Institute for Theoretical Physics Prof. Dr. S. Trebst
University of Cologne Q. Preiss, F. Eckstein, M. Piitz

Quantum Computational Physics
Exercise Sheet 3

Winter Term 2024/25

Due date: Tuesday, 12.11.2024 Discussion: Friday, 08.11.2024
Website: thp.uni-koeln.de/trebst /Lectures/2024-QuantCompPhys.shtml

Exercise 5: Coherence fading

In the previous exercise sheet (ex. 4) we made use of a small circuit that allowed us to perform
a (joint) parity measurement on two qubits (recall Fig. 1 on sheet 2). Today we want to study a
much more general circuit which not only allows us to do projective parity measurements (like the
ones we used in ex. 4), but also to perform weak measurements of the parity. This is achieved by
introducing a parameter ¢ (tuning the ‘entangling time’) in the circuit that, crucially, allows us to tune
the measurement strength. In particular, it allows us to go continuously from a projective measurement
at t = 7 over a weak measurement between 0 and 7 to no measurement at all (for ¢ = 0).

But let us start with the basics. In Fig. 1 you see a circuit that allows us to perform a joint ZZ
parity measurement on two qubits. This circuit does essentially the same as the one we used in ex. 4,

but it uses rotational ZZ gates

Rz7(0) = exp (— z‘ZZZ) (1)

to entangle the system qubits with the ancilla qubit instead of using CNOT gates like in ex. 4. This
makes the whole circuit somewhat more complicated, as we also need to correct a relative phase
by applying a Z gate based on the measurement outcome of the ancilla qubit. Additionally the
measurement outcome of the ancilla qubit is inverted compared to the circuit we used in ex. 4, such
that a measurement outcome of +1 corresponds to an odd parity and a measurement outcome of —1
to an even parity. However, besides these differences, the circuit does essentially the same thing as the
one we used in ex. 4 — it (projectively) measures the parity of the two system qubits.

77 =

Figure 1 — Circuit for a ZZ parity measurement. The Rzz(0) gate is defined as Rzz(0) = exp(—i%ZZ). Measuring the
ancilla qubit will effectively measure the parity of the two qubits, such that a measurement outcome of +1 (ancilla
in state |0)) corresponds to an odd parity and a measurement outcome of —1 (ancilla in state |1)) to an even parity
(exactly opposite to the circuit we used in exercise 4). Note that this circuit picks up a global phase, which is however
not observable in any experiment / quantum computation.

mailto:trebst@thp.uni-koeln.de
mailto:qpreiss@thp.uni-koeln.de
mailto:eckstein@thp.uni-koeln.de
mailto:mpuetz@thp.uni-koeln.de
https://www.thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml

Now let us use this circuit structure to create a superposition of the two basis states |00) and |11).
This is done by preparing the system qubits in the state |++) and entangling them with an ancilla
qubit (also in the |+) state) using Ryy gates. Measuring the ancilla qubit in the X basis will now
collapse the two system qubits into the state

7 (2)

where s is the measurement outcome of the ancilla qubit. Using the measurement outcome to control
a Pauli-X gate, we can shape the state of the system qubits into the desired superposition of |00) and
|11), namely the state

|¢>_L. 01) + [10) if s = +1,
B i (—1]00) + [11)) if s = —1,

1 {\00>+111> if s = 41,)

W)=—z4

) V2 |i-(—|00) 4 |11)) if s = —1.

You can see a graphical representation of this circuit in Fig. 2. Note that the state of the system is not
the same for both measurement outcomes of the ancilla qubit (this is because we completely dropped
the Z gate from Fig. 1). However, in this exercise we only care about the state being a superposition
of |00) and |11), which is the case for both measurement outcomes.

a) Implement the circuit from Fig. 2 in Qiskit. You can use

from math import pi
circuit.rzz(pi/2, first_qubit, second_qubit)

to apply an Rzz(%) gate to the first_qubit and second_qubit. You can use

circuit.x(system_qubit).c_if (classical_bit, classical_value)

to apply a Pauli-X gate to the system_qubit if the classical_bit is equal to
classical_value.

Use the Sampler to sample the basis states of the system qubits in a simulator and plot
the distribution as a histogram (feel free to run the same job on a real quantum computer
if you want to!). If done correctly, you should only see basis states with the system qubits
in the state |00) or |11) (for the quantum computer you will have noise of course!).

Figure 2 — Short circuit to prepare a two qubit state as a superposition of [00) and |11) using a ZZ parity measurement.
The Rzz(0) gate is defined as Rzz(0) = exp(—i$ZZ). Measuring the ancilla qubit in the |1) state, will collapse the
two system qubits into the state ﬁ(— |00) + |11)). Measuring the ancilla qubit in the |0) state however, will collapse

the two system qubits into the state %(|01) + |10)). Using the measurement outcome to control a Pauli-X gate, we

can - in runtime - correct the state to be a superposition of [00) and |11) as well, namely the state %(|00> + |11)).

