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Error correction on classical computers is well-established and active in almost every electronic de-
vice we use today. These devices are called fault tolerant, meaning that they can operate correctly
even if some of their components fail. Designing fault tolerant quantum computers is a major chal-
lenge which the field of quantum error correction (QEC) aims to solve. Due to quantum mechanical
principles like the no-cloning theorem, QEC is much more challenging than classical error correction.
In this exercise sheet, we will discuss some approaches to quantum error correction and their limi-
tations. If you are interested in learning more about QEC, you can find a great introduction here
(https://arxiv.org/abs/2304.08678).

This sheet is purely analytical (besides some plots) and does not require any programming. But
don’t worry, we will get back to coding in the next exercise sheet!

No-cloning Theorem

The no-cloning theorem states that it is impossible to create an exact copy of an arbitrary unknown
quantum state. The following proof is based on the invariance of the inner product under unitary
operations. Assume that there is a unitary operator U that can clone an arbitrary quantum state
|ψ〉, i.e.

U(|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉 , (1)

where |0〉 is a blank state. Then the following holds for any two states |ψ〉 and |φ〉:

〈U(ψ ⊗ 0)|U(φ⊗ 0)〉 = 〈ψ|φ〉 〈ψ|φ〉 (2)
〈U(ψ ⊗ 0)|U(φ⊗ 0)〉 = 〈ψ|φ〉 〈0|0〉 . (3)

The first equality follows directly from the definition of U , while the second equality follows
from the invariance of the inner product under unitary operations. The two equations are not
compatible for general states |ψ〉 and |φ〉. Thus the no-cloning theorem holds.

Exercise 7: Repetiti⊗n Code

The quantum repetition code is an important example of a quantum error-correcting code, as it is
arguably the most simple code possible. It is the quantum analogue of the classical repetition code,
which encodes a single logical bit bL into n physical bits b1b2…bn by repeating it n times. In the
correction process, the majority vote is taken to determine the value of the logical bit.

1

mailto:trebst@thp.uni-koeln.de
mailto:qpreiss@thp.uni-koeln.de
mailto:eckstein@thp.uni-koeln.de
mailto:mpuetz@thp.uni-koeln.de
https://www.thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml
https://arxiv.org/pdf/2304.08678
https://arxiv.org/pdf/2304.08678


In the quantum case however, preparing n qubits in the same state as our logical qubit is not possible
due to the no-cloning theorem. Instead, we encode the logical qubit into an n-qubit cat state

α |0〉L + β |1〉L → α |0〉⊗n + β |1〉⊗n . (4)

a) Let’s say we have a logical qubit in the state |ψ〉L = α |0〉L + β |1〉L. Draw a circuit that
encodes this logical qubit into an n-qubit cat state, i.e. α |0〉⊗n + β |1〉⊗n.

b) Now we know how to encode our logical qubit into n physical qubits. As we discussed in
the lecture, we can perform parity checks on these physical qubits to detect domain walls
in our cat state without destroying the state itself. Based on these domain walls, we can
perform a correction operation to recover the logical qubit. What is the condition for the
correction operation to be successful? Does it make sense to encode a logical qubit into
an even number of physical qubits?

c) The probabilty for a bit flip error to occur on a single physical qubit is p. What is the
probability for a logical bit flip error pL (i.e. the probablity that our correction operation
is not successful)? Plot the probablity for a logical bit flip error pL as a function of p for
different numbers of physical qubits. What do you observe?
Hint: The probability for a bit flip error on a single physical qubit is p, the probability
for no error is 1− p. What’s the probablity for k errors to occur on n physical qubits?

d) The here discussed repetition code can correct bit flip errors. Can you think of a way to
design a code that can correct phase flip errors? Is there a repetition code that can correct
both bit flip and phase flip errors?

e) Based on what you have learned about the repetition code so far, would you consider it a
good code for practical applications? Why or why not?

