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The Model
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Figure 1: The Lattice

The model consists of a honey-
comb lattice with a spin sitting
on each of its vertices. The
spins interact with their near-
est neighbors via three different
types of links. The x-, y- and
z-interaction. The interaction of
the spins can be described us-
ing the pauli spin operators σαi ,
where α = x, y, z and i indexing
the site.
The Hamiltonian has the follow-
ing form:

H = −Jx
∑

x-links

σxj σ
x
k − Jy

∑
y-links

σyj σ
y
k − Jz

∑
z-links

σzjσ
z
k

In the lattice we can define a plaquette(hexagon) and the
operator Wp = σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 which commutes with the

Hamiltonian and itself. Thus, the Hamiltonian can be
solved individually for the eigenspaces of Wp. The original
Hilberspace is of the dimension 2n where n is the number of
lattice-points. The use of the eigenspaces only reduces our
problem to the dimension of 2n/2. It turns out, that if we
represent our spin operators with majorana operators we
can simplify our model even more and get the Hamiltonian
to a quadratic form.

Representing Spins by Majorana
Fermions

A system with n fermionic modes is usually described by
the annihilation and creation operators ak and a†k. Instead,

one can use their linear combinations c2k−1 = ak + a†k and

c2k =
ak−a†k
i which are called majorana operators. We now

represent our spins by two fermionic modes, i.e. by four
majorana operators.

Figure 2: Majorana representation of spin up and spin down

We choose the state with no fermions to be spin up and
the state with two fermions to be spin down. The states
with one fermion dont have any physical relevance to us.

In the following we will use the following notation: bx = c1,
by = c2, bz = c3, c = c4. It turns out, that we can use
an operator D = bxbybzc to determine whether any state
|ψ〉 is physical or not. |ψ〉 is physical↔ D |ψ〉 = |ψ〉. The
pauli operators σx σy σz can be represented by σ̃x = ibxc,
σ̃y = ibyc, σ̃z = ibzc which act on the extended space.

Application To The Model

If we replace the pauli operators with those that act on
the extended space we get σ̃j

ασ̃k
α = (ibαj cj)(ib

α
k ck) =

−iûjkcjck with ûjk = ibαj b
α
k which we associate with the

link (j,k). We now insert this into the Hamiltonian and get

H =
i

4

∑
j,k

Âjkcjck

with Âjk = 2Jαjk
ûjk if (j,k) are connected and Âjk = 0 else.

Remarkably, the operators Âjk commute with the Hamil-
tonian and with each other and have the eigenvalues ±1.
Remember the operators Wp did the same. Using a theorem
called ”Lieb’s Theorem”, we know that the groundstate
of the system lies in the subspace where all operators Wp

have the eigenvalue +1 (vortex free configuration). This
leads to the fact that we can replace the operators Âjk by
the eigenvalue +1 - a procedure Kitaev calls ”removing
hats”. From this we finally obtain our Hamiltonian in the

quadratic form H = i
4

∑
j,k

Ajkcjck where A is no more an

operator but a number Ajk = 2Jαjk
. It turns out, that the

configuration ûjk = +1 is translational invariant and we
can solve our problem using Fourier-Transformation. We
will represent the site index j as (s, λ) where s refers to a
unit cell and λ to a position inside the cell. The calculation
leads to the Fourier transformed Hamiltonian:

H =
1

2

∑
q,λ,µ

iÃλ,µ(~q)a−~q,λa~q,µ

with the matrix

iÃ(~q) =

(
0 if(~q)

−if(~q)∗ 0

)
and the function f(~q) = 2(Jxe

i(~q, ~n1) + Jye
i(~q, ~n2) + Jz).

Out of this we get the energy dispersion

ε(~q) = ±|f(~q)|

An important property of this function is, whether it has
zeros for some ~q or not. We say it is gapless if it has zeros
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and say gapped if not. The equation f(~q) = 0 only has
solutions if and only if |Jx|,|Jy|,|Jz| satisfy the triangle in-
equalities. That means if the parameters are in the range
of phase B in figure 3.
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Figure 3: Parameter space of the coupling strengths

Let us now consider the plane Jx + Jy + Jz = 1 in the
parameter space. There are three equivalent gapped phases
called phase A here and one gapless phase B.
In phase A there is only one dominant interaction, while the
other two types are weak. This leads to a simpler model,
where pairs of spins live on a lattice of disjoint dimers. By
adjusting the unit cell to a square lattice, this model can
be reduced to the toric code [2].

In contrast to the described case there is also a highly
frustrated case, where all the coupling parameters are
roughly the same, which takes place in the gapless phase B.
In this phase the system corresponds to a quantum spin
liquid with Z2 topological order, which is disordered even
at lowest temperature due to quantum fluctuation.
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