
Institute for Theoretical Physics Prof. Dr. S. Trebst
University of Cologne Q. Preiss, F. Eckstein, M. Pütz

Quantum Computational Physics
Exercise Sheet 7

Winter Term 2024/25

Due date: Friday, 24.01.2025 Discussion: Friday, 17.01.2025
Website: thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml

Exercise 11: QuantumClifford.jl

Quantum circuits that only consist of Clifford gates and measurements can be efficiently simulated
using the stabilizer tableau formalism. Such a simulation stores the state of an n qubit circuit
using a n× 2n+1 matrix of binary values (tableau) that encodes stabilizer generators. The stabilizer
generators encode the state in the sense that the encoded state is a common eigenvector of all stabilizer
generators with eigenvalue 1. Each Clifford gate can then be represented by a simple update rule on
the tableau.

There are some nice packages out there that provide a simple interface to implement such stabilizer
tableau simulations. QuantumClifford.jl is the Julia package of choice for us. First install the
package by running the following command in the Julia REPL:

julia

using Pkg
Pkg.add("QuantumClifford")

Then you can use the package by running:

julia

using QuantumClifford

To create a simple tableau you can use the convenient string constructor. For example, the following
code creates a tableau that represents the state |000〉:

julia

tableau = S"+Z__
+_Z_
+__Z"

The _ represents the identity operator and the Z the Pauli-Z operator. Other operators can be used
as well, such as X and Y. The + represents the phase and can be one of +, -, +i, -i. The given tableau
represents the state |000〉, because |000〉 is the only state that is a common eigenvector of the stabilizer
generators ZII, IZI and IIZ with eigenvalue 1. In QuantumClifford.jl the type of the tableau
created above is called Stabilizer.

1

mailto:trebst@thp.uni-koeln.de
mailto:qpreiss@thp.uni-koeln.de
mailto:eckstein@thp.uni-koeln.de
mailto:mpuetz@thp.uni-koeln.de
https://www.thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml
https://github.com/QuantumSavory/QuantumClifford.jl

Clifford gates can be constructed similarly using the string constructor. For example, the following
code creates a Pauli-X gate:

julia

pauli_X = C"+X
-Z"

Here pauli_X is of type CliffordOperator. It indicates a mapping of how the stabilizer changes
when the Pauli-X gate is applied to the state. Namely, X1 → +X,Z1 → −Z. Or XXX† = X and
XZX† = −Z. To apply a Clifford gate to a stabilizer, you can use the apply! function. For example,
the following code applies the Pauli-X gate to the tableau created above:

julia

apply!(tableau , pauli_X , [1])

The third argument of the apply! function is a list of qubit indices that the gate is applied to. Since
the Pauli-X gate is a single qubit gate, the list only contains one element. As a result, the generators
are now -Z__, +_Z_ and +__Z which represent the state |100〉 as expected.

a) Create a tableau that represents the state |+++〉.

b) Create the remaining Pauli operators Y and Z as well as the Hadamard gate using the
string constructor.

Measurements are a bit more complicated in the tableau formalism, but are still simple to implement
using QuantumClifford.jl. A measurement always measures a Pauli string, i.e., a Pauli operator on
each qubit. The Pauli string can again be easily constructed using the string constructor. For example,
the following code constructs a Pauli string that measures the Z operator on the first qubit:

julia

pauli_string = P"+Z___"

Now to measure this Pauli string on a state, you can use the projectrand! function. For example,
the following code measures the first qubit of a four qubit GHZ state in the Z basis:

julia

ghz_tableau = S"+XXXX
+ZZ__
+_ZZ_
+__ZZ"

projectrand!(ghz_tableau , pauli_string)

This function returns the new tableau (Stabilizer) after the measurement, as well as the randomly
chosen phase of the measurement outcome (that’s why the name of the function contains rand).

c) Implement a parity measurement in the Z basis on the first two qubits of the GHZ state.

d) Implement the glassy GHZ state preparation from exercise 4 using the
QuantumClifford.jl package. Can you tell from the tableau that the state is a
glassy GHZ state?

