
Institute for Theoretical Physics Prof. Dr. S. Trebst
University of Cologne Jan Attig

Computational Many-Body Physics
Exercise Sheet 0

Summer Term 2018

Due date: discussed on Wednesday, 18th April 2018

Website: www.thp.uni-koeln.de/trebst/Lectures/2018-CompManyBody.shtml

With this very first exercise sheet, which will be discussed during the first tutorial on April 18th,
we want to refresh your coding skills in the programming language julia, which we will be
using throughout the course. Please carefully work through these warm up problems, as most
of the technical aspects covered on this sheet will be necessary for solving the first homework
assignment (out later this week). Most of you who have participated in the undergraduate
computational physics course will find that the warm up problems of exercise 1 below are pretty
straight-forward1.

Setting up your Julia environment

Before you can start coding in julia, some basic installation has to take place. In this part, we
will guide you through the process of installing julia on your computer as well as setting up
all required packages.

1) Installing Julia

The installation of the julia language on your couputer depends on the operating system that
you are using. The most up-to-date instructions can be found on the julia website.

To install julia on a Windows machine, go to the downloads section of the julia website and
download the latest binaries (“.exe”-file) for your Windows version. Then, install the file as you
are used to installing other programs before.

To install julia on a Mac, go to the downloads section of the julia website and download the
latest macOS package. Then, double click the file to add it to the list of programs.

To install julia on a Linux system, go to the downloads section of the julia website and down-
load the latest binaries for the linux distribution you are using. Extract them to a folder of your
choice on your local hard drive. Finally you need to do one of two things: Either link the julia
binary file with a symbolic link into your /usr/bin folder or add the julia bin/ folder to your
path variable.

In any of the cases you should be able to open the julia interpreter by first opening a terminal,
typing julia and hitting enter. Note that on Windows a terminal can be opened by hitting
Windows-Key + R, enter cmd and press enter.

1 For those of you who might not have enjoyed such an undergraduate course these exercises give you a pointer
as to what level of programming skills we expect you to have already. If you are not familiar with the julia
programming language, but do have prior programming experience, we recommend that you install julia and then
visit one of the recommended tutorials as described in the “Learning julia syntax” section below and subsequently
go through this exercise sheet.

1

http://julialang.org
https://julialang.org/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://julialang.org/learning/


2) First time setting up packages

Most of the julia content has been parceled into libraries (called packages) that you can add to
your code whenever you need it. To make use of these packages, you have to install them into
your package directory.

If you installed julia on your computer for the first time, you have to first initialize the package
directory before using it by typing

Pkg.init()

into the interpreter. This command will create and initialize your package directory.

For adding packages, you can use the syntax

Pkg.add("NAME")

which adds the package with the name NAME to your packages. Since the exercises will use
various packages over and over, you can already start adding the following packages: PyPlot,
IJulia, JLD, Optim, DifferentialEquations by typing:

Pkg.add("PyPlot")

Pkg.add("IJulia")

Pkg.add("JLD")

Pkg.add("Optim")

Pkg.add("DifferentialEquations")

3) Maintaining your packages

Once your package directory is properly set up, it needs little to no attention. Packages can be
used in your code by employing the syntax

using NAME

to import the package with name NAME into your code and use its functions.

Packages are under ongoing bug-fixing and developement, so to stay up to date with the most
up to date version, you can use the package update syntax of julia:

Pkg.update ()

which automatically looks up all your installed packages and searches for newer versions. So run
this command from time to time to stay up to date with your versions!

Some remarks on coding with julia

In this section we will give you some very basic advice concerning how you should code with
julia and where to find further information on how to code with julia.

1) How and where to write julia code

In principle, there are three very different scenarios, which allow you to program some code in
julia: (i) the julia interpreter, (ii) generic julia text files, and (iii) julia notebooks. Every
scenario has certain advantages over the others, so it is best to understand which one to work
with for a given task.

2



Julia Interpreter a.k.a. REPL

Let us start with the concept of the julia interpreter (also known as REPL). The interpreter
can be opened from the terminal by typing “julia” and pressing enter. Inside the interpreter,
you can enter a line of code and let it be executed immediately.
The interpreter is a useful tool for quickly coding only few lines, such as small scripts, plotting
small datasets or even using julia as a calculator. Nevertheless, as soon as the code starts
exceeding about 10 lines, you will want to switch to one of the other methods explained below.

