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1 Introduction
In systems of mesoscopic length scales, quan-
tum interference e�ects of conduction electrons
give a negative correction to the classical elec-
tric conductivity. The transport of an elec-
tron through a medium can be determined by
using the semiclassical approach of R. Feyn-
man, Feynman Path Integral. Since the num-
ber of electrons is very large, the average of the
sum over the probability amplitude of each pos-
sible trajectory for all electrons is an important
quantity. Due to dephasing of paired trajecto-
ries is large an random, the term of quantum
corrections vanishes under averaging process,
and solution is given by the classical di�usion
equation.

2 Quantum corrections
Only under special conditions quantum correc-
tions survive the averaging process. One of the-
se special conditions is the regime of mesoscopic
length scales, making objects like the Cooperon
possible.

2.1 Weak localization
A Cooperon is an object describes two trajec-
tories (i 6= j) with ~r ' ~r ′ , on which the
particles passing the same scattering impuri-
ties, but in time reversed order. As long as ti-
me reversal symmetry is not broken, the clas-
sical actions and therefore the phases for both
trajectories are equal and dephasing becomes
zero and we remain quantum corrections of in-
terference e�ects. To determine the magnitude
of these interference e�ect one has to calculate
the probability for the occurrence of a Coope-
ron. The time of traveling through a Cooperon
is restricted by a lower and an upper time limit
dt ∈ [τe, τΦ/D]. In d = 3 dimension the probabi-
lity of return to initial point is given by solving

of classical di�usion equation.
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induced dephasing smaller then 2π during dt
the �nal point of the path of the electron has
to enter the volume vFλ

2
F · dt, so that the to-

tal probability is given by the integral, which
is proportional to the relative correction of the
average conductance:
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The minus sign has its origin in the reduction of
conductance (electron remains longer in region
of Cooperon). Since the magnitude of correcti-
on is very weak, we call it weak localization.

By solving the former integral over time one get

for the correction 4σ ∼ − e2
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the upper time boundary strongly depends on
temperature, the correction to conductivity de-
pends on temperature. Such that only bellow
a certain temperature negative quantum cor-
rections become important and therefore the
conductivity begins to decrease with decreasing
temperature.

3 Magnetic �elds
In a loop in an external magnetic �eld the vec-
tor potential ~A changes its sign, while the mo-
mentum d~x

dt does not, so that for the trajectories
of a Cooperon the resulting phase di�erence of
the phases ϕj/i = Sj/i/h̄ is given by

4ϕH = ϕj − ϕi = 2e
ch̄

∫
~A d~x = 4π Φ

Φ0
with

the �ux quantum Φ0 and the magnetic �eld
�ux Φ across the loop. For a rapid change in
phase (Φ >> Φ0), the phase is randomized and
correction disappears. For Φ ' Φ0 and for ti-
mes t < τH interference exists and for times
t > τH it is broken (withmagnetic phase brea-
king timeτH).

3.1 In�uence to conductivity
With a replacement of the upper time boundary
τΦ → τH if τH << τΦ, the resulting correction
(in d = 3) is:

σd(H)− σd(0) ∼ e2
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So as long as the magnetic �eld strength is not
to strong, the magnitude of correction of inter-
ference e�ects depends on the strength of the
applied magnetic �eld.
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