

)
− β

where E(qqq) = e(q̂)q2 and

α =
2

9

∫
dΩ

(2π)3

γ(q̂)

e2(q̂)

β =2

∫
dΩ

(2π)3

∫ ∞
−∞

dω

π
ω2csch2(ω)

γ(q̂)

3e2(q̂)
ln
( e(q̂)

γ(q̂)ω

)

Thus the specific heat has the form for r = 0:

C(T ) = T
(
α ln

(Λ3

2T

)
+ β

)
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3.6 Summary
The quadrupolar interaction of the electrons can effectively be described by strain of the
Fermi sphere. We considered the dynamics of the strain excitations φx2−y2 . The propagator
for this mode is

g−1
b (qqq, iΩm) = r + E(qqq) + γ(q̂)

|Ωm|
q

The prefactor γ(q̂) of the Landau damping term only depends on the direction of qqq. The
most important feature is that it is positive everywhere except for the directions <1 1 0>.
There the Landau damping vanishes. For the properties of the bare Fermi liquid we have
calculated here, these roots played no important role. In the next chapter we will couple
these bosons to the underlying lattice. There we will see that the roots of γ(q̂) lead to
important effects for the coupled system
After we have derived the effective action for the excitation modes we calculated the
thermodynamics in the vicinity of the Pomeranschuk instability r = 0. We observed a
non-Fermi liquid behaviour in the specific heat. The original law C(T ) ∝ T is modified to
C(T ) ∝ T lnT . Severeal other properties of this quantum critical point are presented e.g.
in [6].





Chapter 4

Quantum Critical Fermi Liquid on a
Lattice

We are now ready to consider the full system of critical electrons with quadrupolar inter-
action which are coupled to the underlying lattice. We construct a perturbative action
by constructing an effective coupling between the strain in the lattice and the bosons φij.
Thereby we have to take care of the lattice symmetries. Here we consider again a tetrag-
onal lattice.
In the end our aim is to calculate the behaviour of the coupled system at low temperatures.
Especially we want to know whether the coupling can induce a symmetry transformation
into an orthorhombic lattice. As we have seen in chapter two, this transition corresponds
the strain eee1 = uuuxx − uuuyy. Intuitively it is clear that the best candidate for the excitation
of this strain is the quadrupolar mode φx2−y2 in the Fermi liquid, which is parallel to the
strain. Quantitatively this can be seen in the construction of an effective coupling term in
the action.
The lowest order terms correspond to a linear coupling of the strain to the quadrupolar
modes of the form

Sint,lin ∝
∑
qqq,Ωm

∑
α

(
uxx(qqq,Ωm)− uyy(qqq,Ωm)

)
φα(qqq,Ωm)

This term has to satisfy the symmetries of the crystal, e.g. x↔ y. For the linear coupling
terms this implies that the φij must have the same symmetries as the strain direction.
Thus here the only linear coupling term is

Sint,lin ∝
∑
qqq,Ωm

(
uxx(qqq,Ωm)− uyy(qqq,Ωm)

)
φx2−y2(qqq,Ωm)

In the following we again leave the index of φx2−y2 away. The coupling to the other modes
only occur in higher order terms and is therefore subleading.

35
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4.1 Action of the Full System
We are primarily interested in the effects of the boson coupling to the phonons, i.e. the
dynamical strain. The effective action of the bare bosons is given by

S[φ] =
∑
qqq,Ωm

φ(qqq,Ωm)g−1
b (qqq, iΩm)φ(−qqq,Ωm)

The form of the propagator g−1
b (qqq, iΩm) = r0 +A2(q2

x+q2
y)+B2q2

z +γ(q̂) |Ωm|
q

was calculated
in the previous chapter.
The action of the phonons with qqq 6= 0 is again given by

S[uuu†,uuu] =
∑
qqq,Ωm

uuu†(qqq,Ωm)G−1
ph (qqq, iΩm)uuu(qqq,Ωm)

where
(
G−1

ph

)
ij

(qqq, iΩm) = ρΩ2
mδij + Cikjlqkql.

Because of symmetry considerations, the general action of this system with linear coupling
must have the form

S[φ,uuu†,uuu] =
∑
qqq,Ωm

(
φ
uuu

)†
g−1
b (qqq, iΩm) iλqx −iλqy 0
−iλqx
iλqy G−1

ph (qqq, iΩm)
0


︸ ︷︷ ︸

=:H−1(qqq,iΩm)

(
φ
uuu

)

Later on we will denote the coupling components by vvv =
(
− iλqx, iλqy, 0

)T . The inverse
propagator of the coupled system then has the form

H−1(qqq, iΩm) =

(
g−1
b (qqq, iΩm) vvv†

vvv G−1
ph (qqq, iΩm)

)
Of special interest for us is the coupling of the bosons to the soft mode. This can be read
of by diagonalizing the action.
Let U be the orthogonal matrix which diagonalizesG−1

ph at finite momentum, i.e. UTG−1
phU =

diag
(
ρΩ2

m + ρω2
1(qqq), ρΩ2

m + ρω2
2(qqq), ρΩ2

m + ρω2
3(qqq)

)
. The inverse propagator in terms of the

phonon modes is then

H̃−1 =


g−1
b (qqq, iΩm) vvvTU

ρΩ2
m + ρω2

1(qqq) 0 0
UTvvv 0 ρΩ2

m + ρω2
2(qqq) 0

0 0 ρΩ2
m + ρω2

3(qqq)


The three components of the vector UTvvv denote the coupling strength between the bosons
and the three phonon modes.
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4.2 The Reduced System
For the bare phonons we have seen that the thermodynamics in the low energy regime are
dominated by the small velocity phonons. For the sake of simplicity we ignore the coupling
of the boson to the other two modes. This is possible because at the the soft mode is
critically enhanced in the vicinity of the transition point. The remaining component of
the coupling vector UTvvv can be written in the form −iλC(qqq) where C(qqq) is a real function
that only depends on the lattice constants Cαβ and the momentum qqq. The effective action
of this reduced system then has the form

Seff[φ, u†, u] =
∑
qqq,Ωm

(
φ(−qqq,Ωm), u†(qqq,Ωm)

)(g−1
φ (qqq, iΩm) iλC(qqq)

−iλC(qqq) ρΩ2
m + ρω2(qqq)

)
︸ ︷︷ ︸

=:G−1(qqq,iΩm)

(
φ(qqq,Ωm)
u(qqq,Ωm)

)

The dispersion relation has been calculated in chapter two, see e.g. 2.4.3. The coupling of
the mode to the boson is given by

iλC(qqq) = eee†softvvv

where eeesoft is the polarization direction, i.e. the eigenvector of D−1 for the eigenvalue ω2(qqq).
An perturbative approach around the <1, 1, 0>-directions, analogous to the calculation of
equation 2.4.2, gives

C(qqq) = q‖ +
C66 − C11

C12 + C66

q2
⊥
q

qqq‖ again denotes the <1, 1, 0> direction and qqq⊥ the corresponding orthogonal component
in the x-y-plane such that (qqq‖, qqq⊥, qqqz) is a right handed basis. This procedure works for all
possible directions of <1, 1, 0> and leads to the same results since they are equivalent in
the tetragonal lattice.
One can see that the qqqz contribution vanishes in second order. This resembles the fact that
the coupling vector vvv does not couple to the z-component.
Our aim is to investigate the point where the coupled boson drive the lattice to a critical
point. The tuning parameter is again the mass r from the boson propagator.
For the new dispersion relation we calculate the eigenvalues for G−1(qqq, 0):

ω±(qqq) =
g−1
φ + ω2(qqq)

2
±

√
(g−1
φ − ω2(qqq))2

4
+ λ2C2(qqq)

In the vicinity of qqq‖ they are given by

ω2
±(qqq)

=
r0 + E(qqq) + C11−C12

2ρ
q2
‖ +

(
C11+C12

2ρ
+ C66

ρ

)
q2
⊥ + C44

ρ
q2
z

2

±

√√√√(r0 + E(qqq)− C11−C12

2ρ
q2
‖ −

(
C11+C12

2ρ
+ C66

ρ

)
q2
⊥ − C44

ρ
q2
z

)2

4
+ λ2

(
q‖ +

C66 − C11

C12 + C66

q2
⊥
q‖

)2
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The lower branch ω2
−(qqq) becomes soft when there is a direction q̂ with ω2

−(q̂) = 0. This is
equivalent to

0 = detG−1(qqq, 0) = g−1
φ (qqq)ω2(qqq)− λ2C2(qqq)

⇔ 0 =
(
r0 + E(qqq)

)(C11 − C12

2ρ
q2
‖ +

(C11 + C12 + 2C66

2ρ

)
q2
⊥ +

C44

ρ
q2
z

)
− λ2

(
q‖ +

C66 − C11

C12 + C66

q2
⊥
q‖

)2

In the low energy regime where qqq is small, we can keep only the second order terms in q:

0 =
[
r0
C11 − C12

2ρ
−λ2

]
q2
‖+
[
r0

(C11 + C12 + 2C66

2ρ

)
−2λ2C66 − C11

C12 + C66

]
q2
⊥+r0

C44

ρ
q2
z−λ2C66 − C11

C12 + C66

q4
⊥
q2
‖

Assuming |q⊥| << |q‖| we get the conical equation

0 =
[
r0
C11 − C12

2ρ
− λ2

]
q2
‖ +

[
r0

(C11 + C12 + 2C66

2ρ
+
)
− 2λ2C66 − C11

C12 + C66

]
q2
⊥ + r0

C44

ρ
q2
z

Here we see the occurence of a soft phonon in qqq‖-direction for

r0 =
2λ2ρ

C11 − C12

From chapter two we know that a soft phonon is directly related to a symmetry transfor-
mation of the lattice. Hence we have found a critical value of the boson mass where the
coupled electrons might lead to an instability of the lattice. An important point hereby
is that we obtain the soft dispersion only for small momenta. It leads to the conclusion
that the lattice transition only occurs for low energies, i.e. low temperatures. The physical
reason for this would be that the quantum fluctuations of the critical Fermi liquid are
suppressed at high temperatures.
With these basic impressions we will now go over to a more detailed analysis of the ther-
modynamics of the coupled system. For that we start with the free energy of the system.

