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On this week’s exercise sheet we introduce the concept of band structure calculations and
demonstrate its central role in modern condensed matter physics, e.g. in identifying topological
band structures. The purpose of the exercises is to give you a practical angle on these calcu-
lations. If you have previously implemented a lattice library, you will be able to explore a vast
family of example systems.
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Figure 1: Band structure of the 2D honeycomb lattice hopping problem with the Fermi
energy of half filling shown as a red dashed line (left) and the reciprocal honeycomb lattice with
path in momentum space (right).

Exercise 9: Band structure calculations

Let’s start with the calculation of band structures for regular solids, i.e. the spectrum of non-
interacting electrons hopping on elementary lattice geometries. To do so, we quickly recap the
basic idea of these calculations: We explore tight-binding models, which given in second
quantized form, look like

H =
∑
⟨ij⟩

tijc
†
icj , (1)

where i and j denote site indices of an underlying lattice and ⟨ij⟩ denotes all nearest neighbor
pairs. The operators c†i and cj describe the creation and annihilation of fermions on sites of the
lattice, respectively. Such a tight-binding model is an appropriate description of electrons in a
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solid whenever the electron-electron correlations can be neglected.

To solve the tight-binding model for a given lattice structure, one in general performs a two-step
calculation. First, the model is rewritten in terms of position space

cj → cj(r⃗) (2)

(where j only labels an index inside the unitcell now) and then a Fourier transformation into
momentum space is applied

c
j,⃗k

=
∑
r⃗

eik⃗·r⃗cj(r⃗) . (3)

If one inserts these two steps into the Hamiltonian, one finds that it turns into

H =
1

N

∑
k⃗

∑
⟨ij⟩

tij c
†
i,⃗k

c
j,⃗k

eik⃗·δ⃗ij , (4)

where δ⃗ij is the vector connecting sites i and j (respecting periodic boundaries of the unit cell).

Although this looks similar to the initial Hamiltonian, one has performed a major step as the
Hamiltonian matrix no longer is N×N dimensional but rather NUC×NUC dimensional for every
value of k⃗ inside the first Brillouin zone (where NUC is the number of sites within one unit cell).
The structure of the Hamiltonian suggests that an eigenstate of the system can be composed
out of many individual periodic functions with wavevector k⃗ which are eigenfunctions of the
Hamiltonian matrix at wavevector k⃗.

Therefore, the system can now be solved by diagonalizing the Hamiltonian matrix for every
value of k⃗ and obtaining energies and wavefunctions from the eigenvalues and eigenvectors of
this matrix. The energies obtained from the calculation will vary smoothly as one varies k⃗ inside
the first Brillouin zone and because some of them are related by symmetries it is a common
approach to plot the energy values along a path in momentum space, resulting in a so-called
band structure (see Figure 1 above).

To identify the states that the fermions occupy within the band structure, one fills electrons into
the states from bottom to top until all electrons are assigned. The highest energy reached is
then called the Fermi energy. From a technical perspective, one is concerned with the number
of fermions per site which gives the location of the Fermi energy with respect to minimum and
maximum of energy values. The case that we want to consider in the following is the case of
half filling, i.e. one fermion per site (which is half of maximum number of two fermions per site
if one allows for a spin degree of freedom).
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a) In the first part of this exercise, you should apply the aforementioned algorithm to compute
the band structure of the honeycomb lattice tight-binding model along a suitable path
within the Brillouin zone. For this purpose, proceed along the following steps:

(i) Make sure that you have a lattice library code that utilizes unit cells (or can otherwise
construct periodic lattices).

(ii) Implement the 2D honeycomb lattice (if not implemented already).

(iii) Analytically calculate the reciprocal vectors of the Bravais lattice and draw the Bril-
louin zone to visually determine the high-symmetry points. Connect these high-
symmetry points to form a path in momentum space (which you then can save in
Julia).

(iv) Implement a function that takes a unit cell and a path in momentum space to draw
a band structure (similar to Figure 1).

(v) Draw the Fermi energy into your band structure depending on the given filling-
fraction.

b) Once you have a working algorithm for calculating the band structure of an arbitrary
(two-dimensional) unit cell, it is straight-forward to calculate the band structures of other
elementary lattices as well. So, go ahead and calculate the band structures of the lattices
shown below by first identifying and implementing their unit cell and then performing the
same scheme as in part a).

c) In some instances, not the complete band structure is needed but only the shape and
topology of the Fermi surface. The Fermi surface is defined as the manifold of all k⃗
points which have an an energy eigenvalue located right at the Fermi energy.

Your task is to take this definition and write a function to calculate the Fermi sur-
face of a given unit cell and hopping parameters and filling fraction. Then, plot the Fermi
surface for the two-dimensional honeycomb lattice as well as the two-dimensional square
lattice and compare your findings.
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Exercise 10: Moiré band structures (bonus)

In this exercise we want to go beyond elementary lattice
geometies and look at the example of a moiré lattice.
Such a moiré lattice is generated, e.g., by taking two
sheets of two-dimensional lattices and twist them against
one another, creating a so called moiré pattern. This pat-
tern can also be interpreted as lattice with a (very) large
unit cell. For small angles θ the unit cell can contain tens
of thousands of different sites.