Awesome! Now we managed to do a projective parity measurement on two qubits and to prepare a
superposition of the basis states |00) and |11). However, we could have done this in the last exercise
already (using CNOT gates). So let’s now move on to the more interesting part of this exercise — the
weak parity measurement. To do this, we need to modify the circuit from Fig. 2 slightly. Instead of
using two Rzz (%) gates, we will now vary the angle in one of these gates to be 6 = 2¢, where ¢ is a
parameter that allows us to tune the measurement strength. A value of t = 7 will result in a projective
parity measurement, while tuning ¢ away from this value will effectively weaken the measurement. In
the limit of ¢ = 0, the measurement will have no effect on the parity of the qubits at all, as the Rzz(0)
gate is the identity and therefore does not entangle the system qubit with the ancilla qubit. In Fig. 3
you can see the modified circuit.

b) Implement the circuit from Fig. 3 in Qiskit and use the Sampler to sample the basis states
of the system qubits in a simulator. Play around with different values of ¢t and plot the
distribution as a histogram. What do you observe?

Now we want to make use of the Estimator primitive to calculate the expectation value of the ZZ
parity operator. You can do this by first defining your operator using the following code:

from giskit.quantum_info import SparsePauliOp
obs_label =
obs = SparsePauliOp(obs_label)

Note that the middle qubit in this case is the ancilla qubit. We are only interested in the parity of
the two system qubits, which is why we use the operator ZIZ.
To define the Estimator you can make use of the following code block:

python

from qiskit_aer import AerSimulator
from giskit_ibm_runtime import EstimatorV2 as Estimator

aer_simulator = AerSimulator (method=)
simulation_estimator = Estimator (aer_simulator)

This set’s the simulation method to "statevector", which is exact and works fine for a small
number of qubits.

Now we still have to transpile the circuit and map the observable to the circuit structure. If you are
unsure how to do that you can look it up in ex. 2c) (sheet 1).

¢) Calculate the expectation value of ZZ for different values between t = 0 and t = % and
plot them as a function of . You can use the kwarg precision in the run method of the
Estimator to tune the precision of your simulation.

Figure 3 — Same circuit as in Fig. 2, but with a Rzz(2t) gate instead of a Rzz(%) gate. This allows us to tune the
measurement strenght of the ZZ parity measurement. A value of ¢ = 7 results in a projective measurement. Tuning
t away from this value will effectively weaken the measurement, such that the state of the system qubits will be less

affected by the measurement outcome.

Exercise 6: Preparing something spooky O

Shortly after Halloween, we now want to do something spooky as well. Our famous friend Einstein
found long-range entanglement pretty spooky and called it “spooky action at a distance” (1947 in a
letter to Max Born). And, fortunately, we learned in our lectures a perfect example — let us take a
closer look at the toric code!

We also know how to run circuits in Qiskit either by simulation or on the real Quantum computer. If
you forgot, you can always look it up again in our earlier sheets.

In the lecture we saw that we can create the toric code using measurements. Now we want to apply
this to gain a deeper understanding. Let us start with the simplest form: One plaquette.

Figure 4 — One four-body measurement for the toric code

On this star we want to measure Z components of all system qubits (blue) at the same time, i.e.
in a joint measurement. This can be created in Qiskit rather easy, without caring too much about
geometry:

9o

q1

q2

as
a —e—e—e—lrm—
1

Figure 5 — Circuit for one four-body measurement using CNOT gates

a) Implement this circuit and sample it a few times (as simulation), additionally measuring
all qubits in the end (in Z-direction).

b) Now try post-selecting the results i) for when you have measured the ancilla spin as up
and ii) for when you have measured it as down. Compare with the equations from the
lecture. Do you see the difference? Which state do we want to get?

c¢) Now measure the qubits in X-direction instead of Z-direction in the end. (Hint: If you
use the Hadamard gate right before measuring, that effectively rotates the measurement
direction.)

Looks much simpler, right? But careful, would we be able to tell the difference
from this without knowing the measurement result of the Ancilla?

Next we can go a bit larger. We could go to quite large toric codes that way, however to keep
clear and easy to visualize, we will just go one step larger and implement the toric code with two
measurements in every row and column (d = 2). This gives us 8 system qubits and 4 ancilla qubits.

Figure 6 — Toric code by measurement with d = 2, meaning two 4-body measurements in every row and column

d) Implement the d = 2 toric code in Qiskit and sample it. Take care to also introduce
the periodic boundary conditions that the traditional toric code has. We also learned
that - without any additional actions - we only properly prepare the toric code when
the ancilla measurement outcome has been +1. Thus we can directly post-select for the
configurations, where all ancilla measurements yielded +1. (You can use the postselect
method that we have learned about on sheet 2)

Do all the terms match what we would expect from the loop gas description? (Even
number of 4+ and - measurement results on the system qubits when measuring in the
Z-direction.)

e) Sample and post-select the d = 1 toric code (a and b) and the d = 2 toric code (d) with
the same number of samples. Then sum all of the post-selected configurations up and
compare the two numbers. Do we get the same amount of valid toric code configurations
(configurations with positive ancilla measurement outcomes everywhere)? Is post-selection
a valid option for preparing larger toric codes?

f)

Try to sample the d = 1 toric code circuit (from a and b) on an IBM-chip and see how well
you can prepare the toric code this way. Does this scheme/lattice fit to the architecture
of the IBM chips or do we need an adaption if we wanted to prepare larger toric codes on
these chips?

