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The goal of this week’s sheet is to improve the Monte Carlo techniques, which you implemented
when working on last week’s sheet, towards greater numerical efficiency. The principal goal is
to reduce the autocorrelation effects in the sampling of the Markov chain. This can be achieved
by improving the elementary update steps by either (i) introducing better update techniques
(cluster updates) or (ii) alternative ensemble approaches (extended ensembles). We will ex-
plore both routes on this exercise sheet.

Exercise 5: Simulated Annealing

One common strategy in performing Monte Carlo simulations is to include a thermalization
phase, such that the Markov chain is already fully converged towards its final thermal distri-
bution, before starting physical measurements. The amount of thermalization sweeps that are
needed, however, varies between applications.
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Figure 1: Comparison in temperature curves for normal thermalization (left) and simulated
annealing (right). The system’s temperature follows the simulated annealing curve much better
as the formation of domains is suppressed through slow cooling

One example, which you have encountered on sheet 2, was the Monte Carlo sampling for the
Ising model on the two-dimensional honeycomb lattice. When one performs simulations at very
low temperatures (T ≲ 0.4 Tc), one often finds that the data starts to deviate from the expected
results. One can track down this discrepancy by looking at the real space configurations and
finding a domain pattern evolving. The formation of different domains prohibits the formation
of a global state and introduces domain walls into the system which in return raise the energy
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globally. Note that for the honeycomb lattice, local spins at the domain boundaries do need a
finite energy to flip, since they have more neighbors which are aligned than those which are
not aligned (the local coordination is odd in distinction from e.g. the square lattice). Improving
data quality in this case can be achieved by performing a thermalization procedure which sup-
presses the formation of domains, known as simulated annealing.

The new concept that simulated annealing introduces is illustrated in Figure 1. Instead of per-
forming thermalization sweeps at the desired temperature right away, one instead cools down
the system slowly from higher temperatures. This process can be compared to cooling down
liquids until they start to solidify and crystallize. If cooled down too rapidly, different orientations
of crystals are obtained in different places whereas a slow cooling will result in a single crystal
orientation.

Your task in this exercise is to revisit your Ising Monte Carlo code for the honeycomb lattice and
implement this simulated annealing approach for the thermalization. Play around with different
temperature curves (algebraically decaying, exponentially decaying, modulated with sin or cos,
etc.) until you are satisfied with your results and document your thermalization by plotting the
temperature curve in a plot similar to Figure 1.

Note: Although in this exercise simulated annealing is only used for the Ising model, it can also
be applied to other models directly. Eventually, you will find out that simulated annealing can
greatly improve your data quality without much effort in many cases!

Exercise 6: Cluster updates for the Ising model

One source of autocorrelation effects in Markov chains arises from the fact that in every Monte
Carlo update of a spin system, only a single spin is flipped at a time. Therefore, the vast majority
of spins (N − 1 spins) remain unchanged in a Markov chain step and two subsequent configu-
rations are highly correlated. These autocorrelation effects persist even beyond a single sweep.

To reliably generate a novel and considerably less correlated configuration, one possibility is
to flip clusters of spins instead of single spins. The goal of this exercise shall be for you to
implement such cluster updates for your Ising Monte Carlo simulations (from the previous exer-
cise sheet) in order to sample configurations more efficiently and reduce autocorrelation effects.

In this exercise, you should proceed as follows:

a) First, go back to the Ising Monte Carlo code from sheet 2 for a lattice of your choice
(or simply the honeycomb lattice). Perform a binning analysis to determine the auto-
correlation time for a fixed temperature.

b) Second, implement a cluster update of your choice, i.e. either the Wolff or the
Swendsen-Wang cluster update to replace your single-spin flip update. Check the en-
ergy per spin vs. temperature curve to make sure you implemented the update correctly.

c) Measure again the autocorrelation time for the temperature of part a). Compare the
two autocorrelation times and discuss the result. Consider varying the temperature and
compare your two update techniques.
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Exercise 7: Extended Ensembles Simulation

In this third exercise we will employ extended ensemble simulation techniques to (re)investigate
the two-dimensional Ising model, now performing an “all-temperature” calculation allowing us
to directly estimate the density of states g(E). This technique will allow us to calculate all ob-
servables at all temperatures from a single simulation.

