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19. Two fermionic states in a photon-cavity (10 points)

Consider photons in a cavity that are excited with a frequency ω with creation operator a†. The
photons couple to two fermionic states with creation operators c†i with i = 0, 1. The Hamiltonian
that describes the interaction between the photons and the fermionic states via their dipole
moment is given by

Hdipole = ~ωa†a +
1

2
~Ω0(c

†
1c1 − c†0c0) + ~g(a + a†)

(
c†1c0 + c†0c1

)
. (1)

~Ω0 is the energy difference between the two fermion states.

a) Explain, why for ω ≈ Ω0 it is a good approximation to consider instead the following
Hamiltonian:

H = ~ωa†a +
1

2
~Ω0(c

†
1c1 − c†0c0) + ~g

(
a c†1c0 + a† c†0c1

)
. (2)

b) Consider the subspace with two fermions and the subspace containing zero fermions.
Why do the eigenenergies of H (and Hdipole) not depend on Ω0 and g in these two
cases?

c) Show that the operator N = a†a + c†1c1 commutes with the Hamiltonian H.

d) Consider the subspace containing a single fermion. Why does it follow from b) that the
Hamiltonian H only couples the two states |0〉|n + 1〉 and |1〉|n〉 with n = 0, 1, 2, 3, ...?
Show that within this 2× 2 subspace for a given n the Hamiltonian H reduces to

H = ~ω(n+
1

2
)

(
1 0
0 1

)
+ ~

(
δ/2 g

√
n+ 1

g
√
n+ 1 −δ/2

)
(3)

with the detuning δ = Ω0 − ω. Determine the eigenenergies of the Hamiltonian H.
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20. Lorentz transformations (6 points)

Consider the Lorentz transformation to a system that moves with relative velocity v in x-
direction. The corresponding matrix is given by

(Λµν) =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 (4)

where the rapidity η is given by tanh η = v/c.

a) Determine the coordinates in the moving system: x′µ = Λµνxν where (xν) = (ct, ~r) and
express the result explicitly in terms of the velocity v. The coordinates of the origin in
the moving frame are given by (x′µ0 ) = (c t′, 0, 0, 0). What are the coordinates in the rest
frame?

b) In the system at rest, there is a finite electric field pointing along the z-direction,
~E = Ez ê

z. What is the corresponding electromagnetic tensor Fµν = ∂µAν − ∂νAµ?
With the help of Fµν one obtains the electromagnetic tensor in the moving frame as
F ′µν = ΛµαΛµβF

αβ. What are the corresponding electric and magnetic fields in the

moving system, ~E′ and ~B′, respectively.

c) Consider two consecutive Lorentz boosts along the x-axis first with rapidity η1 and
afterwards with rapidity η2. Show that this corresponds to a single boost with rapidity
η = η1 + η2.

d) Consider two consecutive Lorentz boosts first along the x-axis with rapidity η1 and
afterwards along the y-axis with rapidity η2. Derive the addition formula for adding the
two relativistic velocities v1 and v2:

u = v1 +

√
1− v2

1

c2
v2.

21. Relativistic electrons (4 points)

In this exercise we consider a relativistic electron. Using Lorentz transformations, we can change
the inertial frame that the electron moves in. This will change some of properties of the electron,
while leaving other characteristics invariant. Argue why the electric charge as well as the rest
mass are identically the same in any inertial frame, while in contrast the mass depends on the
choice of inertial frame.
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