
Institute for Theoretical Physics Prof. Dr. S. Trebst
University of Cologne Q. Preiss, F. Eckstein, M. Pütz

Quantum Computational Physics
Exercise Sheet 5

Winter Term 2024/25

Due date: Tuesday, 10.12.2024 Discussion: Tuesday, 3.12.2024
Website: thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml

This exercise sheet is all about quantum error correction. So, if you are interested in the computa-
tional details of practical quantum error correction implementations – and how classical computers can
be crucial helpers for quantum computers – this exercise sheet is for you! If you are eager to learn more
feel free to take a look at Quantum Error Correction For Dummies (https://arxiv.org/abs/2304.08678)
and visit the Error Correction Zoo (https://errorcorrectionzoo.org) for even more quantum error cor-
rection stuff!

This exercise sheet involves some more advanced coding, for which we will be using the Julia pro-
gramming language. If you are not familiar with Julia, you can find some helpful syntax tipps here
(https://cheatsheets.quantecon.org).

Exercise 10: Quantummatch making

Decoding a quantum error correction code is the process of using the results of stabilizer measurements
to determine the errors that have occurred and correcting them. On the last exercise sheet we discussed
how to correct errors in the repetition code. This was rather straightforward, however the code was
not very ideal since it was only able to protect the logical qubit against one type of error. A better
code that we already know about is the toric code. However, correcting isn’t as trivial as for the
repetition code. In this exercise we will discuss how to decode the toric code using an algorithm called
Minimum Weight Perfect Matching (MWPM).

First let’s understand the idea of the problem we want to solve. Errors on the physical system
qubits of the toric code appear as error strings which result in negative measurement outcomes of the
stabilizers (syndromes) at both ends of the error string. Now given all the stabilizers with negative
measurement outcomes we want to find a matching between pairs of stabilizers (using all, thus
perfect) that best describes the error strings that occurred. Our ansatz is that the error strings are
as short as possible (of minimum weight), which can be justified by the fact that the probability of
an error string of length l occurring, decreases exponentially with l. Once we have such a minimum
weight perfect matching, we want to correct the state by flipping all qubits along a path that connects
the matches.

Let’s start at the beginning and sample some physical errors following an error probability of p on
every qubit. A value of 0 means the qubit is unaffected by errors, whereas a value of 1 means the
qubits got flipped due to noise.

a) Write a function that returns physical_errors::Vector{Int64} of length 2d2 with zeros
and ones based on a probability p and a code distance d. We want to use linear indexing
for this (see fig. 1), as this will make the syndrome calculation quite neat!

Now that we sampled the physical errors, we want to calculate the syndromes (the measurement

1

mailto:trebst@thp.uni-koeln.de
mailto:qpreiss@thp.uni-koeln.de
mailto:eckstein@thp.uni-koeln.de
mailto:mpuetz@thp.uni-koeln.de
https://www.thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml
https://arxiv.org/abs/2304.08678
https://errorcorrectionzoo.org
https://cheatsheets.quantecon.org
https://cheatsheets.quantecon.org

outcomes of the stabilizers). Note that this is what we would actually see on a real quantum device,
since we have no way of knowing the explicit errors on the physical qubits!

In this exercise we want to limit ourselves to bit flip noise, meaning that we only look at plaquettes
of X-stabilizers (i.e. we neglect the vertex Z-stabilizers).

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

1
(1,1)

2
(1,2)

3
(1,3)

4
(2,1)

5
(2,2)

6
(2,3)

7
(3,1)

8
(3,2)

9
(3,3)

Figure 1 – Indexing of the physical qubits (black) and X stabilizers (red) in a d = 3 toric code.

b) Write a function that return x_syndromes::Vector{Int64} of length d2 that contains
zeros and ones based on if the X-stabilizer has a positive or negative measurement outcome.
This function should take the physical_errors as input.
Hint: You can create a matrix A of size d2 x 2d2 which stores the information of which
qubit is part of which stabilizer as zeros and ones. Multiplying this matrix with the
physical_errors will give you a vector of size d2 with elements {0, 1, 2, 3, 4} based on
the number of flipped qubits on a plaquette. Running

julia

mod.(A * physicalErrors , 2)

will give you the parity of every element in that vector, such that a 1 means that the sta-
bilizer is active (negative measurement outcome) and a zero means it’t not active (positive
measurement outcome).
2. Hint: For calculating the correct indices of the matrix elements you might want to use
the following julia functions:

julia

modulo function (you can also write i % n)
mod(i, n)

one based modulo function (very useful due to 1 based indexing in julia)
mod1(i, n)

Great! Now we are able to sample stabilizer measurements based on a physical error rate on our qubits.
Now we only need to find a way to match the syndromes to create paths that are as short as possible

2

Figure 2 – Complete graph with edge weights visualized as line thickness.

and subsequently correct all qubits along such paths. That can’t be too hard, ... right? (Spoiler: It
can.)