4.2.1 Free Energy

The derivation of the free energy was done for the isotropic cubic lattice by [10]. These
results are used here to calculate the free energy for the direction dependent system.
Appendix B contains the detailed analysis of the sum over the Matsubara frequencies.
The result is

F (T )− F (0) = −
∑
qqq

{
P
∫ ∞

0

dx

π
2T
(

ln
[
2 sinh

x

2T

]
− x

2T

)
Q(x)

}
where Q(x) is given by

Q(x) = −γ(q̂)

q

R(x) + E(qqq)(
R(x) + E(qqq)

)2
+
(γ(q̂)

q
x
)2 − A(x)

σ(x)

(x− ωR(qqq))2 + σ(x)2
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and

R(x,qqq) := r − λ2

ρ

C2(qqq)

ω2(qqq)− x2

A(x,qqq) :=
2x
(
ω2(qqq)− ω2

R

)
(x+ ωR(qqq))

(
ω2(qqq)− x2

)
σ(x,qqq) :=

γ(q̂)

q

x
(
ω2(qqq)− x2

)
(x+ ωR(qqq))(r + E(qqq))

So we have a free energy consisting of two Lorentz peaks. In the limit λ → 0, i.e. when
the coupling between the bosons and phonons is absent, the first term simplifies to

−γ(q̂)

q

r + E(qqq)(
r + E(qqq)

)2
+
(γ(q̂)

q
x
)2

This is exactly the integrand for the free energy 3.4.2 of the Fermi liquid. So we can identify
the first term as the contribution from the Fermi liquid with renormalized parameters.
To recover the phononic free energy in the second term in the limit λ→ 0 we first rewrite
it as

2x2 λ2

ρ
C2(qqq)(

x2 − ω2
R(qqq)

)2(
r + E(qqq)

)2
+
(
xγ(q̂)

q

)2(
ω2(qqq)− x2

)2

We see that this term vanishes in the limit λ→ 0 for x 6= ω(qqq). For x = ω(qqq) the relation
limλ→0 ωR(qqq) = ω(qqq) leads to a divergent term. Hence we have a delta peak at the old
phonon dispersion. So this term yields the phononic free energy that we have calculated
in chapter two.
Another important point in the derivation of the free energy was the appearance of a
renormalized dispersion relation

ωR(qqq) =

√
ω2(qqq)− λ2

C2(qqq)

r0 + E(qqq)

Two important limits of the dispersion are

ω2
R(qqq) =


ω2(qqq)− λ2

ρr
C2(qqq) for q �

√
r

ω2(qqq)− λ2

ρ

C2(qqq)

E(qqq)
for q �

√
r

So for small momenta we have a dispersion with a new velocity. Especially interesting for
us is the qqq‖ direction. When we set

r → r0 =
2λ2ρ

C11 − C12

we get ωR(qqq‖) = 0. Hence we have dispersion which becomes soft for this value of r.
Just as before we then have to take higher order terms into account which come from the
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expansion of the correction term and from the phonon dispersion itself. In the vicinity of
the soft direction the renormalized dispersion has the form

ω2
R(qqq) =

C11 + C12 + 2C66

2ρ
q2
⊥ +

C44

ρ
q2
z +

(
v

(4)
‖ + A2λ

2

r2
0

)
q4
‖

4.2.2 Specific Heat

With the free energy of the previous section we can now calculate the specific heat of the
coupled system via

C = −T ∂
2F

∂T 2

The second derivative of the free energy w.r.t. T is

∂2F

∂T 2
=
∑
qqq

{∫ ∞
0

dx

π

(
x2

2T 3
sinh−2

( x

2T

))
Q(x)

}
Because of the decomposition of the free energy into the electronic and the phononic contri-
butions we are now in the comfortable situation that we can consider the thermodynamics
of the two constituents serperately.

4.2.2.1 Electronic Specific Heat

The electronic term of the specific heat can be simplified by the substitution ω = x
2T

to

Cel(T )

=
T

(2π)3

∫
q≤Λ

d3q

∫ ∞
0

dω

π

4ω2

sinh2 ω

γ(q̂)

q

R(2Tω) + E(qqq)(
R(2Tω) + E(qqq)

)2
+
(
γ(q̂)
q

2Tω
)2

=
T

(2π)3

∫
q≤Λ

d3q

∫ ∞
0

dω

π

4ω2

sinh2 ω

γ(q̂)

q

r0 − λ2 C2(qqq)
ω2(qqq)−4T 2ω2 + E(qqq)(

r0 − λ2 C2(qqq)
ω2(qqq)−4T 2ω2 + E(qqq)

)2

+
(γ(q̂)

q
2Tω

)2

Now we do the substitution qqq → (2T )1/3qqq as we have done for the specific heat of the
uncoupled bosons and get

Cel(T )

=
T

(2π)3

∫
q≤ Λ

(2T )1/3

d3q

∫ ∞
0

dω

π

4ω2

sinh2 ω

γ(q̂)

qE(qqq)

1 + 1
(2T )2/3E(qqq)

(
r0 − λ2 C2(qqq)

ω2(qqq)−(2T )4/3ω2

)
[
1 + 1

(2T )2/3E(qqq)

(
r0 − λ2 C2(qqq)

ω2(qqq)−(2T )4/3ω2

)]2

+
[
ωγ(q̂)
qE(qqq)

]2

(4.2.1)
The central quantity here is

r(qqq, ω) := 1 +
1

(2T )2/3E(qqq)

(
r0 − λ2 C2(qqq)

ω2(qqq)− (2T )4/3ω2

)
(4.2.2)

It can be considered seperately in the three cases
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1. ω2(2T )4/3 ≈ ω2(qqq)

2. ω2(2T )4/3 � ω2(qqq)

3. ω2(2T )4/3 � ω2(qqq)

• In the first case r(qqq, ω) diverges. This leads to a vanishing integrand of the specific
heat. Hence this case is irrelevant.

• The second case becomes important when we are in the high temperature regime.
The values of ω are restricted to be of the order of 1, because other values are
exponentially suppressed. Furthermore we can conclude

r0 � λ2 C(qqq)

(2T )4/3ω2

So the contribution of the fraction in the bracket of eq. 4.2.2 to the mass r0 becomes
negligible and we are left with

r(qqq, ω) = 1 +
r0

(2T )2/3E(qqq)

Inserting this result into the integrand we recover the form of the specific heat we
already know from the uncoupled Fermi liquid. This leads us to the conclusion that
in the higher temperature limit we recover the uncoupled system.

• The third case is important for the low temperature regime. There we can perform
the Taylor expansion

1

ω2(qqq)− (2T )4/3ω2
=

1

ω2(qqq)

[
1 +O

([
(2T )2/3 ω

ω(qqq)

]2
)]

So in this approximation we have r(qqq, ω) = 1 + r0(q̂)

(2T )2/3E(qqq)
where

r0(q̂) := r0 − λ2C
2(qqq)

ω2(qqq)

is now a function which only depends on the direction q̂ of qqq. It can be viewed
as a direction dependent mass of the bosons. We see

r(qqq, ω) =


1 for q2 � r0(q̂)

(2T )2/3e(q̂)

r0(q̂)

(2T )2/3E(qqq)
for q2 � r0(q̂)

(2T )2/3e(q̂)

So the factor r0(q̂)

(2T )2/3e(q̂)
plays here the role of a parameter that decides which part of

r(qqq, ω) is important.
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We have seen that only the third case is relevant for the temperature regime where the
coupling can have an effect on the thermodynamics. In the following we will consider
this case in more detail. We do this by splitting the momentum integral into the regimes

q ≥
√
r0(q̂)/e(q̂)

(2T )1/3 and q ≤
√
r0(q̂)/e(q̂)

(2T )1/3 .

• First case: q ≥
√
r0(q̂)/e(q̂)

(2T )1/3

Here we have r(qqq, ω) ≈ 1 and get the following contribution to the specific heat

1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

∫ Λ

(2T )1/3

√
r0(q̂)/e(q̂)

(2T )1/3

dq q2

γ(q̂)
qE(qqq)

1 + γ2(q̂)ω2

q2E2(qqq)

Now we use the notation E(qqq) = q2e(q̂) to integrate over q. This leads to

1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

∫ Λ

(2T )1/3

√
r0(q̂)/e(q̂)

(2T )1/3

dq
q5 γ(q̂)

e(q̂)

q6 + γ2(q̂)ω2

e2(q̂)

=
1

(2π)4

∫
dΩ

∫ ω∗(q̂,T )

0

dω
8ω2

sinh2 ω

γ(q̂)

6e(q̂)
log

(
Λ6e3(q̂)

r3
0(q̂)

)

+
1

(2π)4

∫
dΩ

∫ ∞
ω∗(q̂,T )

dω
8ω2

sinh2 ω

γ(q̂)

6e(q̂)
log

(
Λ6

4T 2ω2 γ
2(q̂)
e2(q̂)

)

with ω∗(qqq, T ) =
(
r0(q̂)
e(q̂)

)3/2
e(q̂)
γ(q̂)

1
2T
.

In the limit T → 0 we have ω∗(qqq, T ) → ∞ and we are approximately left with the
term

γ :=
1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

γ(q̂)

3e(q̂)
log

(
Λ3e3/2(q̂)

r
3/2
0 (q̂)

)
which is constant w.r.t. T .
For large T w.r.t. r0 we can replace ω∗(qqq, T ) by 0. Then only the second term
survives:

1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

γ(q̂)

3e(q̂)
log

(
Λ3

4Tω γ(q̂)
e(q̂)

)

=
1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

γ(q̂)

3e(q̂)
log
( e(q̂)

4ωγ(q̂)

)
︸ ︷︷ ︸

=:ν

− 1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω

sinh2 ω

γ(q̂)

3e(q̂)︸ ︷︷ ︸
=:δ

log
T

Λ3
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With
∫∞

0
dω 8ω2

sinh2 ω
= 4π2

3
, Γ :=

∫∞
0
dω 8ω2

sinh2 ω
log(4ω) ≈ 13.7644 and the abbreviation

〈f(q̂)〉γ/e :=

∫
dΩ

γ(q̂)

e(q̂)
f(q̂)

we can simplify these terms to

γ =
1

9(2π)2

〈
log

Λ3e3/2(q̂)

r
3/2
0 (q̂)

〉
γ/e

ν = − Γ

3(2π)4
〈1〉γ/e −

1

9(2π)2

〈
log

γ(q̂)

e(q̂)

〉
γ/e

δ =
1

9(2π)2
〈1〉γ/e

An important feature of these quantities is that they only depend on the fractions
γ(q̂)
e(q̂)

and r0(q̂)
e(q̂)

and the momentum cutoff Λ. Hence they do not the depend on the
absolute value of the boson propagator. Informations about the phonons are only
contained in r0(q̂).

• Second case: q ≤
√
r0(q̂)

(2T )1/3 In the momentum regime we are considering now we have

r(qqq, ω) = r0(q̂)

(2T )2/3E(qqq)
. The resulting contribution to Cel/T is

1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

∫ √
r0(q̂)/e(q̂)

(2T )1/3

0

dq q2

r0(q̂)γ(q̂)

(2T )2/3qE2(qqq)

r2
0(q̂)

(2T )4/3E2(qqq)
+ γ2(q̂)ω2

q2E2(qqq)

=
1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

 γ(q̂)

2e(q̂)
+
γ3(q̂)

r3
0(q̂)

2ω2T 2 log

[
4ω2T 2

r3
0(q̂)

e(q̂)γ2(q̂)
+ 4T 2ω2

]
The second term is proportional to T 2. Hence this is a subleading term in the
temperature regimes we are interested in. The other term resembles a constant
contribution to Cel/T . The term

1

(2π)4

∫
dΩ

∫ ∞
0

dω
8ω2

sinh2 ω

γ(q̂)

2e(q̂)
=

1

6(2π)2
〈1〉γ/e

leads to a T -independent contribution to the specific heat coefficient Cel/T . This
constant term just shifts the specific heat. So finally we can conclude that this
momentum regime doesn’t modify the properties of the crossover as long as the
crossover temperature is small, i.e. Tc,el � 1.