The exercise is structured into two parts. At first, you will apply the extended ensembles ap-
proach to your already existing Ising model Monte Carlo simulation by implementing the Wang-
Landau algorithm. In a second part, you will then use the Wang-Landau algorithm to investi-
gate the first-order phase transition in the Q-state Potts model.

a) Start the exercise by implementing the Wang-Landau algorithm for the 2D Ising model
on the square or honeycomb lattice with periodic boundary conditions. In principle, you
should be able to use and expand your single spin-flip Metropolis code that you used on
the last sheet. The square lattice can either be implemented in terms of the lattice library
on sheet 2, or you can use a matrix of size L× L to store the Ising variables.

Check your results by calculating estimates for the density of states g(E) from
Wang-Landau sampling for systems of linear size L = 8, 12, 16. Normalize the calculated
density of states such that g(Emin) = 2 and plot ln g(E) for the different system sizes to
check if it agrees with your expectation.

Note: A difficulty of this part is to think about which energies can be reached and
consequently construct suitable bins for the energy. Furthermore, allow to constrain
your calculations to a certain energy interval [Emin, Emax] to investigate only part of
the configuration space (you can e.g. only use E ∈ [Emin, 0] as the distribution is
symmetrically around E = 0).

b) From the calculated estimate of the density of states calculate the following thermody-
namic observables and plot them in the temperature range T ∈ [0, 4] (showing data for all
three system sizes in one plot):

• the energy U(T ) = 1
Z

∑
E g(E)E exp(−βE) = ⟨E⟩T

• the specific heat Cv(T ) = dU/dT =
(
⟨E2⟩T − ⟨E⟩2T

)
/T 2

• the free energy F (T ) = −T logZ

• the entropy S(T ) = (U(T )− F (T )) /T

where Z is the partition function Z =
∑

E g(E) ·exp(−βE). Discuss the results in terms of
numerical accuracy of your code as well as physical features such as phase transitions.

Up to this point, you have implemented the Wang-Landau algorithm for simulations of the Ising
model on the square lattice. We now want to switch models to the Q-state Potts model which
can be defined for Q-state Potts spins σi ∈ {1, 2, . . . , Q} on sites of the square lattice as

H = −
∑
⟨ij⟩

δ (σi, σj) (1)

where the sum again runs over all nearest-neighbor bonds as in the Ising model.
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c) Implement a Wang-Landau Monte Carlo simulation for the Q-state Potts model on the
L× L square lattice and calculate the density of states g(E) for the 10-state Potts model
(Q = 10) in the energy range Emin = −2L2 to Emax = 0 which should be normalized such
that g(Emin) = Q = 10. Check your results and discuss features of the density of states
in comparison to density of states of the Ising model.

d) Plot thermodynamic averages of the specific heat, free energy and entropy for the Potts
model as above for the Ising model. Discuss similarities and differences between the two
models.

e) To investigate the phase transition in the Potts model, plot the canonical distribution
function P (E) = g(E) exp(−βE) in proximity of the thermal phase transition, which oc-
curs at temperature

T ∗ =
1

ln(1 +
√
Q)

(2)

for the infinite system (L = ∞). Can you observe a double-peak structure indicative of a
first-order phase transition?

f) (Optional exercise I) From the precise location of the double-peak structure in the canon-
ical distribution function P (E) one can determine estimates of the finite-size transition
temperature T ∗(L) for a given linear system size L and in principle extrapolate to the
infinite system to recover T ∗ = T ∗(L = ∞).

Your task is to calculate the canonical distribution function for more large system
sizes (such as L = 8, 16, 24, 32, 48, 64, . . .) and plot your estimates of T ∗(L) versus the
inverse system size 1/L2. Extrapolate your data to the infinite system size limit – can you
recover the analytical estimate above?

g) (Optional exercise II) Calculate the local diffusivity D(E) of the random walk in energy
space for the Ising and Potts model simulations above by running simulations with fixed
weights w(E) ≈ 1/g(E), which you have obtained from Wang-Landau sampling. To
obtain an estimate for the local diffusivity

• Record two histograms during the sampling process – the energy histogram h(E),
which is incremented for every step, and the histogram h+(E), which is incremented
only if the last extremal energy you have visited is Emin (and not Emax).

• From these two histograms calculate the fraction f(E) = h+(E)/h(E), which es-
timates how much time on average the energy random walker spends at a given
energy E diffusing towards higher energies. Plot this fraction f(E).

• Calculate the derivative df/dE of this fraction (and plot it).

• Plot an estimate of the local diffusivity via

D(E) ∝
(
h(E) · df

dE

)−1

.

h) (Optional exercise III) Apply the Wang-Landau and/or optimized ensemble approach to
some other classical spin models that we have discussed in the lecture such as the Ising
antiferromagnet on the square or triangular lattices.
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