Finding such matchings is a perfect candidate for a problem solvable using the language of graphs.
Translating the problem to a graph problem can be done as follows: We represent the stabilizers with
negative measurement outcomes as nodes in a complete undirected weighted graph, where the weights
on the edges correspond to the distance between the stabilizers in the code lattice.

Now we want to write a function that given the x_syndromes returns a graph representation of the
problem. We can use the following function for that:

julia

using Graphs

construct complete graph (and weights + syndrom positions)
given an x_syndrom configuration
function to_complete_graph(x_syndroms::Vector{Int64})

d = Int64(sqrt(length(x_syndroms)))
syndrom_pos = [to_2d_index(i, d) for i in findall(x_syndroms .== 1)]
num_nodes = length(syndrom_pos)

construct graph and Dict to store weights
graph = SimpleGraph(num_nodes)
weights = Dict{edgetype(graph),Int64}()

for (i, pos1) in enumerate(syndrom_pos[1:end-1])
for (j, pos2) in enumerate(syndrom_pos[i+1:end])

e = Edge(i, j + i)
add_edge!(graph, e)
weights[e] = taxicab_metric(pos1, pos2, d)

end
end

return graph, weights, syndrom_pos
end

linear index to 2d index
function to_2d_index(i::Int64, d::Int64)

return ((i - 1) ÷ d + 1, mod1(i, d))
end

3

Somehow the function taxicab_metric got lost due to noise on the classical bits! Can you help
recovering it?

c) Write a function taxicab_metric that calculates the number of qubits that you need to
flip to connect the two stabilizers given by the positions p and q. The return value should
be an integer.

julia

calculate the distance between two qubits
function taxicab_metric(

p::Tuple{Int64,Int64},
q::Tuple{Int64,Int64},
d::Int64

)
####################
do something
####################

return distance
end

Hint: We are on a torus, so the shortest path may be through the boundaries!

The next step is to find a perfect match. Since we have a complete graph and an even number of
nodes, this is always possible. Finding a perfect match (not the minimum weight) is also quite simple.

Figure 3 – Non-minimum weight perfect matching. Matched edges are visualized in orange.

d) Define a function in julia that - given the graph representation of the problem - , returns
a perfect match. Ideally, the return value should be mate::Vector{Int64} such that the
matched mate of node i is mate[i] and the matched mate of node j is mate[j].

4

Figure 4 – Minimum weight perfect matching. Matched edges are visualized in orange.

Now there is of course the problem of finding the minimum weight perfect matching. Naively, we
could just construct all possible perfect matchings and take the one with the minimum weight, that
can’t be too bad, ... can it?

e) Using brute force (comparing the weight sum of all perfect matchings explicitly), what
would be the largest code distance d that could be decoded in reasonable time?
Hint: How many perfect matchings are there in a complete graph with n (even) nodes?

f) Implement the brute force method for finding the minimum weight perfect matching in
julia.
Hint: This can be done using recursion.

Since decoding should happen at real time in parallel to the quantum computations, which currently
have short coherence times, we need to find a faster way to solve the problem. Especially for larger
code distances.

An algorithm that gives super-exponential speed up over the brute force method is the Blossom
algorithm. Originally we wanted to create an exercise that would guide you to your own implemen-
tation of this algorithm. However, as we did our research and learned about the algorithm ourselves
we noticed this would be a bit too much. Let’s just cite a blog article by Abraham Flaxman that we
found while reading about the implementation:

” ..., finding minimum-weight perfect matchings in general graphs is not a reasonable assignment
for a programming class, even a very advanced one. If you are reading this page trying to
get homework answers, you should double check what exactly was assigned. Either you’ve
misunderstood the problem, or your professor is a cruel, cruel mathematician.”

We decided we don’t want to be cruel mathematicians, so we will use a library instead! :-) However,
we still want to give you an idea of how the algorithm works as this is quite interesting!