The specific heat resulting from these contribution has the following T -dependence

Cel

T
=

 γ for T � Tc,el

ν − δ log
T

Λ3
for T � Tc,el
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The value of the crossover temperature Tc,el can be calculated by the equation

γ = ν − δ log
Tc,el
Λ3

Solving this for Tc,el leads to

Tc,el = exp
(
− 3Γ

4π2

)︸ ︷︷ ︸
≈0.351351

exp

(〈 log
( r

3/2
0 (q̂)

γ(q̂)
√
e(q̂)

)〉
γ/e

〈1〉γ/e

)

4.2.2.2 Phononic Specific Heat

The phonon part of the specific heat is

Cph(T ) =
2

(2π)3

∫
q≤Λ

d3q

∫ ∞
0

dx

π

x2/(2T )2

sinh2
(
x/(2T )

)A(x,qqq)
σ(x,qqq)

(x− ωR(qqq))2 + σ2(x,qqq)

We start again with the substitution x = 2Tω and get

Cph(T ) =
2

(2π)3

∫
q≤Λ

d3q

∫ ∞
0

dω

π
2T

ω2

sinh2 ω
A(2Tω,qqq)

σ(2Tω,qqq)

(2Tω − ωR(qqq))2 + σ2(2Tω,qqq)

Secondly we substitute qqq → 2Tqqq and get

Cph(T ) =
2

(2π)3
(2T )4

∫
q≤ Λ

2T

d3q

∫ ∞
0

dω

π

ω2

sinh2 ω
A(2Tω, 2Tqqq)

σ(2Tω, 2Tqqq)

(2Tω − ωR(2Tqqq))2 + σ2(2Tω, 2Tqqq)

The width and the weight of the Lorentz peak are given by

σ(2Tω, 2Tqqq) = 2T
γ(q̂)

q

ω(ω2(qqq)− ω2)

(ω + ωR(2Tqqq)
2T

)
(
r0 + (2T )2E(qqq)

)
A(2Tω, 2Tqqq) =

2ω
(
ω2(qqq)−

(ωR(2Tqqq)
2T

)2)
(ω + ωR(2Tqqq)

2T
)
(
ω2(qqq)− ω2

)
The new dispersion relation is then given by

ωR(2Tqqq) = 2T

√√√√√ω2(qqq)− λ2 C2(qqq)

r0 + (2T )2E(qqq)︸ ︷︷ ︸
=:d

We see that the central part which determines the behaviour of the new dispersion w.r.t.
T is the rescaled energy of the electrons

R := r0 + (2T )2E(qqq)
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Inserting this into the integral leads to

Cph(T ) =
2(2T )3

(2π)3

∫
q≤ Λ

2T

d3q

∫ ∞
0

dω

π

ω2

sinh2 ω

2dRωγ(q̂)ω
q

R2
(
ω2 − ω2

R(2Tqqq)

(2T )2

)2
+
(
γ(q̂)ω

q

)2(
ω2 − ω(qqq)2

)2

(4.2.3)
The numerical analysis of the integrand shows that the fraction obtains a sharp peak
as a function of ω for almost all values of qqq and T . Only for very small momenta and
small temperatures the peak becomes thicker. This behaviour can be seen analytically by
considering the denominator. In the following we will consider the specific heat 4.2.3 in
the cases T � r0 and T → 0.
In the limit T � r0 we have

R = r0 + (2T )2E(qqq) ≈ (2T )2E(qqq)

The difference between the new and the old dispersion is then given by

d =
λ2C2(qqq)

R
≈ λ2C2(qqq)

(2T )2E(qqq)
=

λ2

(2T )2

c(q̂)

e(q̂)

We see that d becomes very small since λ � 1 and T � 1. This means that we can
consider the integrand in the limit d→ 0. Furthermore we can assume

R� γ(q̂)
ω

q

although this is not true for q → 0. The reason for that is that the prefactor ω2

sinh2 ω
suppresses all contributions from ω � 1 or ω � 1. Thus the integrand vanishes in the
limit qqq → 0.
Now we can rewrite the denominator as

R2
(
ω2 − ω2

R(2Tqqq)

(2T )2

)2

+
(
γ(q̂)

ω

q

)2(
ω2 − ω2

R(2Tqqq)

(2T )2
+ d
)2

≈
(
R2 +

(
γ(q̂)

ω

q

)2
)(
ω2 − ω2

R(2Tqqq)

(2T )2

)2

+
(
γ(q̂)

ω

q

)2

d2

Inserting this into the integrand gives us the Lorentz peak

ω2

sinh2 ω
2Rω

γ(q̂)ω
q
d(

R2 +
(
γ(q̂)ω

q

)2
)(
ω2 − ω2

R(2Tqqq)

(2T )2

)2
+
(
γ(q̂)ω

q

)2
d2

In the large T limit we have d → 0 and R � γ(q̂)ω
q
. The Lorentz peak then becomes

a delta peak and we can easily do the ω-integration. The prefactor 2Rω thereby cancels
with the factor from the inverse of the derivative of the argument in the delta function.
Finally we recover the ordinary specific heat

Cph(T ) =
πT 3

15

∫
dΩ

1

v3(q̂)
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With
ω2
R(2Tqqq)

(2T )2

∣∣∣∣
d→0

= ω2(qqq) = v2
⊥q

2
⊥ + v2

‖q
2
‖ + v2

zq
2
z

we can write this as

Cph(T ) =
2T 3

π3

∫
d3q

v2
⊥q

2
⊥ + v2

‖q
2
‖ + v2

zq
2
z

sinh2
√
v2
⊥q

2
⊥ + v2

‖q
2
‖ + v2

zq
2
z

=
2T 3

π3

1

v⊥v‖vz

∫
d3q

q2
⊥ + q2

‖ + q2
z

sinh2
√
q2
⊥ + q2

‖ + q2
z︸ ︷︷ ︸

= 2π5

15

=T 3 4π2

15v⊥v‖vz

This is exactly the same specifc heat as we got by considering an uncoupled phonon mode.
The dispersion relation was here proportional to q for all directions.

Now we come to the limit T → 0 where r0 + (2T )2E(qqq) ≈ r0.
Again we consider the equation 4.2.3. Here the lowest order approximation for the disper-
sion is

ω2
R(2Tqqq)

4T 2
= ω2(qqq)− λ2C

2(qqq)

r0

By the choice of r0 the term in ω2
R(qqq) which is proportional to q2

‖ vanishes. Thus the new
dispersion becomes soft in this direction. Here we expect a modification of the ordinary
Cph ∝ T 3 law for the specific heat. To describe the dispersion in this direction we now
have to take terms proportional to q4

‖ into account. The dispersion then looks like

ω2
R(2Tqqq)

4T 2
=v2
⊥q

2
⊥ + v2

zq
2
z + (2T )2

(λ2A2

r2
0

+ v4
‖,4

)
q4
‖ +O(T 3)

The A comes form the kinetic energy E(qqq) = A2
(
q2
‖ + q2

⊥
)

+ B2q2
z of the electrons. With

the relation r0 = λ2

v2
‖
we can write this as

ω2
R(qqq) = v2

⊥q
2
⊥ + v2

zq
2
z + (2T )2

(v2
‖A

2

r0

+ v4
‖,4

)
q4
‖ +O(T 3)

We see that now the dispersion relation which is soft in the qqq‖ direction is contained in the
denominator. The problem is that we cannot assume γ(q̂)

r0
� 1 here in general. This would

only be satisfied when qqq is almost directed into q̂‖-direction where γ(q̂) vanishes.
So we start with the substitution q‖ →

q‖√
2T

to get the renormalized dispersion T -independent:

ω2
R(qqq)→ v2

⊥q
2
⊥ + v2

zq
2
z +

(v2
‖A

2

r0

+ v4
‖,4

)
q4
‖ +O(T )
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This leads to

Cph(T ) =
2(2T )2.5

(2π)3

∫
d3q

∫ ∞
0

dω

π

ω2

sinh2 ω
×

×
2ω

γ(
q‖√
2T
,q⊥,qz)

r0
ω
q̃
d(

ω2 − ω2
R(qqq)

)2

+
(
γ(

q‖√
2T
,q⊥,qz)

r0
ω
q̃

)2(
ω2 − (v2

‖
q2
‖

2T
+ v2

⊥q
2
⊥ + v2

zq
2
z)
)2

where q̃ =
√

1
2T
q2
‖ + q2

⊥ + q2
z . The central point here is now that for q‖ 6= 0 we have

lim
T→0

γ(
q‖√
2T
, q⊥, qz)

r0

q̃ = 0

This means that the Landau damping vanishes asymptotically for T → 0. It implies
that in the low temperature regime we have a sharp Lorentz peak. The set of momenta
where q‖√

2T
is small compared to q⊥ and qz can be ignored in the low temperature limit.

The fraction ω
q̃
can be assumed to be of the order of 1.

Altogether we are again in the situation that we get a very sharp peak at ω = ωR(qqq).
The calculations can now be done completely analogous to the peak in the high T case.
The result is

Cph(T ) =

√
2T 2.5

π3

∫
d3q

ω2
R(qqq)

sinh2 ωR(qqq)

Inserting the form of the dispersion relations leads to

Cph(T ) =

√
2T 2.5

π3

∫
dq⊥dq‖dqz

v2
⊥q

2
⊥ + v2

zq
2
z +

(
v2
‖A

2

r0
+ v4

‖,4

)
q4
‖

sinh2

√
v2
⊥q

2
⊥ + v2

zq
2
z +

(
v2
‖A

2

r0
+ v4

‖,4

)
q4
‖

=

√
2T 2.5

π3

4π

v⊥vz

(
v2
‖A

2

r0
+ v4

‖,4

)1/4

∫
dsdk‖

s√
k‖

k2
‖ + s2

sinh2
√
k2
‖ + s2

=

√
2T 2.5

π3

8π

v⊥vz

(
v2
‖A

2

r0
+ v4

‖,4

)1/4

∫
dr

∫ π/2

0

dφ
r sinφ√
r cosφ

r2

sinh2 r

=

√
2T 2.5

π3

8π

v⊥vz

(
v2
‖A

2

r0
+ v4

‖,4

)1/4

∫ π/2

0

dφ
sinφ√
cosφ︸ ︷︷ ︸

=2

∫ ∞
0

dr
r7/2

sinh2 r︸ ︷︷ ︸
=

7/2

27/2
2Γ

(
7
2

)
ζ

(
7
2

)
=

Γ
(

7
2

)
ζ
(

7
2

)
π2

7

2︸ ︷︷ ︸
≈1.3279

1

v⊥vz

(
v2
‖A

2

r0
+ v4

‖,4

)1/4
T 2.5
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Since the critical mass r0 is very small, the value of v4
‖,4 is vanishingly small compared to

v2
‖A

r0
. We finally end up with the low temperature limit

Cph(T ) =
Γ
(

7
)
ζ
(

7
2

)
π2

7

2

r
1/4
0

v⊥vz
√
v‖A

T 2.5

Our result for the phononic part of the specific heat is thus

Cph(T ) =

{
αT 2.5 for T ≤ Tc,ph

βT 3 for T ≥ Tc,ph

where

α =
Γ
(

7
2

)
ζ
(

7
2

)
π2

7

2

r
1/4
0

v⊥vz
√
v‖A2

, β =
4π2

15v⊥v‖vz

It remains now to calculate a characteristic crossover temperature Tc,ph between the T 3

proportionality of the specific heat in the high temperature regime and the T 2.5 propor-
tionality in the low temperature regime.
This can be done via the equation

αT 2.5
c,ph = βT 3

c,ph ⇒ Tc,ph =
(α
β

)2

=
(105

8π4
Γ
(7

2

)
ζ
(7

2

))2

v‖

√
r0

A

Just as before we get a crossover whose properties only depend on the ratio r0
A2 and not

on the absolute value of the boson propagator. Furthermore we can identify the critical
exponents z = 1 and ν = 1/2.

