
Institute for Theoretical Physics Prof. Dr. S. Trebst
University of Cologne Q. Preiss, F. Eckstein, M. Pütz

Quantum Computational Physics
Exercise Sheet 8

Winter Term 2024/25

Due date: Friday, 07.02.2025 Discussion: Friday, 31.01.2025
Website: thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml

In this last exercise sheet, we want to study measurement-only circuit models which eliminate all
unitary gates from (deep) random circuits that we previously considered.

Exercise 14: The monitored transverse-field Ising model

Our first exercise will consider two different types of (non-commuting) measurements that compete
with one another, such as projective single qubit measurements and two qubit (parity) checks, in dif-
ferent bases. As already discussed in the lecture, such a measurement-only model can be set up to be
the monitored version of the well-known transverse-field Ising model (TFIM).

Figure 1 – Visualization of four layers of the monitored transverse-field Ising model circuit. Note that the circuit should
have a last layer of ZZ parity measurements at the end (which is not shown here).

The circuit construction for this model can be broken down into the following steps:

1. Start in the +1 eigenstate of the X operator on L qubits, i.e., |++ · · ·+〉.

2. With probability 1 − p, apply ZZ parity measurements between neighboring qubits (consider
periodic boundary conditions).

3. With probability p, apply single qubit X basis measurements to each qubit.

4. Repeat from step 2 for a sufficiently deep circuit, e.g., O(2000) times.

1

mailto:trebst@thp.uni-koeln.de
mailto:qpreiss@thp.uni-koeln.de
mailto:eckstein@thp.uni-koeln.de
mailto:mpuetz@thp.uni-koeln.de
https://www.thp.uni-koeln.de/trebst/Lectures/2024-QuantCompPhys.shtml


5. End the circuit with a last layer of step 2.

To study the entanglement of the model, we want to again calculate the entanglement entropy S
between different sized subsystems and the rest of the system.

a) Implement the circuit of the monitored transverse-field Ising model using
QuantumClifford.jl

b) Simulate the circuit with L = 50 qubits for different values of 0 ≤ p ≤ 1 and compute the
entanglement entropy S(L/2) between two equal sized subsystems, i.e.:

julia

S_half = entanglement_entropy(state, 1:L÷2, Val(:rref))

Plot the entanglement entropy S(L/2) against the measurement probability p. Can you
see a phase transition? What is the critical measurement probabtility pc?

Hint: To get a clean plot, it is necessary to average the calculated entanglement
entropy S(L/2) over multiple, e.g., O(1000), circuit realizations at the same measurement
probability p.

c) Simulate the circuit for L = 50 at p = pc as well as some more p values above and below
pc and again calculate the entanglement entropy S(L/2). Furthermore, also compute the
entanglement entropy S(l) for different subsystem sizes 0 ≤ l ≤ L, i.e.:

julia

for (i, l) in enumerate(0:n:L)
S[i] = entanglement_entropy(state, 1:l, Val(:rref))

end

the step size n can be chosen larger than 1 to reduce the computation time. Plot the
entanglement entropy S(l) against the subsystem size l. Can you tell which entanglement
arc coresponds to the critical measurement probability pc? For the other values of p,
what does the entanglement arc tell you about the nature of the entanglement inside the
two phases?

Hint: Like in part b), to get a clean plot, it is necessary to average the calculated
entanglement entropy S over multiple, e.g. O(10, 000), circuit realizations.

d) For p = pc use the data from part c), to plot the relative entanglement entropy ∆S(l) =
S(L/2)− S(l) against the subsystem size l. Confirm that the dynamics of the model can
be described by a non-unitary conformal field theory (see lecture), by fitting the Cardy-
Calabrese entanglement arc

∆S(l′/L) =
c

3
log2

(
sin

(
πl′

L

))
(1)

for 0 < l′ < L/2 and comparing the central charge-like prefactor c to the predicted value
of c = 3

√
3

2π ln 2 ≈ 0.573.

To get even nicer results, you could increase the system size to, e.g., L = 500 qubits or improve the

2



statistics by increasing the averaging steps. However, you will notice that this becomes computationally
heavy very fast and is most likely not suited for a laptop but a compute cluster, where averaging steps
can be parallelized over hundreds to thousands of CPUs.

