Institute for Theoretical Physics Prof. Dr. Simon Trebst
University of Cologne Peter Brocker, Johannes Helmes

Computational Many-Body Physics
Assignment 1

Summer Term 2015

website: http://www.thp.uni-koeln.de/trebst/Lectures/2015-CompManyBody.shtml
due date: Sunday, April 26th, 18:00 - send solutions to broecker [at] thp.uni-koeln.de

2. You can have your cake and eat it too programming

Whether you did not have any background in programming at all or are already a seasoned
veteran in one of the many languages, last time’s introduction to programming should have
shown you that python makes scientific programming as easy as possible. This is mostly due
to the fact that python offers a lot of nice features that are absent in lower level languages like
Fortran and C. In many important cases, however, we trade speed for ease of use. While for the
majority of programs outside the scientifc realm the lower speed is hardly noticable, algorithms
in computational physics rely on exactly those language elements that are most taxing with
regards to speed, such as loops. Here we will show you how to make python faster, often by
magnitudes, while only making things marginally more complicated.

This is done using a module called cython whose name is a combination of “C” (from the
computer language) and python. In a nutshell, it can help us speed up our programs if we are
willing to give up a tiny bit of our laziness and letting python know a little more of what we are
about to do. Cython can then translate parts of our code into plain C code that can be compiled
and later used as its very own python module. Most of this is going on under the hood and you
will never have to touch the C code yourself, so don’t worry if you have no knowledge of the
C language. Before theorizing too much, let us dive right in with an example that will clear up
what we are about to do.

We will start with the ever popular Hello World program. The first step is to create a file
helloworld.pyx. Note the extension pyx that is typically used for cython modules. Its con-
tent is simply

print "Hello World"

We now have to create a file that represents our python program. To avoid name conflicts, we
have to give it a different name, for example helloworld_cy.py. Now we want to use the
file helloworld.pyx as a module: First, we have to import another module called pyximport
(part of the cython package) that will take care of the conversion to C code. Next, we import
our custom module that will automatically print Hello World to the terminal:

import pyximport; pyximport.install()
import helloworld

This program was as simple as it gets but at least showed you the basic workflow for a cython
implementation of your code. Let us move on to show how cython can actually speed up

http://www.thp.uni-koeln.de/trebst/Lectures/2015-CompManyBody.shtml
http://www.cython.org

your program. We will use the integration of a simple function as an example, because it
includes a loop that potentiall slows down our python program. This example is also used
on the official webpage although we will make it a bit fancier. We start with a file called
integrate_python.py:

def f(x):
return x**2-x

def integrate_f(a, b, N):
s =0
dx = (b-a)/N
for i in range(N):
s += f(at+ixdx)
return s * dx

We would now like to see how long it takes to execute this piece of code. For this purpose, there
is another python module, called timeit. In brief, we import the module and an object called
Timer which executes the function 100 times and measures the time it took in total. Do not
worry if the keyword lambda is unfamiliar to you. It is simply another possibility for defining
a function so that we can tell the Timer module to call it.

import integration_python
from timeit import Timer

t = Timer(lambda: integration_python.integrate_f(-5, 5, 100000))
print t.timeit (number=100)

Now let us check out the cython version. Create a file called integration_cython.pyx with
almost the same content as its pythonic counterpart:

cdef f(double x):
return x**2-x

cpdef integrate_f(double a, double b, int N):
cdef int i
cdef double s, dx
s =0
dx = (b-a)/N
for i in range(N):
s += f(a+i*dx)
return s * dx

Take a good look and note the following differences:

e Functions are defined using either cdef or cpdef. The difference between the two alter-
natives is that functions with cpdef can be called from a python file while cdef functions
can be called only from other cython functions. Because f (x) is called only from the
integration part, we declare it that way.

e Variables are now defined with a definite static type such as int, double, ... using
cdef. In particular, it is important that the loop variable i is typed as an integer.

e The rest of the code stays exactly as it is!

Of course, we now want to see how much we have gained by adding just a few type definitions.
We set up a corresponding python file for calling the integration routine, integration_cy.py:

import pyximport; pyximport.install()
import integration_cython

http://docs.cython.org/src/quickstart/cythonize.html

from timeit import Timer

t = Timer(lambda: integration_cython.integrate_f(-5, 5, 100000))
print t.timeit(number=100)

When comparing the output, you will see that the cython code runs about 8 — 10 times faster!