4.2.3 Summary

We have seen that the coupling leads to a critical system when the electron mass is given
by r0 = 2λ2ρ

C11−C12
. The resulting specific heat could be split into an electronic part and

a phononic part. We were able to recover the logarithmic dropoff of the electronic spe-
cific heat for large temperatures. For zero temperature we observed a saturation and
recovered the Fermi liquid behaviour. The crossover-temperature Tc,el between these two
temperature-dependencies is given by

Tc,el = exp
(
− 3Γ

4π2

)
exp

(〈 log
r
3/2
0 (q̂)

γ(q̂)
√
e(q̂)

〉
γ/e

〈1〉γ/e

)

The direction-dependence of the new effective boson mass r0(q̂) = r0 − λ2C(qqq)2

ω2(qqq)
was a

consequence of the coupling of the direction-dependent phonons. Without this dependency
we could immediately recover the critical exponents of the uncoupled electrons

Tc ∝ rνz0 with ν =
1

2
, z = 3
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The phononic specific heat obtained the ordinary T 3 proportionality for high tempera-
tures. For low temperatures it was proportional to T 2.5. This resembles the fact that the
renormalized phonon dispersion becomes soft in the qqq‖-direction for low temperatures. A
very important fact for the occurence of the T 2.5 part was that the Landau damping of the
electrons vanishes in exactly the same directions as where the phonon mode becomes soft.
Otherwise this part would be smeared out.
The crossover-temperature is given by

Tc,ph =
(105

8π4
Γ
(7

2

)
ζ
(7

2

))2

v‖

√
r0

A

Here we observed the relation
Tc,ph ∝ rzν0

where ν = 1/2 and z = 1 are the critical exponents from the bare phonons.
The T -dependence of the complete specific heat of the coupled system can be summarized
in the following diagram

Figure 4.1: This scematic plot views the different crossover of the specific heat of the coupled
system. The size of the crossover temperatures w.r.t. each other depends on the paramters of the
system. For very small values of r0 we are always in the case Tc,ph > Tc,el because there we have
r

3/2
0 � √r0.
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4.2.4 Numerical Validation

In this chapter we check the analytical results for the phase diagram by numerical methods.
We do this by calculating the electronic 4.2.1 and the phononic 4.2.3 specific heat via a
Monte Carlo integration method for different temperatures T and boson masses r. The
full specific heat of the system is given by the sum of these two terms.
The lattice parameters are here chosen to be

C11 = 19.0, C12 = 15.0, C33 = 25.0, C13 = 4.0, C44 = 25.0, C66 = 20.0, ρ = 1.0

For the bosonic term we choose the cutoff to be Λ = 4000 and the coupling constant is set
to λ = 0.3.
From the analysis, where we always assumed that the bosonic mass r is tuned to its critical
value r0 = 2λ2ρ

C11−C12
, we get the following parameters:

γ δ ν α β Tc,el Tc,ph
0.0885 0.0032 0.0035 0.001083 0.061190 0.1314 0.1023

Cph(T ) =

{
αT 2.5 for T ≤ Tc,ph

βT 3 for T ≥ Tc,ph
;

Cel

T
=

 γ for T � Tc,el

ν − δ log
T

Λ3
for T � Tc,el

Electronic Specific Heat

The comparison of the numerical result for r = r0 is plotted in fig. 4.2. The exact results

Figure 4.2: Comparison of the analytic result and the numerical results for the electronic part of
the specific heat for λ = 0.3 and r = r0. The limit limT→0

Cel
T = γ fits very well to the numerical

curve. The high temperature regime obtain a difference between the two results.

obtains slightly shifted curve for high T . The reason for this lies in the subleading terms
that we have not taken into account because they are irrelevant for the crossover properties.
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The value of δ is very close to the numerical result.
The behaviour of the specific heat can also be calculated for values r > r0. We compare
the curves for r = r0, r = 2r0, 2

2r0, 2
3r0. The results are plotted in fig. 4.3. There one

Figure 4.3: Electronic specific heat coefficient plotted against T 2 for different values for the tuning
parameter r.

can see that the specific heat coefficient strongly decreases in the low temperature regime
when going to higher values for r. For T → 0 we expect that Cel/T is proportional to log 1

r
.

Here we observe, using fig. 4.4, the following deviations differences of the zero temperature

Figure 4.4: Electronic specific heat coefficient plotted against T 2 on logarithmic x-axis for different
values for the tuning parameter r. In this plot one can see the behaviour of the curves for T → 0.

limits w.r.t the r = r0 curve. The differences show exactly the behaviour which results

r = 2r0 r = 4r0 r = 8r0

Deviation from γ 0.0033575 0.0067266 ≈ 2* 0.0033575 0.0100501 ≈ 3*0.0033575

from Cel
T
∝ log 1

r
.
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Phononic Specific Heat

For the phononic specific heat we again first check our analysis for r = r0 and then consider
its behaviour when we go away from the critical value for the tuning parameter.
The comparison of the numerical curve with the high temperature limit of the specific
heat coefficient is plotted in 4.5. There we see that the analytic curve fit very good to

Figure 4.5: Comparison of the analytic result and the numerical results for the phononic part of
the specific heat coefficient Cph

T against T 2 for λ = 0.3 and r = r0.

the numeric results for high temperatures. For low temperatures we have relatively broad
crossover regime where the analytic predictions do not fit to the analytic curves. At very
low temperatures the curve fits again very good to the numeric result. Hence the numeric
result proof our result that at very low T we have Cph

T
∝ T 1.5.

As before we now consider the change of the specific heat for values higher values for
the tuning parameter r. For this we calculate the phononic specific heat coefficient for
r = r0, r = 2r0, r = 4r0, r = 8r0. The results are plotted in fig. 4.6 and fig. 4.7.

Figure 4.6: Phononic specific heat coefficient plotted against T 2 for different values for the tuning
parameter r.
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Figure 4.7: Low temperature regime of the phononic specific heat coefficient plotted against T 2

for different values for the tuning parameter r.

There we see that the specific heat decreases for higher r. Especially interesting is the low
temperature regime where we observed Cph(T )

T
∝ T 1.5 for r = r0. For values r > r0 the

results show linearly increasing curves i.e. there we have Cph(T )

T
∝ T 2. This shows that the

phonon mode only becomes soft when we are at the critical value r = r0 for the tuning
parameter.
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4.3 Fermionic Self Energy
The self energy and the specific heat of a Fermi liquid are closely related quantities. With
the self energy one can directly calculate the entropy S, and hence the specific heat of a
Fermi liquid, for low temperatures via the equation (from [7], page 169)

S

V
=

2π2T

3

1

2π

∫
d3q

(2π)3
2Im

[
G−1
R

∂GR

∂ε

]
ε=0

where GR(qqq, ε) denotes the retarded Green’s function of the Fermi liquid including the
self energy correction. The calculation of the self energy has been done for many types of
nematic transitions, see e.g. [26],[27],[6].
Here we want to check whether the self energy supports our result for the specific heat.
For that we consider the first order diagram

Σ(1)
(
kkk, iωn

)
=

kkk, iωn kkk − qqq, iωn − iΩm

qqq, iΩm

kkk, iωn

The dashed line denotes the fluctutation bosons which are coupled to the phonons. Again
the coupling between the boson and the phonon is the dominating coupling mechanism
in the system. Hence the phonons are not directly coupled to the fermions. More details
about the effective coupling is given in the next section.
The diagram corresponds to the equation

Σ(1)
(
kkk, iωn

)
=
T

V

∑
Ωm,qqq

Q2
(
kkk − qqq

2

)
gf
(
kkk − qqq, i(ωn + Ωm)

)
Gb(qqq, iΩm)

where Gb(qqq, iΩm) is the boson component of the propagator G for the coupled boson-
phonon system. We know

G−1(qqq, iΩm) =

(
g−1
b (qqq, iΩm) iλC(qqq)
−iλC(qqq) g−1

ph (qqq, iΩm)

)
Inverting this 2x2 matrix leads to the boson propagator

Gb(qqq, iΩm) =
g−1
ph (qqq, iΩm)

g−1
ph (qqq, iΩm)g−1

b (qqq, iΩm)− λ2C2(qqq)

Inserting g−1
ph (qqq, iΩm) = ρω(qqq)2 + ρΩ2

m and g−1
b (qqq, iΩm) = r + E(qqq) + γ(q̂) |Ωm|

q
gives

Gb(qqq, iΩm) =
ω(qqq)2 + Ω2

m

(ω(qqq)2 + Ω2
m)(r + E(qqq) + γ(q̂) |Ωm|

q
)− λ2

ρ
C2(qqq)

=
1

E(qqq) + γ(q̂) |Ωm|
q

+ r − λ2

ρ
C2(qqq)

ω(qqq)2+Ω2
m
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Instead of evaluating the sum over the frequencies, we first consider the integral over the
direction of qqq. We can approximate εkkk−qqq ≈ −vFqqq · k̂ = −vF qq̂k. Inserting this gives

Σ
(
kkk, iωn

)
=
TQ2

(
kkk)

(2π)3vF

∫
d3q
∑
Ωm

1

iωn−Ωm
vF q

− q̂k
Gb(qqq, iΩm)

The fraction can be approximated by −iπsign
(
ωn − Ωm

)
δ(q̂k), i.e. the dominating terms

come from the momenta qqq which are perpendicular to kkk.

Figure 4.8: The vector kkk+qqq has to be at the
Fermi surface. For more complex forms of
the surface we get other restrictions for the
relation between kkk and qqq.

