
Institute for Theoretical Physics Prof. Dr. S. Trebst
University of Cologne Jan Attig

Computational Many-Body Physics
Exercise Sheet 1

Summer Term 2018

Due date: Monday, 23rd April 2018, 10 am

Website: www.thp.uni-koeln.de/trebst/Lectures/2018-CompManyBody.shtml

Exercise 4: Percolation

Percolation theory is concerned with how clusters form and behave1. Although this might
look like a rather academic exercise at first glance, percolation theory has many real-world ap-
plications where the lattice and its occupation structure represent such diverse things as the
lattice of a solid and its magnetic moments, a forest and burning trees spreading in a wildfire,
or the internet and virus-affected computers in it. As one varies the amount of occupied sites,
the clusters undergo a phase transition where a large system-spanning cluster appears instead
of only smaller disconnected clusters. This so called percolation transition and is probably
the simplest manifestations of a continuous phase transition.

In this exercise, we want to study this very phase transition on a square lattice with a random
occupation. The central element is to find an efficient algorithm that allows the identification
of clusters. In fact, this problem is also well known in the field of computer science, albeit in
a different context. The so-called union-find algorithm can be used to compute equivalent
classes of a set. The corresponding equivalence relation in the percolation problem is whether
two occupied lattice sites are connected or not. In statistical physics, this algorithm goes by the
name of Hoshen-Kopelman algorithm.
Let us now describe the algorithm in a bit more detail. We start with a square lattice and
initially fill the squares with zeros. For each square of the lattice we pick a random number and
mark it “1” with a probability p. Connected regions of 1s are then called a cluster.

The identification using the Hosh-Kopelman algorithm works as follows. We start in the upper
left corner and scan the lattice row by row from left to right. To each site, we then associate
an integer that serves the purpose of identifying the respective cluster. If the site to the left
or on top is also occupied and therefore already carries a label, we associate the same label to
the current site. If not, we increment the label by one and assign this new label to the site at
hand. It might happen that we encounter a site where both neighbors, left and top, were already
assigned some label but not the same. In that case, we choose the smaller one and save that
the two seemingly clusters are actually one and the same. The possible processes are depicted
in Fig. 1.

The overall goal of this exercise is to verify the phase transition of the model. To reach this goal,
the exercise is split into four subparts which are to be solved one after the other. It is highly
encouraged to use the julia formalism of using functions.

1The word cluster, in the context of this exercise, describes a connected region on a randomly occupied lattice.

1



Figure 1: Rules for building clusters in the Hoshen-Kopelman algorithm: If an occupied site
does not border any other occupied position yet, we assign a new cluster index (left). If only
one site already carries a label, we simply assign the same one to the current site (middle). In
the special case where two clusters border the same site, we use the smaller of the two labels
and keep in mind that the clusters are actually connected (right).

a) As a necessary first step of any percolation problem, one needs to be able to generate a
randomly occupied (square) lattice, i.e. in the present case a matrix of size L × L
with entries “0” or “1”, where a “1” has probability p to occur.

Your task is the following: First, implement a julia function which returns such a
randomly occupied matrix when passing the value p of the probability. Then implement
a second function to plot a given randomly occupied square lattice as an image. Verify
both functions, i.e. check they give the expected result for a reasonable system size (e.g.
L = 40).

b) In a second step, one has to label all clusters of a given randomly occupied square lattice.

Your task is to achieve this by implementing the Hoshen-Kopelman algorithm as a
julia function that takes a randomly filled square lattice as the input and gives a cluster
labeling as an output. More precisely: The idea is to feed this function the output of the
function in part a) as an input and let it return another matrix in which every element is
the cluster label of the respective site (or “-1” if the site is unoccupied).
Also implement a function to plot a given cluster labeling to visualy verify the correctness
of your Hoshen-Kopelman implementation.

c) As a third step, one is now interested in (quantitative) features of a certain cluster
labeling.

Your task is to implement functions which take a cluster labeling as an input and
give

• the number of different clusters

• the size of the biggest cluster (number of connected sites)

• a boolean determining if there is a percolating cluster

Verify these functions with a square lattice of size L = 10 and check your results visually
using the function of part b).

2



d) Up to this point, you have managed to implement various tools to generate and investigate
a single lattice concerning its cluster occupation. However, as the last part of the exercise,
one is interested in the percolation probability pC of the system which can be
determined numerically from the statistics of an ensemble of lattices.

Your task is to determine this probability by generating N randomly filled lattices
and determining how many of them have a percolating cluster.

Plot the fraction of percolating lattices vs. the occupation probability and explain the
resulting graph as well as how you can read off the percolation probability from this
graph.

Further, plot the graph for various values of L into the coordinate system and explain
the differences.

You may want to attempt a finite-size rescaling to see whether you can make the different
finite-size data sets collapse onto one another.

3