In similar fashion as the previous exercise we want to calculate the band structure of such moiré
lattices for varying twist angles.

a) We want to model a twisted bilayer graphene system, which has attracted wide-spread
interest for its formation of a superconducting state when tuning to a magic angle. We
will explore what features in the moire band structure make certain angles “magic”.

To get started, generate two honeycomb unit cells structures, which will represent the
lower and upper lattice layers. Afterwards write a function which will rotate a unit cell by
an angle θ. The rotation can be done simply by applying a rotation matrix to the primitive
vectors and site positions, while the bonds remain the same.
Use your code to create a plot containing both lattices placed on top of each other for
various different angles. How does the moiré superlattice qualitatively change when you
go to small twist angles?

Now let’s concentrate on a series of angles that allow us to form a periodic moire structure
with a unit cell. This series of angles is given by

cos θm,n =
1

2

m2 + n2 + 4mn

m2 + n2 +mn
, (5)

where the integers m and n define a commensurate twisting of an upper layer site Ru = ma1 +
na2 onto a lower lattice site Rl = na1 +ma2.
From this one can determine the moiré lattice vectors using

a1,M = ma1 + na2, a2,M = R(60◦)a1,M , (6)

with R(60◦) being the rotation matrix.
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b) Let’s consider as example the moiré unit cell for m = 8 and n = 7. First, calculate the
lattice vectors for this choice of m and n. We now want to determine the basis sites of
the moiré unit cell. To do so, generate two honeycomb sheets each with a linear size of
L = 20. It is important that the unit cell is completely covered by the two lattices, else we
will be missing some sites.

Iterate over all sites of the two lattices and add them to the unit cell structure, if they
are inside the unit cell area (see the examples on the lower left). You can check this
by expressing the site position as a linear combination of the moiré lattice vectors R =
m′a1,M + n′a2,M , a site is inside the unit cell if |m′| < 0.5 and |n′| < 0.5

At the same time we want to add new label to the site containing the position in the z-axis,
since we actually have a 3D structure. We assume that the two lattice have a constant
distance d0 = 2.46a0, where a0 is the nearest neighbor distance of the honeycomb lattice,
i.e. a0 = a/

√
3. For this example assign all sites in the lower lattice a Z value of −d0/2

and the upper sheet a value of d0/2. Determine all sites inside the unit cell (you should
find 676 sites).

c) Perform the same construction as in the example above for all m ∈ [2, 20] and n = m− 1.
Determine the number of sites in the unit cell and plot this number against the angle θ.

d) The final thing we are missing are the bonds of the unit cell. In general, all sites can
be connected to each other, but we will introduce a cut-off length for the connection. All
bonds which connect sites beyond the distance of lmax = 5 will be ignored. Here the unit
of length is in term of the nearest neighbor distance NN = |R1,M −R2,M |.

Find all valid bonds and add them to the unit cell. Do not forget to factor in z-axis into the
distance between two sites.

Now we have constructed the moiré lattice and we can start calculating the band structure.
The tight-binding Hamiltonian with all hoping amplitudes is given by

H =
∑
ij

tijc
†
icj . (7)

Note that we now sum over all pairs of sites and not only the nearest neighbours.

The distance dependent hopping amplitudes are given as:

t(r) = Vppπ(r)

(
1−

(r · ez
r

)2
)
+ Vppσ(r)

(r · ez
r

)2
(8)

with
Vppπ(r) = V 0

ppπ(r)e
−(r−a0)/δ0 (9)

Vppσ(r) = V 0
ppσ(r)e

−(r−d0)/δ0 , (10)

where δ0 is a decay length.

e) Calculate all the different hoping amplitudes using δ0 = 0.184, V 0
ppπ(r) = −2.7, and

V 0
ppσ(r) = 0, 48.

f) Since you have now calculated the hopping amplitudes, you can calculate the bands
in the same way as for the previous exercise. Calculate the bonds for the path
K → Γ → M → K ′ and plot the spectrum. Describe what you can see.
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In actual experiments there is a corrugation effect between the two lattice sheets causing a
varying distance depending on the type of stacking. Now the lattices distance varies between
dAA and dAB, with the periodicity of moiré unit cell as

d(R) = d0 + 2d1

3∑
i=1

cos

(
2π

R · Ci

|Ci|2

)
. (11)

Here d0 and d1 are based on the layer distance at AA and AB

d0 =
1

3
(dAA + 2dAB), d1 =

1

9
(dAA − dAB). (12)

Additionally Ci are the so called corrugation spanning vectors, defined as

C1 =
1

2
(a1,M + a2,M ) , C2 = R(60◦)C1 , C3 = R(120◦)C1 . (13)

g) Now, using a dAA = 4.12 and dAB = 2.46 for the corrugation, redo the previous steps and
determine the new sites and bonds. Calculate the new band structure and compare it to
the previous band structure.

h) Currently the evaluated unit cell is still to small to see the most interesting feature in
the band structure – the emergence of a flat band. So redo your calculation and try to
increase m as much as possible.

Figure 2: Low-energy feature in the band structure of the moiré lattice for m = 8 and n = 7.
The left structure is without corrugation in the lattice, while the right structure is subjected to
corrugation.
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