Figure 4.9: The vector kkk + qqq has to be at
the Fermi surface. The Fermi sphere leads
in first order to qqq ⊥ kkk. For more complex
surfaces, such as pockets (small circle), we
get additional possibilities for qqq

This orthogonality of kkk and qqq plays an important role in the final result of the self energy.
Physically this can be understood as a result of the Pauli blocking on the one side and the
Fermi statistics on the other side.
An important point for these relations is that the Fermi surface is a sphere. In practice
this surface is deformed by strain, see fig. 4.8. A strong coupling of the electrons to the
underlying lattice leads to surface shape, which can be very sensitive to strain. Furthermore
there are cases where one has more than one connected Fermi sphere, see fig. 4.9. If these
pockets are present we get more complex conditions for the relation between kkk and qqq.
The quadrupolar mode vanishes for |kx| = |ky|. But this equality is exactly the condition
for kkk such that the roots of the Landau damping prefactor γ(q̂), see 3.2.1 lie in the plane
perpendicular to kkk. It implies that these roots are not seen in this approximation for the
self energy. So in the following we can assume that γ(q̂) is finite.
The self energy now has the form

Σ
(
kkk, iωn

)
=
−iTQ2

(
kkk)

2(2π)2vF

∫
qqq⊥kkk

d2q
∑
Ωm

sign
(
ωn − Ωm

)
Gb(qqq, iΩm)

The boson propagator is even in Ωm. So the sign prefactor cancels all contribution from
the terms with |Ωm| > |ωn|. In the end we are interested in the self energy as a function of
ω. For that it is sufficient to perform the calculations in the zero temperature limit. This
has the advantage that one can replace the sum by an integral

∑
Ωm
→ β

2π

∫
dΩ.

Σ
(
kkk, iωn

)
=
−iQ2

(
kkk)sign(ωn)

(2π)3vF

∫ |ωn|
0

dΩ

∫
qqq⊥kkk

d2qGb(qqq, iΩ)
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The integral over the momentum can be split into an integral over the absolute value and
the direction of qqq in the plane perpendicular to kkk.
An analytical integration is now possible in the limits of small and large frequency ωn:

• First case: γmax|ωn|3/2 � r(q̂)
At very large q the kinetic energy of the bosons is always the dominating term.
For small q the situation is more complicated. Therefore we split the momenta at
qc = |ωn|

ω(q̂)
. In the q < qc regime the influence of the coupled phonons is tiny and hence

can be ignored. Moreover we can ignore the Landau damping term. In the q > qc
regime we recover the effective direction dependent mass r(q̂) as the relevant term.
This leads to the following splitting of the integral∫ |ωn|

0

dΩ

∫ qc

0

dq
q

E(qqq) + r0

+

∫ |ωn|
0

dΩ

∫ Λ

qc

dq
q

E(qqq) + r(q̂)

=

∫ |ωn|
0

dΩ
1

2e(q̂)

[
log
|ωn|2e(q̂) + r0

r0

+ log
Λ2

|ωn|2 + r(q̂)/e(q̂)

]
=
|ωn|
2e(q̂)

[
log
|ωn|2e(q̂) + r0

r0

+ log
Λ2

|ωn|2 + r(q̂)/e(q̂)

]
The cutoff Λ is very large. Hence the dominating term is given by

|ωn|
2e(q̂)

log
Λ2

r(q̂)/e(q̂)

• Second case: γmin|ωn|3/2 � r(q̂)
The difference is that now the Landau damping term is dominating in the small
momenta regime. This leads to∫ |ωn|

0

dΩ

∫ Λ

0

q

E(qqq) + γ(q̂)Ω
q

≈
∫ |ωn|

0

dΩ log
e(q̂)Λ3

γ(q̂)Ω

= |ωn|
(

1 + log
e(q̂)Λ3

γ(q̂)ωn

)
≈ |ωn| log

e(q̂)Λ3

γ(q̂)ωn

A comparison of the two limits leads to the self energy of the form

Σ(kkk, iωn) =
−iQ2

(
kkk)

2(2π)2vF
ωn


log
(Λ3e(q̂)

γ̄|ωn|

)
for |ωn| �

r̄3/2

γ̄

log
(Λ2e(q̂)

r̄

)
for |ωn| �

r̄3/2

γ̄

The averaged values r̄ and γ̄ are defined as∫
q̂⊥kkk

dq̂ ln
(
γ(q̂)

)
= ln(γ̄),

∫
q̂⊥kkk

dq̂ ln
(
r(q̂)

)
= ln(r̄)
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where r(q̂) = r0−λ2C
2(qqq)

ω2(qqq)
is again the direction dependent mass. This averaging is allowed

here, because γ(q̂) and r(q̂) only vanish in the
[
qqq‖
]
directions. But these directions are

only contained in the plane perpendicular to kkk, when Q(kkk) = k2
x − k2

y vanishes.
Finally we end up with a self energy which is quite similar to the specific heat of the bosonic
modes. The major effect of the coupled phonons is a modified value for the crossover point
between the high and the low frequency limit of the self energy. This is a consequence of
the approximations we made.
A more detailed calculation of the self energy in its analytically continued form ωn →
ω + iδ+ for the Fermi liquid due to phonon coupling can be found in [7]. The phonons
lead to an imaginary part of the self energy which is in lowest order proportional to ω3,
i.e. ImΣ(kkk, ω) ∝ ω3. The real part of the self energy obtains a term linear in ω for small
ω and furthermore a term proportional to ω3 logω. So the identification of the phononic
term is very difficult since we have more than one term with ω3.
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4.4 Effective Electron-Phonon Coupling
The common approach to describe the free electron to phonon interaction is to consider
the coupling between these two fields directly. The typical form of the interaction term in
the effective action is ∑

kkk,qqq

gα(kkk,kkk′)ψ†(kkk)ψ(kkk′)
(
u†α(−qqq) + uα(qqq)

)
where qqq = kkk − kkk′ and gα(kkk,kkk′) denotes the coupling amplitude.
We are in a slightly different situation since we have a quadrupolar interaction between
the electrons. We constructed an effective interaction by coupling the bosons originating
from the Hubbard-Stratonovich transformation φ to phonons. These bosons constitute the
quadrupolar fluctuations of the Fermi surface and were defined as

φij = ψ†Qijψ

Now we compare our results to the ordinary coupling. We want to know whether the
coupling is enhanced in the vicintiy of the critical point of the system. For that we
integrate out the bosonic mode φ.

−→

The action of the full system is given by

S[ψ†, ψ, φ, u†, u] =

∫
d3xdτ

{
ψ†g−1

f ψ + φg−1
b φ+ u†g−1

ph u− φ
(
Ψ†QΨ

)
+ φ
(
− iλC(qqq)

)
u+ u†

(
iλC(qqq)

)
φ
}

The effective action of the electron-phonon system can now be calculated by integrating
out the bosons in the partition sum

Z =

∫
D[ψ†, ψ, u†, u]

∫
Dφ exp

(
− S[ψ†, ψ, φ, u†, u]

)
Since we consider a linear coupling this integral can be evaluated exactly and leads to

Seff[ψ†, ψ, u†, u] =

∫
d3xdτ

{
ψ†g−1

f ψ + u†
(
g−1
ph − λ

2C2(qqq)gb
)
u

+
iλC(qqq)

2
gb(u† − u)

(
ψ†Qψ

)
+

1

4

(
ψ†Qψ

)
gb
(
ψ†Qψ

)}
Here one can now read of the effective fermion-phonon coupling amplitude

λC(qqq)

r0 + E(qqq) + γ(q̂) |Ωm|
q



CHAPTER 4. QUANTUM CRITICAL FERMI LIQUID ON A LATTICE 59

The critical value of the tuning parameter is given by r0 = 2λ2ρ
C11−C12

∝ λ2.
This result has an interesting consequence for the limit Ω = 0, qqq → 0. There the effective
coupling amplitude reduces to

λC(qqq)

r0

∝ 1

λ

This means that there we have an enhanced coupling due to the fact that λ is small.





Chapter 5

Summary

In this thesis we considered the effects of electron-phonon interaction in metals in three
dimensions at very low temperatures. Thereby we restricted ourselves to samples where
the electrons could be modeled by a Fermi liquid with quadrupolar interaction term. These
are interesting because they have a nematic quantum critical point, see [6], [21], [5]. We
are interested in the effects of the fluctuations of the Fermi liquid in the vicinity of this
point for the sample.
We started with a general discussion of the elasticity of crystals. Thereby we first gave an
introduction into the classical elasticity theory. Then we modified the quantities of this
theory such that we can apply it to crystals. The central quantities which determine the
elastic properties of crystals are the entries of the elastic modulus tensor Cαβ. To get infor-
mation about the stability of crystals we had to decompose the possible strain directions
into the eigenvectors of Cαβ. The eigenvalues indicate the stability of the crystal w.r.t
strain along the corresponding eigenvector. A vanishing eigenvalue indicates an instable
lattice. With the knowledge of the relation between the eigenvalues and the stability we
were then able to construct a Landau theory for the strain. With this we could determine
the properties of lattice transformations, such as the order of the transformation. More-
over we observed the appearance of soft phonons. These are acoustic phonon modes whose
velocity is going to zero for some directions. Finally we calculated the free energy and the
specific heat of stable crystals as well as for crystal at a lattice transformation point. The
most important observation thereby was that the soft phonon modes lead to a modifica-
tion of the typical law C(T ) ∝ T 3. So phonon modes with discrete soft directions lead to
specific heat which is proportional to T 2.5. These modifications are especially interesting
for the experimental analyzation of lattice transformations.
In the third chapter we considered a Fermi liquid with quadrupolar interaction as a model
for the electrons. The key point in the analysis of the interaction term was the introduction
of bosonic fields via a Hubbard-Stratonovich transformation. Each quadrupolar compo-
nent corresponds to a different bosonic fields. Physically these fields can be considered as
deformations of the Fermi sphere of quadrupolar shape. We derived an effective action for
the complete Fermi liquid in terms of the bosonic fields. In the following we then focused
on the dynamics of a isolated mode φx2−y2 . This mode is because of its symmetries the
best candidate for inducing the tetragonal to orthorhombic lattice transition. We observed
the appearance of a quantum critical point, indicated by a vanishing effective mass r, for
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certain parameters of the system. Furthermore this mode obtained a Landau damping
which vanishes in the <1, 1, 0> directions. These are exactly the same directions as the
soft directions of the soft phonon mode in the tetragonal to orthorhombic transition. This
fact plays an important role for the coupled system.
The temperature dependence of specific heat at the quantum critical point r = 0 turned
out be of the form T log 1/T . So the typical Fermi liquid property C(T ) ∝ T , which can
be found e.g. in [7], page 169, is modified. Such a modification is called non-Fermi liquid
behaviour.
In the fourth chapter we finally considered the full system of the crystal lattice and the
electrons. The action of the two constituents are known from the previous chapters. Here
we then constructed an effective interaction term. The crucial point thereby was that the
coupling terms have to satisfy the lattice symmetries. In the lowest order contribution most
of the coupling terms between the different phonon modes and the bosons are forbidden. In
the tetragonal lattice that we considered, only the bosons φx2−y2 could be coupled linearly
to the phonon mode that becomes soft at the transformation into an orthorhombic lattice.
So at low temperatures we have this dominant phonon mode which is strongly coupled to
the bosonic field that we already considered in chapter three. For the sake of simplicity
we ignored in the following the coupling to the other subleading phonon modes as well as
to the other bosons. Thus we end up with an effective system of a coupled phonon-boson
pair and miscellaneous decoupled constituents whose properties are well known from the
previous chapters.
The strong boson-phonon coupling leads to a hybridization of the constituents. So the
identification of a renormalized phonon mode and Fermi liquid is in general very difficult.
To solve this problem we used the results from [10] for the free energy of this system in the
isotropic case. There the free energy could be split into two terms which could be identified
as an electronic and a phononic contribution. We got the analogue results for the non-
isotropic system. In the analysis of these two terms we observed a renormalized dispersion
relation for the phonons. For small energies this new dispersion obtained soft directions
when the bosonic mass r is tuned to a small but finite critical value r0 > 0. This lead us
to the conclusion that at this point the fluctuations in the Fermi liquid induce a instability
of the crystal. The bosonic mass played thereby the role of an order parameter. So at this
point we expect a symmetry transformation of the lattice. As before we derived the ther-
modynamical properties of the system at the critical point via the specific heat. There we
were able to analyze the contributions from the Fermi liquid and the phonons separately.
The Fermi liquid obtained for large temperatures the T log T behaviour we already know
form the uncoupled case. In the limit T → 0 we got a finite value for C/T , i.e. there
the critical fluctuations are suppressed and we recovered the Fermi liquid behaviour. The
critical parameters for this crossover are z = 3 and ν = 1/2. The phononic part obtained
a T 2.5 proportionality for small T and a T 3 proportionality for large T . This crossover
indicates the appearance of the soft dispersion and a transition of the tetragonal into an
orthorhombic lattice. The critical parameters of this crossover are z = 2 and ν = 1/2.
Since we are in three dimensions, we are above the upper critical dimension d+ = 4.
These analytic results were then confirmed by a numerical calculation of the specific heat.
Large differences only occured in the vicinty of the crossover temperatures. Otherwise we
observed only small deviations originating from subleading terms.
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With the knowledge about the thermodynamics of the full system we then considered
the effects of this hybridization of the two system. The lowest order contribution to the
fermionic self energy Σ(qqq, ωn) at zero temperature turned out to be linear in ωn when this
frequency is small. For large frequencies it was of form ωn log(C/|ωn|). This result in
accordance with the electronic specific heat we have calculated before. From the phonons
we expect terms proportional to ω3