Exercise 15: The monitored Kitaev honeycombmodel

Another example of a measurement-only circuit is the monitored Kitaev model. Constructing the
circuit for this model is somewhat more complicated, since the qubit geometry is not one but two-
dimensional, or more concretely, a honeycomb lattice. This means that every qubit has three (compared
to two in the one-dimensional case) neighbors. The Kitaev model is characterized by the fact that the
bonds of the honeycomb lattice get three colored, such that all bonds in the lattice that are connected
to the same qubit have different colors. The Kitaev coloring is not the only such coloring, but arguably
the geometrically simplest. For the monitored Kitaev model, the coloring is relevant because the type
of parity measurement applied to neighboring qubits depends on the type (color) of the bond between
them.

Figure 2 – Visualization of the monitored Kitaev honeycomb model geometry.

To simplify the implementation of the monitored Kitaev model circuit, you can use a Julia package
called MonitoredQuantumCircuits.jl, which is however not in the Julia registry and thus has to be
installed from the GitHub repository:

julia

] add https://github.com/J-C-Q/MonitoredQuantumCircuits.jl.git

Now using MonitoredQuantumCircuits.jl constructing the circuit can be done as follows:

1. Create a qubit geometry, where the qubits are the sites of a periodic (torus) honeycomb lattice
with a size of L× L hexagons, i.e., 2L2 qubits.

julia

geometry = PeriodicHoneycombGeometry(L, L)

2. Initialize a circuit data structure to store information about the gates to apply.

julia

circuit = Circuit(geometry)

3



3. Pick a random qubit index out of the geometry.

julia

qubit = random_qubit(geometry)

4. Pick a bond type (X, Y or Z) with the given probabilities px, py and pz

5. Depending on the type of bond chosen, find the neighbor of the randomly picked qubit. For
example, when the X type bond was chosen:

julia

neighbor = kitaevX_neighbor(geometry , qubit)

6. Apply a parity measurement between the qubits with the same basis as the type of bond picked.
For example, for an X type bond:

julia

apply!(circuit, XX(), qubit, neighbor)

7. Repeat from step 3 for a sufficiently deep circuit. One time step consists of 2L2 measurements.

8. Simulate the circuit using QuantumClifford.jl.

julia

result = execute(circuit, QuantumClifford.TableauSimulator(nQubits(circuit)))

Figure 3 – Visualization of the monitored Kitaev honeycomb model phase diagram.

4



a) For a system size of L = 12, compare the purification of the initially mixed state under
the circuit dynamics in different parts of the phase diagram. Consider the four relative
bond type measurement probabilities

1. px = py = pz = 1/3 (Fermi liquid phase)

2. px = 0.652, py = pz = 0.174 (phase transition)

3. px = 0.8, py = pz = 0.1 (toric code phase)

4. px = py = 0.5, pz = 0 (percolation)

Calculate the relative state entropy S after different depths:

julia

S = QuantumClifford.state_entropy(result)

Hint: To continue the simulation, you can pass an initial state to the TableauSimulator

julia

result = execute(circuit, QuantumClifford.TableauSimulator(last_result))

b) Plot the state entropy against the circuit depth. Can you see differences in the purification
time?

To start the circuit in a pure state, one needs to find 2L2 independent commuting stabilizers. One way
of doing this is to perform a Z basis parity measurement on all Z type bonds, followed by six qubit
parity measurements of every hexagon plaquette. This leaves two stabilizers. To complete the pure
state, one can perform a 2L qubit parity measurement along two periodic cycles around the torus.
MonitoredQuantumCircuits.jl provides convenient functions to construct these measurements.

1. Get all Z type bonds (as qubit index tuples)

julia

z_bonds = kitaevZ(geometry)

and apply a Z basis parity measurement between the qubits in every Z type bond.

2. Get all hexagon plaquettes (as lists of qubit indices)

julia

hexagons = plaquettes(geometry)

and apply a six qubit nPauli measurement

julia

nPauli(Y(),X(),Z(),Y(),X(),Z())

3. Get the two long cycles (as lists of qubit indices)

5



julia

loops = long_cycles(geometry)

and apply a 2L qubit nPauli measurement in the Z basis for the first loop

julia

nPauli(fill(Z(), length(loops[1]))...)

and the Y basis for the second loop

julia

nPauli(fill(Y(), length(loops[2]))...)

c) Start the circuit in a pure state by measuring the parity measurements mentioned above.
Then continue the circuit as before. Simulate the four points from part a) again and
calculate the entanglement entropy S(l) for different sized subsystems.

julia

for (i,l) in enumerate(0:L)
S[i] = QuantumClifford.entanglement_entropy(result, 1:(2L*l))

end

d) Plot the entanglement arcs generated in part c) against the subsystem size. Can you see
the different phases in the entanglement arcs?

6


