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Frustration

Frustrated systems are an essential ingredient to spin ice.
In the systems that we consider here, frustration arises di-
rectly from the lattice geometry (as opposed to the Kitaev
honeycomb model, where frustration is due to different,
competing bond types). A simple example for this ‘geomet-
rical frustration’ is the Ising model on a triangular lattice,
where there is a sixfold ground state degeneracy in just a
single triangle (fig. 1a).

Nearest Neighbor Spin Ice

In Spin Ice, there are two fundamentally different contri-
butions to spin-spin interaction. On the one hand, there
is a short-range Ising-like interaction. On the other hand,
long-range dipole-dipole interaction becomes important in
the experimentally realized (dipolar) spin ice.
If one neglects long-range interactions, the system is de-
scribed by the nearest-neighbor spin ice Hamiltonian

Hnn = −J
∑
〈i,j〉

sisj ẑi · ẑj , (1)

with si, sj ∈ {−1,+1} binary spins on a pyrochlore lattice
and ẑi, ẑj unit vectors pointing from a tetrahedron’s center
towards the spins si and sj , respectively. (fig. 1b).
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Figure 1: (a) Geometrical frustration of antiferromagnetic
Ising spins on a triangular lattice. (b) Definition
of ẑi-axes in a tetrahedron.

Defining the total spin of a tetrahedron 4, L4 := s1,4 +
s2,4 + s3,4 + s4,4, and using ẑi · ẑj = − 1

3 in every tetrahe-
dron, we can rewrite the Hamiltonian as

Hnn =
J

3

∑
4

L2
4 , (2)

which reproduces the Hamiltonian 1 up to an irrelevant con-
stant. Choosing J > 0, the ground state requires L4 = 0
in every tetrahedron. This is known as the ice rule.

Dipolar Spin Ice

In dipolar spin ice, experimentally realized for example in
Dy2Ti2O7, the large spins of the rare-earth element are
forced into Ising-like states by the crystal field, but they
also carry a large magnetic moment. If we turn on these
magnetic dipole-dipole interactions, the Hamiltonian picks
up an additional term,

H = Hnn +D
∑
i,j

sisj ẑi · ẑj
|~rij |3

− 3sisj (ẑi · ~rij) (ẑj · ~rij)
|~rij |5

. (3)

It turns out, that, despite this long-range dipole-dipole
interaction, the system is still governed by the ice rule.
One way to see this is by replacing the dipoles by pairs
of monopoles [1], separated by a distance d, such that the
monopoles always sit in the center of a tetrahedron and their
signs define the orientation of the replaced dipole. Instead
of dipole-dipole interaction, one ends up with interactions
of the form

U(Rαβ) =

{
µ0

4π
QαQβ

Rαβ
if Rαβ 6= 0

u0Q
2
α else

, (4)

where Rαβ is the distance between two tetrahedrons α and
β, and Qα is the total magnetic charge in tetrahedron α.
One can show that u0 is large enough to imply Qα = 0 for
every tetrahedron in the ground state, which corresponds
to the ice rule.

Magnetic Monopoles

Up to now, we have only considered the ground state of
spin ice. But at finite temperatures, defects are present. In
the setting of spin ice, a ‘defect’ refers to a tetrahedron that
violates the ice rule. These defective tetrahedrons come in
pairs and each carry a net magnetic charge (fig. 2a).
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Figure 2: (a) A pair of defective tetrahedrons is created by
flipping one spin – inverting the dotted spin restores
the ice rules. (b) A defective tetrahedron is moved
by an additional spin flip.

The defective tetrahedrons can be moved around by flipping
additional spins (fig. 2b), without growing domain walls
(as would happen in a regular magnetic material) – They
are effectively deconfined.

Topology

If we average the spins in real space to form a continuous
vector field ~P , the ice rule translates into div ~P = 0. For any
closed surface S, the flux through this surface equals the
volume integral over div ~P , i.e. it depends on the number of

enclosed monopoles. Although spins are locally disordered,
they are still in topological order. The topological order
parameter is the net magnetic charge, which is present in
the (sub-)system.

Further Reading

A very thorough introduction to spin ice, also discussing
experimental signatures, is given in reference [2]. A more
general approach with focus on the Coulomb phase, also
very profound, is given in [3]. The idea of explaining dipolar
spin ice by substituting dipoles with pairs of monopoles is
introduced in [1], with detailed calculations provided in the
supplementary material.
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