
Institute for Theoretical Physics Prof. Dr. S. Trebst
University of Cologne Q. Preiss, F. Eckstein, M. Pütz

Quantum Computational Physics
Exercise Sheet 1

Winter Term 2024/25

Due date: No hand-in Discussion: Tuesday, 15.10.2024
Website: thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml

This exercise sheet is a highly entangled system of tasks. As many quantum states, it looks quite
complex (long) at first glance, but once you measure it you will see that it collapses into many very
small tasks and code snippets!

The purpose of this sheet is a superposition between two macroscopically distinct states:

• Getting you started with quantum computing using the IBM quantum composer and Qiskit.

• Providing you with the necessary tools (syntax, code snippets, etc.) to work on the following
exercises.

Feel free to come back to this sheet at any time if you need to look up something. Happy coding!

Exercise 1: Hello quantumworld!

To familiarize ourselves with the concept of quantum circuits and what it means to create/compose,
simulate and run them, we will start with the very convenient IBM Circuit Composer (https://
quantum.ibm.com/composer).

Figure 1 – Screenshot of the IBM circuit composer.

1

mailto:trebst@thp.uni-koeln.de
mailto:qpreiss@thp.uni-koeln.de
mailto:eckstein@thp.uni-koeln.de
mailto:mpuetz@thp.uni-koeln.de
https://www.thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml
https://quantum.ibm.com/composer
https://quantum.ibm.com/composer


Here you can create your first simple quantum circuits using a graphical interface (fig. 1) by simply
dragging and dropping gates onto the circuit. You can also increase the number of qubits. On the
bottom left you can see a visualization of a classical state vector simulation of the circuit. As you
might know already such a simulation scales very poorly O(2n) with the number of qubits n. That
is why the IBM quantum composer limits you to 6 qubits. Using more powerful hardware it is of
course possible to simulate more qubits. However since every additional qubit doubles the resources
necessary, going further than 30 qubits is already a challenge for classical computers. But more on
that later.

a) Experiment with the IBM circuit composer and see how the different gates affect the
simulation result. For example as a starting point you can try to create a Bell state (fig.
2).

Figure 2 – Bell state circuit.

On a real quantum computer you of course don’t have direct access to the state vector, i.e. the
probability amplitudes of the quantum state. Thus, one needs to make use of measurements to extract
information out of the quantum computer. In Qiskit the results of these measurements are stored in
classical registers, i.e. bitstrings.

b) Try adding classical bits to the quantum circuit and use them to store results of mea-
surements on every qubit at the end of your quantum circuit. For the visualization in
the bottom left select Probabilities to show the probability distribution of the classical
bits. This distribution converges to the probability amplitudes in the state vector from
before if one would simulate an infinite number of shots, i.e. repeat the simulation an
infinite number of times. However, a sufficiently large number of shots is usually enough
to get a good approximation. You can see the number of shots used for the visualization
on the y-axis in the bottom left plot.

Now that we understand the basics about the results we get from a quantum circuit it makes sense to
run it on a real quantum computer. This is also easy in the IBM circuit composer. In the top right
corner click on Setup and run. Then select the device you want to run you circuit on and the number
of shots (i.e. how often the circuit is run). Then click on Run.

c) Run your circuit on a real quantum computer and compare the results to the simulation.
Notice that the results can differ due to noise in the quantum computer. This is a very
important aspect of quantum computing, and we will talk more about it in the next
exercises.
Note: The IBM quantum devices are usually quite busy, so it might take a while until
your job is executed (You might want to continue with next exercise while you wait). You
can check the status of your job in the Jobs tab on the IBM quantum website.

If you got this far: Congrats on running your first quantum circuit on a real quantum computer!

2

https://quantum.ibm.com/workloads
https://quantum.ibm.com


Exercise 2: Qiskit

The web-based IBM quantum composer is a great tool to get started with quantum computing. How-
ever it is not as flexible and powerful as writing code in Qiskit. In this exercise we will write our first
quantum circuits on our lokal machine. Using Qiskit involves a couple of generic steps that we want
to break down in the following.