Julia text files

Any serious amount of code can be written in julia text files which can be executed using the
julia interpreter. The text files themselves, which should end with “.jl” to indicate that they
contain julia code, can be written using an editor of your choice.

Executing a julia file with filename “filename.jl” can be done by typing “julia filename.jl” into
the terminal.

In general, you should use julia text files for any larger amount of code. They are the most
reliable way to store, distribute, and versionize your code and should be your first tool of choice.

Julia notebooks

The third option you have is to develop code in a julia notebook. This tool can be accessed
via the IJulia package from within the julia interpreter. You can type

using IJulia

notebook ()

into the interpreter to open a new julia notebook server in your browser in which you can create
individual notebooks.

Inside a julia notebook, you can have multiple cells with code or markdown formatted text which
can be executed by the julia interpreter individually.

Julia notebooks function as a mixture between the direct execution of code within the interpreter
and the ability to save code similar to text files. Nevertheless there are certain issues which
disqualify notebooks as the tool of choice (which we will cover in the first tutorial session in
greater detail). However, they can be used in combination with julia files to construct well
documented and clearly readable code as described below.

Julia notebooks in combination with julia text files

The method of choice for handing in solutions to the exercises is from our perspective a hybrid
solution of julia notebooks and julia text files. The text files can be used for defining functions
or global variables in great detail whereas the calling of functions in small scripts will be well
documented with additional text inside a julia notebook. In this way, one can use the predefined
functions in many different settings and various notebooks whereas the executed code itself can
be documented using markdown.
Note: Including a text file called “juliatextfile.jl” into your code can be done by using the syntax

include("juliatextfile.jl")

2) Learning julia syntax

To get started learning about the julia language and syntax, we suggest that you visit the section
of the julia website which contains a list of recommended julia tutorials.

3

https://julialang.org/learning/


Exercise 1: Julia warm up (Homework)

To test your basic julia knowledge we have compiled a very small first exercise – available as
julia notebook download on the course website.

Your task is to provide/complete the source codes for the warm up problems. Go through the
notebook, preferably exercise by exercise, and complete the code in the predefined cells. As you
will see, topics include control flow and how to define functions as well as lists and arrays.

Exercise 2: Plotting in Julia (To be discussed in tutorial on April 18th)

In the second exercise, we want to show you the basics of plotting in julia. For any plotting to
work you have to include a package which provides the plotting functions for julia. There are,
however, many different packages available, all of which have their pros and cons.

• PyPlot - great for starting, relies on python, extensive documentation via matplotlib, bad
for making animation movies

• Plots.jl - unifies syntax for many different backends (like PyPlot, GR, PlotlyJS, . . . ), can
quickly construct animations and movies, tricky to find documentation

• Gadfly - rendering to SVG or PDF, integration with DataFrames.jl

• GR - fast plotting, support of many file formats

• and many others . . .

In the tutorial, we will familiarize you with some of them so that you can choose the appropriate
one for the exercises throughout the semester. We will start with an introductory sheet (available
by April 18th) for the plotting module PyPlot.

Exercise 3: Twin prime numbers (Discussed in tutorial / Homework)

As a last step in the tutorial, we want to show you how to properly document the solutions
you are handing in for the homework assignments. We suggest that you hand in the hybrid
solution of julia notebooks and julia text files, which will be discussed in the tutorials.

Your task in this exercise is to implement a function for testing whether a number n is a prime
number. Consecutively we want you to identify all pairs of prime numbers (n, n + 4) between 2
and 2, 000, 00 and provide an answer to how many there are.

The goal of this exercise goes beyond the simple completion of the task described above. You
should try to implement the function in a julia text file and include this text file in a notebook
where you conclusively discuss your overall solution. For handing in, compress the two files into
a .zip folder which you can send to the tutor.

4

http://www.thp.uni-koeln.de/trebst/Lectures/CompManyBody-2018/00_introduction.ipynb
http://www.thp.uni-koeln.de/trebst/Lectures/CompManyBody-2018/00_plotting_pyplot.ipynb