Finally, we will show how numpy can be used in combination with cython. You will have to
add a few additional lines to the import instructions: In your *.pyx file, you first import the
standard numpy module. For numpy, cython also needs some additional information that tells
it how to deal with numpy objects. This is achieved via a new command cimport:

import numpy as np
cimport numpy as np # new!

In order for the compilation to work, pyximport now has to know where to find the information
about numpy:

import pyximport;

import numpy as np

pyximport.install(setup_args={’include_dirs’: np.get_include()})

import my_cython_package

All that is left to do now is to actually create a numpy array that we can efficiently use in a
cython code. Of course, this is done just like we introduced int and double types previously,
namely using a cdef:

cdef int w = 10

cdef int h = 100

cdef np.ndarray int_array = np.zeros([w, h], dtype=np.int)
cdef np.ndarray double_array = np.zeros([w, h], dtype=np.double)

And that’s it already!

Do not worry if this seems overwhelming at first, especially if you do not have much program-
ming experience, yet. Using the recipes we provided here, you can easily speed up your code
as long as you follow what we described here. In the next exercise, we give you a skeleton
program based on which you can build your own version. It already contains the cythonized
version of most variables you will need.

3. Make it or break it 10 points

Percolation theory is concerned with how clusters form and behave. The word cluster, in the
context of this exercise, describes a connected region on a randomly occupied lattice. Although
seemingly a more academic exercise, it has many real-world applications where the lattice and
its occupation structure represent such diverse things as the lattice of a solid and its magnetic
moments or a forest and its possibly burning trees in case of a wildfire. As one varies the amount
of occupied sites, the clusters undergo a phase transition where a large system-spanning cluster
may appear instead of only smaller disconnected clusters. This so called percolation transition
and is one of the simplest manifestations of a continuous phase transition.

In this exercise, we want to study this very phase transition on a square lattice with a random
occupation. The central element is to find an efficient algorithm that allows the identification
of clusters. In fact, this problem is also well known in the field of computer science, albeit

in a different context. The so-called union-find algorithm can be used to compute equivalent
classes of a set. The corresponding equivalence relation in the percolation problem is whether
two occupied lattice sites are connected or not. In statistical physics, this algorithm goes by the
name of Hoshen-Kopelman.

Let us now describe the algorithm in a bit more detail. We set up a square lattice and initially
fill the squares with zeros. For each square of the lattice we pick a random number and mark it
“1” with a probability p. Connected regions of 1s are then called a cluster.

The identification using the Hosh-Kopelman algorithm works as follows. We start in the upper
left corner and scan the lattice row by row from left to right. To each site, we then associate
an integer that serves the purpose of identifying the respective cluster. If the site to the left
or on top is also occupied and therefore already carries a label, we associate the same label to
the current site. If not, we increment the label by one and assign this new label to the site at
hand. It might happen that we encounter a site where both neighbors, left and top, were already
assigned some label but not the same. In that case, we choose the smaller one and save that the

two seemingly clusters are actually one and the same. The possible processes are depicted in
Fig. ?2.

Figure 1: Rules for building clusters in the Hoshen-Kopelman algorithm: If an occupied site
does not border any other occupied position yet, we assign a new cluster index (left).
If only one site already carries a label, we simply assign the same one to the current
site (middle). In the special case where two clusters border the same site, we use the
smaller of the two labels and keep in mind that the clusters are actually connected

(right).

Your task is to implement this algorithm and identify clusters that span the entire system. Span-
ning the system means that the same label index appears on opposite boundaries of the square
lattice.

We prepared two skeleton programs for you, one is pure python and one is in cython.

After having implemented the Hoshen-Kopelman algorithm, calculate the number of clusters
and the probability that a percolating cluster is formed. Depending on your implementation,
a 64 x 64 lattice should allow you to obtain results in a reasonable amount of time. Plot your
result as a function of the occupation probability p, introduced in the beginning of this exercise.

http://www.thp.uni-koeln.de/trebst/Lectures/CompManyBody-2015/python/percolation_skeleton.py
http://www.thp.uni-koeln.de/trebst/Lectures/CompManyBody-2015/python/percolation_cython.zip

4. Contagious mag netism alternative assignment — 10 points

In this optional exercise, we will treat a slightly more complex version of the percolation prob-
lem. For this assignment in particular, we invite you to play around with the assignment that
we are going to describe in the following. You will be rewarded with insights into an interest-
ing problem from statistical physics that naturally comes up when studying certain classes of
problems in epidemics and ferromagnetism. The connection to the latter was the motivation for
a recent research paper, in which the authors study ferromagnetism in a special kind of Hub-
bard model. Because of its origin, this specific percolation problem is also referred to as Pauli
percolation.