2

e) Complete the GHZ state preparation by storing the measurement results and applying the
necessary corrections to the state as in exercise 4. Do you recognize the state now from
the tableau?

f) (?) To check if the state is indeed a GHZ state, you could construct the density matrix
and since the state should be pure, find the eigenvector with eigenvalue 1.
Hint: The density matrix ρ can be constructed using

ρ =

n∏
i=1

I + gi
2

(1)

where gi are the stabilizer generators of the state.
To speed up the simulation of measurements, QuantumClifford.jl provides a different type called,
Destabilizer. At the cost of keeping track of more information (destabilizers), the measurement time
complexity is reduced from O(n3) to O(n2). Even better is the MixedDestabilizer type, which also
speeds up simulations that simulate mixed states, which are encoded by storing less than n stabilizers
in the tableau. You can construct a MixedDestabilizer from a Stabilizer as follows:

julia

mixed_destabilizer_tableau = MixedDestabilizer(tableau)

QuantumClifford.jl also provides a function to compute the entanglement entropy between a sub-
system and the rest of the system.

julia

entanglement_entropy(state , qubits_in_subsystem , Val(:rref); pure=true)

This will be useful in the next exercises, when we want to investigate different entanglement structures.

g) For now just compute the entanglement entropy of the GHZ state from the previous
exercise. Is the GHZ state maximally entangled?

Exercise 12: Entanglement pyramids

Now that we understand the basics of stabilizer tableau simulations and how to program them using
the QuantumClifford.jl package in Julia, we want to explore the formation of entanglement pyramids
and evidence of KPZ physics in random unitary circuits as it was discussed in the lecture.

The specific circuit we want to simulate for this purpose is composed of multiple layers of two qubit
gates, which are applied on each bond of a periodic 1D chain of qubits (in a “brickwall pattern” with
each layer first odd, then even bonds – as depicted in Fig. 1 below). These two qubits gates are
randomly chosen from the set of all Clifford gates. In QuantumClifford.jl you can use the function

julia

random_clifford(2)

where 2 is the number of qubits the gates act on.

3

Layer

Figure 1 – A snippet of the deep random circuit. The unitary two-qubit gates (gray boxes) are randomly chosen from
the Clifford group.

a) Initialize a Stabilizer in the Z basis which represents the initial state of the qubit chain,
given a length/amount of bonds in the chain.

b) Write a function to simulate t layers of the random circuit starting from the initial state
constructed in the previous part.

c) Compute the entanglement entropy across every bond of the chain after t layers of the
circuit and plot the result as a function of the bond index. Repeat this for different values
of t and compare the results. Average your results to reduce the noise created by the
randomness of the system.
Hint: This should result in the expected shape of the KPZ scaling pyramid. A chain of
460 qubits simulated for some 200 layers should give good results. When averaging over
about 100 circuit realizations, expect a runtime around 5 mins.

Exercise 13: Measurement-induced entanglement transition

In this exercise we want to add (non-unitary) measurements to the mix of random operations in
our circuit and investigate whether this affects the entanglement structure, such as the entanglement
pyramid produced by random unitary gates only. Is there an “entanglement phase transition”?

Specifically, the idea is to intersperse the circuit we looked at in the previous exercise with singe-qubit
projective measurements in, say, the Z-basis. Let us vary the amount of such interspersed measure-
ments by introducing a measurement probability p, which we want to slowly increase to transition from
p = 0, i.e. a random unitary circuit giving rise to volume-law entanglement as we found out above,
to a situation with lots of measurement where we no longer expect the volume-law entanglement to
survive. But what is it replaced by? And for what probability/strength of measurements does this
happen?

Figure 2 – A layer of the deep circuit with random unitaries and interspersed measurements. The two-qubit unitary
gates (gray boxs) are again randomly chosen from the Clifford group, while (after every row of two qubit gates) we
add random single-qubit measurements (in the Z basis) with a probability p.

4

a) Add single-qubit measurements to your circuit from the previous exercise. After every layer
of two qubit unitaries, each qubit should be measured with a measurement probability p
(see fig. 3), i.e. every qubit has the chance to be measured twice per layer.

b) Run the same simulations as in exercise 12 c) but for the measurement circuit created in
part a) of this exercise for different probabilities 0 ≤ p ≤ 1.

c) Plot the entropies at the last time step for different probabilities into one plot on a log-
log scale. Do you see the different entanglement regimes (phases) and a phase transition
in between? How can you locate the transition? Hint: Can you see the three different
entanglement scaling regimes sketched in the figure below?

d) Can you motivate what happens in the two distinct regimes and at the transition?

L

S

O(L)

O(logL)
O(1)

Figure 3 – Scaling of the entanglement entropy for different entanglement phases. For a small amount of measurements
(p < pc), the entanglement creation outperforms the entanglement reduction due to the measurements, resulting in
a volume law scaling (red). For a large amount of measurements (p > pc), the entanglement reduction dominates,
resulting in an area law scaling (blue). At the critical point, the entanglement creation and reduction are balanced,
resulting in a logarithmic scaling (yellow).

5