n and ω2.5
n . The extraction of these terms is in general

very complicated because one gets a mixture of phononic and Fermi liquid contributions.
These calculations are not done here because they would go beyond the scope of this thesis.
In the last section we calculated the effective fermion-phonon vertex for our system. The
consideration of its effects for physical mechanisms, such as sound absorption in the crystal,
would be a topic for future work.





Deutsche Zusammenfassung

In dieser Arbeit wird der Einfluss der Elektronen-Gitter-Wechselwirkung von bestimmten
Metallen in drei Dimensionen bei niedrigen Temperaturen untersucht. Diese Metalle zeich-
nen sich dadurch aus, dass die effektive Elektronen-Elektronen-Wechselwirkung durch eine
quadrupolare Kopplung beschrieben werden kann. Das Standardmodell zur Beschreibung
von Elektronen in Metallen ist das Fermiflüssigkeitenmodell. In Kombination mit der qua-
drupolaren Wechselwirkung sagt dieses Modell einen quantenkritischen Punkt des Systems
vorraus, siehe [6], [21], [5]. An diesem Punkt treten starke Fluktuationen auf, deren Ein-
fluss auf das gekoppelte Gitter wir untersuchen wollen.
Wir beginnen mit einer Einführung in die Elastizitätstheorie für Kristalle. Dabei wird zu-
nächst die klassische Elastizitätstheorie von makroskopischen Objekten beschrieben, um
anschließend die grundlegenden Konzepte dieser Theorie auf Kristalle anzuwenden. Die
zentrale Größe, welche die elastischen Eigenschaften der Kristalle bestimmt, ist dabei der
Elastizitätstensor Cαβ. Anhand dieses Tensors können wir die Stabilität von Kristallen be-
schreiben und die Eigenschaften von Gittertransformationen bestimmen. Einer der wesent-
lichsten Effekte bei den Gittertransformationen ist das Auftreten von weichen akustischen
Phononmoden. Als weiche Phononmoden bezeichnet man Phononen, deren Geschwindig-
keit für bestimmte Richtungen gegen Null geht. Sie modifizieren das typische Verhalten
Cph(T ) ∝ T 3 der spezifischen Wärme zu Cph(T ) ∝ T 2.5. Dies liefert uns ein experimentell
überprüfbares Resultat für das Auftreten einer weichen Phononmode.
Im dritten Kapitel werden die Eigenschaften der Fermiflüssigkeit in der Nähe des quanten-
kritischen Punktes behandelt. Die quadrupolare Wechselwirkung kann durch bosonische
Quasiteilchen beschrieben werden, welche anschaulich eine Deformation der Fermikugel
darstellen. Zu jeder unabhängigen quadrupolaren Komponente existiert ein entsprechen-
des Boson. Die Eigenschaften der Fermiflüssigkeit lassen sich dann anhand einer effektiven
Wirkung für diese Felder beschreiben. Diese leiten wir für den Fall eines dominierenden Fel-
des φx2−y2 her. Dabei können wir zum Einen das Auftreten des quantenkritischen Punktes
reproduzieren. Desweiteren beobachten wir einen Landau-Dämpfungsterm, welcher entlang
der Richtungen <1, 1, 0> verschwindet. Die spezifische Wärme der Fermiflüssigkeit zeigt
beim kritschen Punkt ein T log 1/T Verhalten.
Im zentralen vierten Kapitel betrachten wir das gesamte gekoppelte System. Dabei be-
schränken wir uns exemplarisch auf einen Kristall mit tetragonaler Gittersymmetrie. Auf-
grund der Gittersymmetrien und der Symmetrien der Bosonen ist die Kopplung zwischen
bestimmten Kombinationen aus Phononmoden und Bosonen bevorzugt. Unser System lässt
sich damit auf eine dominierende Phonon-Boson-Kopplung reduzieren, währendessen die
restlichen Beiträge als annähernd frei behandelt werden können.
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Dieses System analysieren wir dann anhand der freien Energie und beobachten eine Renor-
malisierung der Parameter der Fermiflüssigkeit und der Phononmode. Eine entscheidener
Punkt dabei ist, dass die Phononen für einen bestimmten Wert der effektiven Bosonmasse
r und für niedrige Energien weich werden. Dies führt zu dem Schluss, dass die Quanten-
fluktuationen der Fermiflüssigkeit bei niedrigen Temperaturen einen Phasenübergang des
Gitters induzieren. In der phononischen spezifischen Wärme spiegelt sich dies in einem
Übergang von Cph(T ) ∝ T 3 zu Cph(T ) ∝ T 2.5 für r = r0 bei niedrigen Temperaturen
wider. Die kritischen Parameter für diesen Übergang sind z = 1 und ν = 1/2. Für die
Fermiflüssigkeit führt die Kopplung zu einer Unterdrückung des T log 1/T Verhaltens bei
niedrigen Temperaturen. Dort erhalten wir das übliche Verhalten Cel(T ) ∝ T für Fermiflüs-
sigkeiten. Bei diesem Übergang lauten die kritischen Parameter z = 3 und ν = 1/2. Die
analytischen Resultate konnten durch eine numerische Berechnung der spezifischen Wärme
bestätigt werden. Anschließend berechnen wir noch die fermionische Selbstenergie für das
gekoppelte System. Der elektronische Anteil der spezifischen Wärme kann dabei reprodu-
ziert werden. Für den phononischen Anteil muss eine komplexe Kombination aus Beiträgen
der Diagramme erster und höherer Ordnung analysiert werden. Die Aufgabe würde den
Rahmen dieser Arbeit sprengen und wird deshalb hier nicht durchgeführt.
Den Abschluss bildet die Berechnung der effektiven Kopplung im Fermion-Phonon System.
Dazu müssen die bosonischen Felder ausintegriert werden. Die Analyse der physikalischen
Effekte der resultierenden Kopplung ist eine mögliche Aufgabe für zukünftige Arbeiten.



Appendix A

Dispersion Relations of the Acoustic
Phonons

To get the dispersions we have to calculate the eigenvalues of Djk(qqq) = qiCijklql. These are
determined by the equation

0 = det
[
D(qqq)− ω1

]
= −ω3 + a(qqq)ω2 − b(qqq)ω + c(qqq)

where

a(qqq) = D11 +D22 +D33

b(qqq) = −D12D12 +D11D22 −D13D13 −D23D23 +D11D33 +D22D33

c(qqq) = −D13D22D13 +D12D23D13 +D13D12D23 −D11D23D23 −D12D12D33 +D11D22D33

This equation can now be solved by Cardano’s method and leads to

ω1 = −
√
−4

3
p · cos

(
1

3
arccos

(
− q

2

√
−27

p3

)
+
π

3

)
(A.0.1)

ω2 =

√
−4

3
p · cos

(
1

3
arccos

(
− q

2

√
−27

p3

))
(A.0.2)

ω3 = −
√
−4

3
p · cos

(
1

3
arccos

(
− q

2

√
−27

p3

)
− π

3

)
(A.0.3)

with p = b− a3

3
, q = ba− c− 2a3

27
.