(i) Creating the Circuit

First of all we gotta create a circuit of course! Since we alreade did the previous exercise we can just
copy the code from the IBM quantum composer. There you find the code representation of the circuit
on the right side. You may have to click on OpenQASM 2.0 and select Qiskit to see the Qiskit code.
The code for our simple Bell state circuit should look something like this:

python

from qiskit import QuantumRegister , ClassicalRegister , QuantumCircuit
from numpy import pi

qreg_q = QuantumRegister(2, 'q')

circuit = QuantumCircuit(qreg_q)

circuit.h(qreg_q[0])
circuit.cx(qreg_q[0], qreg_q[1])

That was easy enough, right? We can now run this code in a jupyter notebook and visualize the circuit
using the

python

circuit.draw("mpl")

method. This will give us a nice visualization using the matplotlib library.

(ii) Loading a Backend

To run our circuit on a real quantum computer we need to load a backend. Here we use the least_busy
method from the QiskitRuntimeService to get the least busy quantum computer:

python

from qiskit_ibm_runtime import QiskitRuntimeService
service = QiskitRuntimeService()
backend = service.least_busy(simulator=False , operational=True)

In case you did not save your IBM token, you have to specify it by passing it as a keyword argument
to the QiskitRuntimeService constructor:

3



python

service = QiskitRuntimeService(
channel="ibm_quantum",
token="<MY_IBM_QUANTUM_TOKEN >"

)

(iii) Transpiling the Circuit

Every backend has a set of universal gates, that can be used to build a quantum circuit. Generallay
these gates are not the same gates that we use to create our circuits. In order to run our circuit on a
given backend, we have to transpile the circuit to the backend’s gateset. We can think of this process
just like the compilation of a high-level programming language to machine code.

To transpile a circuit we can use the generate_preset_pass_manager function from the qiskit.
transpiler.preset_passmanagers module:

python

from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
pm = generate_preset_pass_manager(backend=backend , optimization_level=0)
isa_circuit = pm.run(circuit)

The optimization_level parameter can be set to 0, 1, 2 or 3. The higher the level, the more
optimizations are applied to the circuit. However, higher levels also increase the compilation time.
The isa_circuit object is the compiled circuit, which is based on the Instruction Set Architecture.
of the chosen backend. Note that this object is still a QuantumCircuit, which can be visualized using
the draw method.

(iv) Sampler and Estimator

Awesome! Now we know how to create a quantum circuit, load a backend to run it on and transpile
it to that specific backend. Before we start crushing the quantum world, let’s understand the concept
of the Qiskit primitives: Sampler and Estimator.

• The Sampler in Qiskit allows us to sample probabilities of different quantum states
from a circuit. It runs quantum circuits and returns probability distributions for mea-
surement outcomes in the computational basis. We can load the SamplerV2 from the
qiskit_ibm_runtime package, or from the qiskit_aer.primitives package (if we want
to simulate the circuit classically) by running one of the following code blocks:

python

# for the real quantum computer
from qiskit_ibm_runtime import SamplerV2 as Sampler
sampler = Sampler(backend)

python

# for the classical simulator
from qiskit_aer.primitives import SamplerV2 as AerSampler
sampler = AerSampler()

4



Make sure to measure the qubits at the end of your circuit when using the Sampler
primitive. A simple way to do this is by running

python

circuit.measure_all()

after the last gate in your circuit.

• The Estimator primitive allows us to calculate the expectation values of observables (like
Pauli operators) for a quantum state prepared by a circuit. We can load the EstimatorV2
from the qiskit_ibm_runtime package, or from the qiskit_aer.primitives package (if
we want to simulate the circuit classically) by running one of the following code blocks:

python

# for the real quantum computer
from qiskit_ibm_runtime import EstimatorV2 as Estimator
estimator = Estimator(backend)

python

# for the classical simulator
from qiskit_aer.primitives import EstimatorV2 as AerEstimator
estimator = AerEstimator()

(v) Running the Circuit

Now we are ready to run our circuit on the chosen backend. We can do this by calling the run method
of the Sampler or Estimator object. If we wanted to sample the probabilities of the quantum states,
we would run something like:

python

job = sampler.run([isa_circuit], shots=1024)