The idea of the Blossom algorithm goes like this: starting from a not perfect matching configuration,
find a way to improve it by adding one more pair at a time. To make this possible we might need to
break up and rematch some matches. Such an improvement step works as follows:

• Find a path in the graph that starts and ends at unmatched nodes and has alternating matched
and unmatched edges (augmenting path). Furthermore, the edges in the path should all be tight
(more on that later).

5

https://healthyalgorithms.com/2009/03/23/aco-in-python-minimum-weight-perfect-matchings-aka-matching-algorithms-and-reproductive-health-part-4/

• Invert the matching of the edges on the path, i.e. if an edge was in the matching before it is not
in the matching after and vice versa.

This process can be repeated until it is no longer possible to find such a path, at which point we have
found a perfect matching.

Clearly the difficult part is finding such an augmenting path. One might think that finding such
a path should be possible using a simple breadth first search (BFS) algorithm. However, for a non-
bipartite graph there can be cycles with an odd number of edges (and nodes), called Blossoms, which
make this more difficult. The idea is to contract these Blossoms into a single node, which can then be
treated as a single node in the search for the path. The contraction can be undone after the path has
been found. Furthermore, to ensure we find the matching of minimum weight, we need to make sure
that all the edges in the path are tight. Let’s define what we mean by that. We define a value (dual
variable) for every node (and Blossom) in the graph {vi}. For an edge (i, j), we define the slack of the
edge as

sij = vi + vj − wij , (1)

where wij is the weight of this edge. An edge is tight if sij = 0. If we think about the weights wij as
the length of the edges, and about the dual variables {vi} as the radius of a circle, an edge is tight if
the two circles touch each other. By updating the dual variables in a smart way, we vary the radiuses
of the circles and that way ’search’ the graph for the best matches.

Going into more detail would be a bit too much, but if you’re interested you can read up on this
algorithm here: Efficient Algorithms for Finding Maximum Matching in Graphs.

g) Use the minimum_weight_perfect_matching(graph, weights) function from
GraphsMatching.jl instead of the brute force method to find the minimum weight
perfect matching for the graph you defined in the previous parts of this exercise. By
using the following small wrapper function, the input and return types should be exactly
the same as for the brute force method.

julia

using GraphsMatching

function mwpm(graph, weights)
res = minimum_weight_perfect_matching(graph, weights)
return res.mate

end

Awesome! Now we are able to find the minimum perfect matchings between our syndromes in a
reasonable runtime! All that is left now is to correct the physical qubits and check whether the
logical information is still there. To get the error_string that connects two syndromes you can
use the function get_error_string(pair::Tuple{Tuple{Int64,Int64},Tuple{Int64,Int64}}, d)
that we provide to you in the ILIAS folder - Sheet05.

h) Write a function that loops through all matchings and given the positions of the syn-
dromes syndrome_pos based on their index in the graph representation calculates the
error string that connects a pair of syndromes (using the get_error_string function).
Now flip all qubits along that error string. Note that the function get_error_string
returns a Vector{Int64} where each element is the linear index of a physical qubit
which is part of such an error string. The output of this function should be the
physical_errors::Vector{Int64} which we created in a), but of course with some cor-
rections!

At this point we corrected our qubits and we restored the logical information, ... or ... have we? Let’s
check! We can check whether the logical information is still there, by calculating Z-string operators

6

https://www.researchgate.net/profile/Zvi-Galil/publication/221218872_Efficient_Algorithms_for_Finding_Maximal_Matching_in_Graphs/links/56857f5108ae051f9af1e255/Efficient-Algorithms-for-Finding-Maximal-Matching-in-Graphs.pdf?origin=publication_detail&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uRG93bmxvYWQiLCJwcmV2aW91c1BhZ2UiOiJwdWJsaWNhdGlvbiJ9fQ&__cf_chl_tk=vhpATQj6msyO_.rdgUx_q6IdhYUTADpakdxop4DtCh4-1733183120-1.0.1.1-FI9WgAK.tSPUU3goHuAmpL88UuUySk1EyFhFHzg.Uyw
https://www.ilias.uni-koeln.de/ilias/ilias.php?ref_id=6127783&cmdClass=ilobjfoldergui&cmdNode=zb:pk&baseClass=ilRepositoryGUI

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

1
(1,1)

2
(1,2)

3
(1,3)

4
(2,1)

5
(2,2)

6
(2,3)

7
(3,1)

8
(3,2)

9
(3,3)

1 2 3

10

13

16

Figure 5 – Visualization of the logical Z-operators that span the torus vertically (blue) and horizontally (red).