In general one can now calculate the dispersion for all kinds of lattices. Though in practise
we will only consider the dispersion in local approximations whenever it is possible.
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Appendix B

Phononic Free Energy

The free energy is given by

F = −T
V

3∑
α=1

{∑
qqq,Ωm

ln
[
ρΩ2

m + ρω2
α(qqq)

]}
Since all three terms have the same structure, it is sufficient to consider only one phonon
mode.
To ensure the convergence of the complex integrals that will occur in the following calcu-
lations, we have to take an additional factor e−iεΩm with ε → 0+ in account. This factor
occurs naturally in the general derivation of the Matsubara representation and doesn’t
change the result, see e.g. [23] page 171.
We start with the summation over the bosonic frequencies Ωm. With the complex function

g(z) = βnB(z) =
β

eβz − 1

the sum can be rewritten as the complex integral

Fα = −T
V

∑
qqq

∮
C

dz

2πi
g(z) ln

[
ρω2

α(qqq)− ρz2
]
ezε

In the complex plane we have to take care of the branch cut of the logarithm which is
given by the equations

0 = Im
(
ω2
α(qqq)− z2

)
= −2xy

0 > Re
(
ω2
α(qqq)− z2

)
= ω2

α(qqq) + y2 − x2

where z =: x+ iy. Hence we have y = 0 and |x| > ωα(qqq) at the branch cut.
The contour can now be deformed as plotted in B.1. The integrals along the half circles
vanish for infinitely large radius. For the integration along the real axis we can use that g
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Figure B.1: Deformation of the initial integration path (left) to the new path (right).

is continuous around the real axis, i.e. limδ→0+ g(x+ iδ) = g(x+ iδ) = g(x) to get

Fα =− T

V

∑
qqq

{∫ −ωα(qqq)

−∞
−
∫ ∞
ωα(qqq)

} dx
2πi

g(x)
(

ln
[
ρ
(
ω2
α(qqq)− x2 − 2iδx

)]
− ln

[
ρ
(
ω2
α(qqq)− x2 + 2iδx

)])
=
T

V

∑
qqq

{∫ −ωα(qqq)

−∞
−
∫ ∞
ωα(qqq)

}dx
π
g(x)

(
arctan

(
2δx

ω2
α(qqq)− x2

)
+ π

)

Now we project the integral over the negative x-axis to the positive axis by the substitution
x→ −x. Thereby we can use that the Fermi function has the property

g(−x) = −g(x)− β

Furthermore we can consider the integral in the limit δ → 0+ where

lim
δ→0+

arctan

(
2δx

ω2
α(qqq)− x2

)
= 0

This leads to

Fα =
T

V

∑
qqq

∫ ∞
ωα(qqq)

dx β − 2
T

V

∑
qqq

∫ ∞
ωα(qqq)

dx g(x)

The temperature is canceled out in the first term and gives us a temperature independent
contribution. This can be interpreted as the phononic analogue to the zero point fluctu-
ations of the harmonic oscillator. Hence this term can be written as F (0). So we finally
get

Fα =Fα(0)− 2T

V

∑
qqq

∫ ∞
ωα(qqq)

dx g(x) = Fα(0) +
2

V

∑
qqq

(
T ln

[
2 sinh

(ωα(qqq)

2T

)]
− ωα(qqq)

2

)



Appendix C

Quadrupolar Polarization

Polarization for Ωn > 0

We are only interested in the lowest order contribution w.r.t. q since the momentum qqq of
the boson is much smaller than the Fermi momentum. To get the corresponding terms we
can ignore qqq-dependence of Q. The dynamic part of the polarization then has the form

Π(qqq, iΩn) = −T
V

∑
kkk,ωn

Q(kkk)Q(kkk)gf(kkk +
qqq

2
, iωn + iΩn)gf(kkk −

qqq

2
, iωn)

where g−1
f (kkk, ωn) = iωn − ε(kkk) is the free electron propagator and ε(kkk) =

kkk2−k2
F

2m
. The sum

over the fermionic Matsubara frequencies can be written as the complex integral

Π(qqq, iΩn) = − 1

V

∑
kkk

∮
C1

dz

2πi
nF (z)

Q(kkk)Q(kkk)

(z + iΩn − ε(kkk + qqq
2
))(z − ε(kkk − qqq

2
))

nF (z) = (exp(βz) + 1)−1 denotes the Fermi function over the complex plane.
Now one deformes the path C1 to the path C2, as plotted in fig. C.1, without changing the
integral. The circle of C2 which lies at infinity does not contribute to the integral. For the
small circles around the poles

z1 = ε(kkk +
qqq

2
)− iΩn and z2 = ε(kkk − qqq

2
)

one can again use the residuum theorem.

Π(qqq, iΩn) =− 1

V

∑
kkk

Res
(
nF (z)

Q2(kkk)

(z − ε(kkk − qqq
2
))
, z1

)
+ Res

(
nF (z)

Q2(kkk)

(z + iΩn − ε(kkk + qqq
2
))
, z2

)
=− 1

V

∑
kkk

Q2(kkk)

(
nF (ε(kkk + qqq

2
)− iΩn)

ε(kkk + qqq
2
)− ε(kkk − qqq

2
)− iΩn

−
nF (ε(kkk − qqq

2
))

ε(kkk + qqq
2
)− ε(kkk − qqq

2
)− iΩn

)
=

1

V

∑
kkk

Q2(kkk)
nF (ε(kkk + qqq

2
)− nF (ε(kkk − qqq

2
))

iΩn −
(
ε(kkk + qqq

2
)− ε(kkk − qqq

2
)
)

=
1

V

∑
kkk

Q2(kkk)
nF (ε(kkk + qqq

2
)− nF (ε(kkk − qqq

2
))

iΩn − 1
m
kkk · qqq
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Figure C.1: Deformation of the integration path. The circle at infinity has no contribution to the
integral.

We are interested in the low temperature regime. Therefore we can make the approximation

nF (ε(kkk ± qqq

2
)) ≈ Θ(ε(kkk)) + qqq ·

∂ε(kkk ± qqq
2
)

∂qqq
|qqq=0δ(εkkk) = Θ(ε(kkk))± qqq · k

kk

4m
δ(εkkk)

which implies

nF (ε(kkk +
qqq

2
))− nF (ε(kkk − qqq

2
)) ≈ qqq · kkk

2m
δ
(
ε(kkk)

)
Together which the approximation

∑
kkk ≈

V
(2π)3

∫
d3k we get

Π(qqq, iΩn) =
1

(2π)3

∫
d3k Q2(kkk)

qqq · kkk
2m

1

iΩn − kkk · qqq/m
δ(εkkk)

The remaining task is now to evaluate the integral over the momentum. With

εkkk = 0 ⇔ kkk2

2m
− k2

F

2m
= 0 ⇔ |kkk| = kF

follows

Π(qqq, iΩn) =
mkF
(2π)3

∫
SkF

d2ΩQ2(kkk)
qkF q̂ · k̂

2iΩnm− 2kF qq̂ · k̂

where SkF is the sphere around the origin with radius kF . Here we are interested in the
dynamical part δΠ(qqq, iΩn) of the polarization. Hence we make the decomposition

qqq · kkk
iΩnm− kkk · qqq

= −1 +
iΩnm

iΩnm− kkk · qqq
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and consider in the following only the second term:

δΠ(qqq, iΩn) = Π(qqq, iΩn)− Π(qqq, 0) = i
mkF

2(2π)3

Ωn

vF q

∫
SkF

d2k
Q2(kkk)

i Ωn
vF q
− k̂ · q̂

The denominator only depends on the angle between kkk and qqq. We will now rotate our
coordinate system such that qqq points into the z-direction. This has the advantage that the
denominator will transform into a simple form.
The rotation kkk → Dkkk is defined via the matrix

D =

cos(Θq) cos(ϕq) sin(ϕq) cos(Θq) − sin(Θq)
− sin(ϕq) cos(ϕq) 0

sin(Θq) cos(ϕq) sin(Θq) sin(ϕq) cos(Θq)



It maps qqq = q

sin(Θq) cos(ϕq)
sin(Θq) sin(ϕq)

cos(Θq)

 to the z-axis. The polarization then has the form

δΠ(qqq, iΩn) = i
mkF

2(2π)3

Ωn

vF q

∫
SkF (0)

d2k
Q2(D−1kkk)

i Ωn
vF q
− cos(Θ)

where Θ is the angle between kkk and the z-axis.
Now we can use Ωn

vF q
<< 1. This implies that the leading contributions come from the

directions where cos Θ = 0.
So the first order contribution in Ωn

vF q
can be calculated by the relation

lim
δ→0+

1

x+ iδ
= −iπδ(x) + P 1

x

for the Θ-integral. Doing so we get:

δΠ(qqq, iΩn)

=
3mkF
4(2π)2

Ωn

vF q
sign(Ωn)

∫ 2π

0

dϕ
{

cos(2ϕq)[cos2(Θq) cos2(ϕ)− sin2(ϕ)] + sin(2ϕ) cos(Θq) sin(2ϕq)
}2

=
mkF

4(2π)2

|Ωn|
vF q

3π
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(
41 + 9 cos(4ϕq) + 4(5− 3 cos(4ϕq))cos(2Θq) + 6 cos2(2ϕq) cos(4Θq)

)
=

3mkF
1024π

|Ωn|
vF q

(
41 + 9 cos(4ϕq) + 4(5− 3 cos(4ϕq)) cos(2Θq) + 6 cos2(2ϕq) cos(4Θq)

)
We summarize the remaining direction dependence in the function

γ(ϕq,Θq) =
3

1024π

(
41 + 9 cos(4ϕq) + 4(5− 3 cos(4ϕq)) cos(2Θq) + 6 cos2(2ϕq) cos(4Θq)

)
We see that this vanishes for

ϕq ∈ {π/4, 3π/4, 5π/4, 7π/4}, Θq = π/2
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In these cases we have to take the second order term in Ωn
vF q

into account. For that we go
back to the formula

δΠ(qqq, iΩn) = i
mkF

2(2π)3

Ωn

vF q

∫
SkF (0)

d2k
Q2
x(D

−1kkk)

i Ωn
vF q
− cos(Θ)

Instead of directly using Dirac’s identity, we replace the integral
∫ 1

−1
d(cos Θ) by its residuum

at z = iΩn/(vF q). This is an approximation because the contribution of the integral along
the unit circle in the lower half plane is set to 0. The reason why this approximation is
allowed lies in the fact that i Ωn

vF q
lies very close at the real axis. Thus we get the second

order term by setting cos Θ = iΩn
vF q

, neglecting the first order and multiply the result by
iπsign(Ωn):

δΠ(qqq, iΩn)

=− iπ
mkF sign

(
Ωn

)
2(2π)3

Ω2
n

v2
F q

2

∫ 2π

0

dϕ×

×
{

4
[
(cos Θq cosϕq cosϕ− sinϕq sinϕ)2 − (cos Θq sinϕq cosϕ+ cosϕq sinϕ)2

]
[

sin Θq cosϕq(cos Θq cosϕq cosϕ− sinϕq sinϕ)

− sin Θq sinϕq(sinϕq cos Θq cosϕ+ cosϕq sinϕ)
]}

=0

Thus the second order vanishes for all angles of qqq and we have to do the same procedure
for the third order. There we get

δΠ(qqq, iΩn)

=− π mkF
2(2π)3

(
|Ωn|
vF q

)3
π

32

[
13 + 36 cos(2Θq) + 15 cos(4Θq) + 120 cos(4ϕq) sin4 Θq

]
We see that the third order of δΠ(qqq, iΩn) never vanishes!

Polarization for Ωn = 0

For the static part of the polarization we have to take care of the qqq-dependence of the
quadrupolar projections. It is given by

Π(qqq, 0) =
T

V
lim
Ω→0

∑
kkk,ωn

Q(kkk)Q(kkk + qqq)
1

iωn − εkkk
1

iωn + iΩ− εkkk+qqq

The standard procedure for the Matsubara summation leads to

Π(qqq, 0) =
1

V
lim
Ω→0

∑
kkk

nf (ξkkk)− nf (ξkkk+qqq)

iΩ−
(
εkkk+qqq − εkkk

) Q(kkk)Q(kkk + qqq)

= lim
Ω→0

∫
d3k

(2π)3

nf (ξkkk)− nf (ξkkk+qqq)

iΩ−
(
εkkk+qqq − εkkk

) Q(kkk)Q(kkk + qqq)
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Now we can use the Dirac identity

lim
δ→0+

1

x+ iδ
= −iπδ(x) + P

(1

x

)
The contribution of the delta distribution vanishes and we are left with the principal value
of

Π(qqq, 0) =

∫
d3k

(2π)3

nf (ξkkk)− nf (ξkkk+qqq)

εkkk − εkkk+qqq

Q(kkk)Q(kkk + qqq)

Next we split the terms of the two fermi functions and shift the integration of one term to
get the same argument in the function.