Once the job is done, we can get the results by calling the result method of the job object:

python

result = job.result()

Running a job on IBM’s quantum devices can take a while (anything between seconds and days). You
can check the status of your job on the IBM quantum website. Usually you dont want to keep your
Python session open while waiting for the job to finish. To download the results of a job - once it has
finished - you can use the command

python

job = service.job(job_id)

5

https://quantum.ibm.com


where job_id is the id of the job you want to download the results from. You can find the job_id
either on your dashboard on the IBM quantum website or by running:

python

job.job_id()

Amazing! We are now able to create our own circuits and run them using the Qiskit ecosystem. Let’s
get started with some simple examples.

a) Create some quantum circuits using Qiskit and run them using the Sampler primitive on
your local device (i.e. using the qiskit_aer.primitives package). Feel free to start from
the Bell state example above. The goal of this exercise is really to get started and get a
feeling for the Qiskit framework. We will dive deeper into the details in the next exercises.
To visualize the results you could use the following code:

python

from qiskit.visualization import plot_histogram
plot_histogram(results[0].data.meas.get_counts())

b) If you feel comfortable with the Qiskit framework, you can submit some jobs to the IBM
quantum devices by using the Sampler from the qiskit_ibm_runtime package. They will
(most likely) not finish during this tutorial, but you can come back and download them
later. Do you spot any differences between the results you get from the simulator and the
real quantum devices?

c) Now let’t calculate some observables using the Estimator primitive. We can define Pauli
string observables as follows:

python

from qiskit.quantum_info import SparsePauliOp
obs_labels = ["IZ", "IX", "IY", "ZI", "XI", "YI", "ZZ", "XX", "YY"]
obs = [SparsePauliOp(label) for label in obs_labels]

Note that these observables are 2-qubit observables and therefore only work for circuits
with 2 qubits. You can of course define your own Pauli strings for more qubits if you like.
Before running the Estimator primitive, we have to map the observables to the circuit.
This can be done by running:

python

mapped_obs = [
ob.apply_layout(isa_circuit.layout) for ob in obs

]

Finally, we can calculate the expectation values of the observables by running:

python

job = estimator.run([(isa_circuit , mapped_obs)])

6

https://quantum.ibm.com


Once the job is done, we can get the results by running:

python

result = job.result()

You can access and plot the expectation values using the follwing code:

python

from matplotlib import pyplot as plt

# plot the results (very ugly...)
plt.plot(obs_labels , job_result[0].data.evs, 'o')
plt.xlabel('Observables')
plt.ylabel('Values')
plt.show()

Go ahead and calculate some expection values of your circuits! What happens when you
remove all 2-qubit gates from the circuit? Feel free to also submit these jobs to the IBM
quantum devices.

Exercise 3: Can you hear the noise?

Now that we can simulate as well as run our quantum circuit on a real quantum computer, it makes
sense to compare the results we get from both methods. In this exercise we will look at two circuits,
one beeing a very short circuit to create a Bell state and the other beeing a longer circuit that contains
a mysteric block of gates which is repeated N times.

q0

q1

2meas

H

0 1

Figure 3 – Circuit 1 (short).

a) Use fig. 3 and fig. 4 as a reference to recreate these two circuits in Qiskit. Write a function
that takes an integer N as an argument and returns the corresponding circuit, where the
marked gate block is repeated N times. For N = 0 the function should return the circuit
from fig. 3 and for N ≥ 1 the circuit from fig. 4.
If you have trouble with the gates, you can always refer to the IBM circuit composer to
see the Qiskit code representation of single gates.

7



q0

q1

2meas

H

RX

S

T T

S

RX

0 1

N-times

q0

q1

2meas

H

RX

S

T T

S

RX

0 1

Figure 4 – Circuit 2 (long).

b) Sample both circuits using a simulator as well as a real quantum computer. When tran-
spiling the circuit you should use optimization_level=0 (Any idea why?). Compare the
results you get from both methods for different values of N (e.g. N = 0, 1, 10, 20, 50).
Do you have any clue what the mysteric block of gates does? What happens when you
increase the number of repetitions N? Which method is correct?

8