(since we are only considering the X-stabilizers) that loop vertically and horizontally through the torus.

i) Write a function, that given the (corrected) physical_errors::Vector{Int64} calculates
whether the logical information is lost. The function should return 1 if the information
is lost, and 0 if it is still there. You can do this by calculating the parity of all physical
qubits in a given logical loop operator. The logical information is lost, if any of the two
logical operators has a value of −1, i.e. if the parity of its containing qubits is odd.

Now we want to check for which code distances d and which physical error rates p the logical information
is preserved / lost.

j) Write a simulation that calculates the logical error for some values of p (e.g. between 0
and 0.2) and some code distances d (e.g. 3, 5, 7, 9) for many different error configurations
(e.g. 5000) and average over them. Plot the logical error as a function of the physical
error probability p for different code distances d. If you are not familiar with plotting in
julia, you can use the following code:

7

julia

using CairoMakie
using ColorSchemes

get some nice colors
colors = [color for color in ColorSchemes.Spectral_6]

plot
fig = Figure()
ax1 = Axis(fig[1, 1];

xlabel=L"physical errorrate p",
ylabel=L"logical errorrate p_L"

)
for (i, d) in enumerate(ds)

scatterlines!(ax1, ps, log_err[i, :], color=colors[i])
end
lines!(ax1, ps, ps; color=:black, linestyle=:dash)
axislegend(ax1,

[
[

MarkerElement(marker=:circle, color=c),
LineElement(color=c)

] for c in reverse(colors)
],
[L"%$d" for d in reverse(ds)],
L"code distance d",
position=:lt

)
fig

What do you observe? In the above code we also plotted a straight line. What could be
the meaning of that?

In the plot you should already see a nice crossing point and - just by looking at it - you should be able
to tell where the threshold lies. However, we can do even better than that by performing a finite size
scaling analysis. Without going into too much detail (see the computational many-body physics lecture
for that) you can exploit the behavior of finite systems around a critical point to extract information
about the nature of the transition, as well as the exact transition point. We can do this analysis by
rescaling the x and y data based on a scaling Ansatz or scaling function. If done correctly the data
should collapse onto a single line (at least in the vicinity of the critical point). In order to get the best
parameters we can do an automated finite size scaling analysis using e.g. the ScalingCollapse.jl
package.

k) Perform a finite size scaling analysis using the following code to extract the critical point
pth and the critical exponent ν.

julia

using ScalingCollapse

perform finite size scaling analysis
sp = ScalingProblem(ps, log_err, ds;

sf=ScalingFunction(:x; p_names=["x_c", "nu"]),
dx=[-0.5, 0.5], # set the optimization interval
p_space=[0.01:0.01:0.2, 1.0:0.1:2.0], # set the allowed parameter space

)

8

Running the above code should print you the optimal scaling parameters (here called x_c
and nu). Let’s plot the collapsed data! You can use the following code:

julia

get the rescaled data
sx, sy, se, sd = scaled_data(sp);

fig = Figure()
ax1 = Axis(fig[1, 1];

xlabel=L"physical errorrate p",
ylabel=L"logical errorrate p_L",

)
ax2 = Axis(fig[1, 2];

limits=((-2.3, 2.3), nothing),
xlabel=L"(p-p_c)/p_c \cdot d^{1 / \nu}"

)

for (i, d) in enumerate(ds)
scatterlines!(ax1, ps, log_err, color=colors[i])
scatterlines!(ax2, sx[i], sy[i])

end
axislegend(ax1,

[
[

MarkerElement(marker=:circle, color=c),
LineElement(color=c)

] for c in reverse(colors)
],
[L"%$d" for d in reverse(ds)],
L"code distance d",
position=:lt

)
colsize!(fig.layout, 2, Relative(0.3))
fig

You should find that the data point in the right plot (roughly) collapse onto one line! The
critical exponent ν tells us something about the nature of the phase transition. Do you
expect it to change if we use a different algorithm for decoding? What about the critical
point / threshold?

9

⇒ ⇒

⇓

⇐⇐

Figure 6 – Summary of the decoding pipeline for the toric code. Step 1: Sample physical errors. Step 2: Calculate
syndromes. Step 3: Generate a complete graph with weights. Step 4: Find a minimum weight perfect matching. Step
5: Determine the error strings. Step 6: Correct the errors.

10