Exercise 8: [[n, k,d]] - notation

In the context of quantum error correction, different codes are often classified by three parameters
written in the so called [[n, k, d]]-notation. The idea here is the following: n is the number of physical
qubits, k is the number of logical qubits, and d is the code distance. One interpretation of the code
distance is that a quantum error correction code with code distance d can successfully correct error
strings that are shorter than d/2. The repetition code we discussed in the previous exercise is an
[[n, 1, n− 1]] code.

a) What values/relations of n, k, and d are desirably for a quantum error correction code?

In the lecture we learned how to determine how many logical qubits are encoded in a given code, by
counting the number of physical system qubits n and the number of independent stabalizers m. The
number of logical qubits k is then given by k = n−m.

b) Derive the number of logical qubits k encoded in the toric code with code distance d = 3
(Fig. 1) and d = 5 (Fig. 2) by explicitly counting the number of physical system qubits n
and independent stabalizers m.
Hint: Feel free to draw the stabilizers into the figures.

c) Derive the number of logical qubits k encoded in the rotated surface code with code
distance d = 3 (Fig. 3) and d = 5 (Fig. 4) by explicitly counting the number of physical
system qubits n and independent stabalizers m.
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Figure 1 – Visualization of a toric code with code distance d = 3.

Figure 2 – Visualization of a toric code with code distance d = 5.

Figure 3 – Visualization of a rotated surface code with code distance d = 3.

Figure 4 – Visualization of a rotated surface code with code distance d = 5.
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Exercise 9: Steane code🎨

What is the Steane code?

The Steane code is a minimal stabilizer code that uses only seven physical qubits to encode one
logical qubit. It is also a representative of a so-called color code (for reasons that will become apparent
below). The seven physical qubits (white circles) are placed in the following way:

1
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Figure 5 – Visualization of the Steane code

Similar to the toric code we have certain stabilizer measurements that always have to yield +1 to
remain in the code space, where we obtain our logical qubit. These stabilizers are marked by the black
dots in the middle of quadrangle. Note that each black dot has one X-stabilizer, where X is applied
to all qubits of the stabilizer and one Z-stabilizer. Thus the code overall has six stabilizer:

X1X2X3X4 Z1Z2Z3Z4

X2X3X5X6 Z2Z3Z5Z6

X3X4X6X7 Z3Z4Z6Z7

Now, why is this code interesting? As mentioned we can encode a logical qubit in this code, with seven
we do not need that many and we can do decent error correction already.

For the logical operator of the logical qubits (we want to be able to manipulate the logical qubit
after all) we can make different choices. A simple one is to just choose X applied to all as logical X
and Z applied to all phyiscial qubits as logical Z:

XL = X1X2X3X4X5X6X7

ZL = Z1 Z2 Z3 Z4 Z5 Z6 Z7

Let’s examine a little bit closer how that error correction works.

a) What happens if we by random chance apply i) one X operator on qubit 5 (X5)? ii) one
Z operator on qubit 2 (Z2)? Can we see in the stabilizers that something has happened?

b) If we see something for both X and Z is that different from the repitition code?

c) Let’s imagine we have the Steane code and want to keep it stable. Now we do not know
to which qubit some error has been applied. We only see the stabilizers. Assuming only
one qubit has been hit by noise, can we always determine where and what kind it was?
Try it: What happened when all other stabilizers are positive and only the following
negative?

i) X1X2X3X4 = −1

X3X4X6X7 = −1
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ii) Z1Z2Z3Z4 = −1

Z2Z3Z5Z6 = −1

Z3Z4Z6Z7 = −1

iii) X3X4X6X7 = −1

Z3Z4Z6Z7 = −1

When we have determined noise it is easy to correct for that operator by just applying it on the
physical qubit an additional time.

d) Now this was assuming that only one qubit is hit by noise. What happens if two qubits
have an error? What happens for example for X errors on 2 and 4 (X2X4)? If you expect
one qubit noise is, will your correction be right? Or will the result of one of the logical
operators change?

e) Indeed events with two errors pose a problem for the Steane code. So there should not be
two errors within the distance of one seven physical qubit triangle. Can you write down
the [[n,k,d]] notation of the Steane code?
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