An in-depth motivation and derivation of the entire model is be beyond the scope of this assign-
ment, which is why are going to treat it simply as a peculiar statistical physics problem. Not
only do we need our knowledge from percolation theory, but we will also employ Monte Carlo
to tackle this problem.

Without further ado, let us jump straight in and consider the following problem: We start by
setting up a so-called Cayley Graph of order z = 3. This is a special kind of graph, or in a more
familiar language lattice, which is set up by starting with a root site to which z = 3 additional
sites are connected. To each of these sites, two more sites are connected so that every site we
added in the first step now has 3 neighbors. Continuing in this fashion, a graph is set up in
which all sites except for those on the bounadary have 3 neighbors. A sample graph is depicted
in Fig. (2?).

Figure 2: A Cayley graph of order z = 3. Starting from a root site in the middle, each site is
connected to three neighboring sites.

The reason for choosing this particular graph is that it is very similar to the so called Bethe
lattice. Many models turn out to be exactly solvable on the Bethe lattice, among them the one
studied in this exercise. The only difference between the Bethe lattice and the Cayley graph
is that the Bethe lattice is infinite and therefore has neither a root site nor a surface. For this
particular simulation, it is not possible to find a formulation in the inifite system size limit and
we thus have to work with the Cayley graph.

To formulate up the model, we start in the framework of the canonical ensemble where a fixed
number of sites M are marked as occupied. Clusters are then defined as connected components
of occupied sites on this graph. A particular graph that fulfills this constraint is denoted by C

http://arxiv.org/abs/1401.6172

and is made up of clusters C; whose size is n(C;). By associating to each graph C a weight W (C)

w(C) =]]n(C)+1). (1)

i

we may define the partition as the sum over all possible graph realizations

Z=Y W().)
{c}

Our definition of a weight has the following interesting property: Imagine two clusters of size
n(C1) = ny and n(Cy) = ny. Their contribution to the total weight is (n; + 1)(n + 1). If we now
move them closer until they merge into one larger cluster, the contribution to the weight drops
sharply to (n) 4+ ny + 1). Effectively, this leads to a repulsive interaction between clusters.

Motivated by the underlying physical problem, we actually want to work in the grand-canonical
ensemble where the number of occupied sites may fluctuate. We introduce a parameter p that
can be interpreted as something similar to a probability to occupy sites, although it will not be
equal to the actual density of occupied sites — you will see why in a second. The grand-canonical
partition sum is defined as the following:

z Z(£)n(C)Ww) 3)
o \1i-p

The first term may also be rewritten as exp (un) to emphasize its effective role as a chemical
potential that controls the particle number. Also, note that the sum now runs over all possible
graphs, because we allow an arbitrary number of occupied and unoccupied sites, respectively.

We now want to study this model numerically. Because of the large number of possible graph
realizations, it is not possible to enumerate them all in a reasonable amount of time. We thus
turn to Monte Carlo to select only those that contribute most. Our goal is to study the same
observables as before, namely the average cluster size and the possibility of a percolating cluster.
A percolating cluster, in this case, is defined to be one that stretches from the root site to any
of the boundary sites. In the Monte Carlo procedure, we start with a random graph. A Monte
Carlo step then consists of choosing a random site and proposing to occupy it if it was previously
unoccupied or to unoccupy it if it was occupied. To accept the step, the ratio of weights has to
be calculated and accepted with Metropolis probability

p < min (1.0, Wnew>.
Wold

The simplest way to calculate this ratio is to recalculate the entire cluster structure for the pro-
posed move which in itself is not a trivial calculation because of the graph structure. It is in
principle also possible to track directly whether two clusters will combine or dissociate when a
site is occupied or unoccupied, respectively. This is, however, more involved and will not nec-
essarily be much faster, especially in the limit of large clusters. When performing calculations,
you can try graphs of up to 500 sites and perform 10% Monte Carlo steps without measuring
and then again 10° steps with measurements. We would like to stress again that this assignment
is somewhat more challenging than the others and should be viewed as an opportunity to make
contact with current research. If you have any questions, please get in contact with us!

	You can have your cake and eat it tooprogramming
	Make it or break it10 points
	Contagious magnetismalternative assignment – 10 points