Π(qqq, 0) =

[ ∫
d3k

(2π)3

nf (εkkk)

εkkk − εkkk+qqq

Q‖(kkk)Q‖(kkk + qqq)−
∫

d3k

(2π)3

nf (εkkk+qqq)

εkkk − εkkk+qqq

Q‖(kkk)Q‖(kkk + qqq)

]
=

[ ∫
d3k

(2π)3

nf (εkkk)

εkkk − εkkk+qqq

Q‖(kkk)Q‖(kkk + qqq)−
∫

d3k

(2π)3

nf (εkkk)

εkkk−qqq − εkkk
Q(kkk − qqq)Q(kkk)

]
Now substitiuting kkk → −kkk in the second term leads to

Π(qqq, 0) =

[ ∫
d3k

(2π)3

nf (εkkk)

εkkk − εkkk+qqq

Q(kkk)Q(kkk + qqq)−
∫

d3k

(2π)3

nf (ε−kkk)

ε−kkk−qqq − ε−kkk
Q(−kkk − qqq)Q(−kkk)

]
=

[ ∫
d3k

(2π)3

nf (εkkk)

εkkk − εkkk+qqq

Q(kkk)Q(kkk + qqq)−
∫

d3k

(2π)3

nf (εkkk)

εkkk+qqq − εkkk
Q(kkk + qqq)Q(kkk)

]
=

∫
d3k

(2π)3

nf (εkkk)

εkkk − εkkk+qqq

Q(kkk)Q(kkk + qqq)

where we used that εkkk and Q(kkk) are even.
We can again rotate our coordinate system such that qqq is parallel to the z−axis via the
rotation matrix D. Thereby we can use that ε is invariant under rotations.

Π(qqq, 0) =
2

k4
F

∫
d3k

(2π)3

nf (εkkk)

εkkk − εkkk+qqq

kkkT
(
DQ̂D−1

)
kkk (kkk + qqq)T

(
DQ̂D−1

)︸ ︷︷ ︸
=Q̃

(kkk + qqq)

=
2

k4
F

∫
d3k

(2π)3

nf (εkkk)

εkkk − εkkk+qqq

kkkT Q̃kkk (kkk + qqq)T Q̃(kkk + qqq)

=− 4m

k4
F q

∫
d3k

(2π)3

nf (εkkk)

2kz + q
kkkT Q̃kkk (kkk + qqq)T Q̃(kkk + qqq)

In cylindrical coordinates kkk =
(
r cosϕ, r sinϕ, kz

)T this reads as

Π(qqq, 0) =
−4m

k4
F q

∫
d3k

(2π)3

nf (εkkk)

2kz + q

(
r cosϕ, r sinϕ, kz

)
Q̃

r cosϕ
r sinϕ
kz

×
×
(
r cosϕ, r sinϕ, kz + q

)
Q̃

r cosϕ
r sinϕ
kz + q


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This integration can now be carried out in the low temperature regime where the Fermi
function is approximately given by the Heaviside function.

Π(qqq, 0) = −2mkF
45π2

+
mkF

(
2− cos(2θq)

)
54π2

q2

k2
F

+O
( q4

k4
F

)
Here we have now a constant mass term and a kinetic term which is proportional to q2.
The direction dependence of the kinetic term is determined by the positon of qqq w.r.t. the
z-axis. Hence we can write this term in the form

A2(q2
x + q2

y) +B2q2
z

A comparison of the two forms, using cos(2θq) = cos2 θq − sin2 θq, implies

A2 =
mkF
18π2

1

k2
F

, B2 =
mkF
54π2

1

k2
F



Appendix D

Free Energy of the Coupled System

The following calculations are adopted from [10]. There the free energy was derived for an
isotropic system. So the difference is that here the Landau damping and the dispersion
are direction dependent.
The free energy is given by the relation F = − T

V
lnZ. Inserting the partition sum leads to

F =
T

V

∑
qqq,Ωm

ln

[(
r + E(qqq) +

γ(q̂)

q
|Ωm|

)(
ρω2(qqq) + ρΩ2

m

)
− λ2C2(qqq)

)2
]

Now we perform the Matsubara sum. Again we split the sum into positive and negative
Matsubara frequencies to avoid the absolute value.

F (T ) = F (0) + 2T
∑

qqq,Ωm>0

ln

[(
r + E(qqq) +

γ(q̂)

q
Ωm

)(
ρω2(qqq) + ρΩ2

m

)
− λ2C2(qqq)

]
This sum can again be transformed into a complex integral

F (T )−F (0) =
∑
qqq

∫
dz

2πi

(
coth

z

2T
−1
)

ln

[(
r + E(qqq)− iγ(q̂)

q
z
)(
ρω2(qqq)− ρz2

)
− λ2C2(qqq)︸ ︷︷ ︸

=:f(qqq,z)

]

With z := x+ iy we can read of the imaginary and real part of the argument of ln:

Im[f ] = −xρ
(

2y
(
r + E(qqq) +

γ(q̂)

q
y
)

+
γ(q̂)

q

(
ω2(qqq) + y2 − x2

))
Re[f ] =

(
r + E(qqq) +

γ(q̂)

q
y
)
ρ
(
ω2(qqq) + y2 − x2

)
− 2ρyx2 − λ2C2(qqq)

The branch cut of the logarithm is given by

Im[f ] = 0 and Re[f ] < 0

The first equation is fulfilled for

x = 0 or 2y
(
r + E(qqq) +

γ(q̂)

q
y
)

+
γ(q̂)

q

(
ω2(qqq) + y2 − x2

)
= 0
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For the case x = 0 the second equation implies y < 0. So we can ignore this case since we
consider the regime y ≥ 0.
In the other case we have

y(x) = −q
3

r + E(qqq)

γ(q̂)
+

√
q2

9

(r + E(qqq))2

γ2(qqq)
+
x2 − ω2(qqq)

3

This solution becomes relevant when y(x) becomes positive, i.e. for |x| ≥ ω(qqq).
Inserting this into the real part one can show, that Re < 0 is fulfilled for large q. This is
given in our problem, thus

z(x) = x+ iy(x) for |x| ≥ ω(qqq)

describes the branch cut of the logarithm.
Now we can deform the integration curve analogously to the calculations in [10] and finally
get

F (T )− F (0) =
∑
qqq

(∫ ω(qqq)

0

+

∫ ∞
ω(qqq)

)dx
π

(
coth

z

2T
− 1
)
Im
[

ln[f(qqq, x)]
]

+

∫
a

dz

π

(
coth

z

2T
− 1
)
Im
[

ln[f(qqq, z+)]
]

+

∫
b

dz

π

(
coth

−z
2T
− 1
)
Im
[

ln[f(qqq,−z−)]
]

In the integrals along C± we are closely under and above the branch cut. By definition
the real part of f(qqq, z±) is always negative and the imaginary part is infinitesimally small.
Hence we have

Im
[

ln[f(qqq, z+)]
]

= arctan
( −δ
Re[f(qqq, z+)]

)
− π

Im
[

ln[f(qqq,−z−)]
]

= arctan
( δ

Re[f(qqq, z+)]

)
+ π

In both cases we have a continuous integrand. Hence we can take the limit δ → 0 and set
Im
[

ln[f(qqq,±z±)]
]

= ∓π. The integration is now easily carried out and yields

4T
(

log sinh
ω(qqq)

2T
− ω(qqq)

2T

)
The free energy is now simplified to

F (T )− F (0) =
∑
qqq

(∫ ω(qqq)

0

+

∫ ∞
ω(qqq)

)dx
π

(
coth

z

2T
− 1
)
Im
[

ln[f(qqq, x)]
]

+ 4T
(

log sinh
ω(qqq)

2T
− ω(qqq)

2T

)
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For the integration along the real axis we have

Im[f(qqq, x)] = −γ(q̂)

q
xρ
(
ω2(qqq)− x2

)
Re[f(qqq, x)] = ρ

(
r + E(qqq)

)(
ω2(qqq)− x2

)
− λ2C2(qqq)

We see that Re[f(qqq, x)] has a sign change at

x = ωR(qqq) :=

√
ω2(qqq)− λ2

C2(qqq)/ρ

r + E(qqq)

The imaginary part of the logarithm is then given by

Im
[

ln[f(qqq, x)]
]

= arctan

[ −γ(q̂)
q
x
(
ω2(qqq)− x2

)(
r + E(qqq)

)(
ω2(qqq)− x2

)
− λ2

ρ
C2(qqq)

]
+


0, x < ωR(qqq)

−π, ωR(qqq) < x < ω(qqq)

π, x > ω(qqq)

At the point x = ωR(qqq) the argument diverges to −∞. The free energy has no pole or
discontinutity at this point because arctan(−∞) = −π

2
is finite. At x = ω(qqq) the argument

crosses the branch cut of the logarithm. This leads to a discontinutity at this point.
A partial integration of the remaining integral leads to

F (T )− F (0) = −
∑
qqq

{
P
∫ ∞

0

dx

π
2T
(

ln
[
2 sinh

x

2T

]
− x

2T

)
Q(x)

}
The boundary terms originating from the discontinutity at x = ω(qqq) exactly cancel out with
the contribution from the integrals along the branch cuts. The function Q(qqq, x) denotes
the derivative

Q(qqq, x) =∂x

(
arctan

[ −γ(q̂)
q
x
(
ω2(qqq)− x2

)(
r + E(qqq)

)(
ω2(qqq)− x2

)
− λ2

ρ
C2(qqq)

])

=−
γ(q̂)
q

(
r − λ2

ρ
C2(qqq)

ω2(qqq)−x2 + E(qqq)
)(

r − λ2

ρ
C2(qqq)

ω2(qqq)−x2 + E(qqq)
)2

+
(γ(q̂)

q
x
)2

−
2γ(q̂)

q
x2 λ2

ρ
C2(qqq)(

r + E(qqq)
)2(

ω2(qqq)− x2 − λ2

ρ
C2(qqq)

)2
+
(γ(q̂)

q
x
)2(

ω2(qqq)− x2
)2

=− γ(q̂)

q

R(x) + E(qqq)(
R(x) + E(qqq)

)2
+
(γ(q̂)

q
x
)2 − A(x)

σ(x)

(x− ωR(qqq))2 + σ(x)2

and

R(x,qqq) := r − λ2

ρ

C2(qqq)

ω2(qqq)− x2

A(x,qqq) :=
2x
(
ω2(qqq)− ω2

R

)
(x+ ωR(qqq))

(
ω2(qqq)− x2

)
σ(x,qqq) :=

γ(q̂)

q

x
(
ω2(qqq)− x2

)
(x+ ωR(qqq))(r + E(qqq))
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