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1 Introduction

In systems of mesoscopic length scales, quan-
tum interference effects of conduction electrons
give a negative correction to the classical elec-
tric conductivity. The transport of an elec-
tron through a medium can be determined by
using the semiclassical approach of R. Feyn-
man, Feynman Path Integral. Since the num-
ber of electrons is very large, the average of the
sum over the probability amplitude of each pos-
sible trajectory for all electrons is an important
quantity. Due to dephasing of paired trajecto-
ries is large an random, the term of quantum
corrections vanishes under averaging process,
and solution is given by the classical diffusion
equation.

2 Quantum corrections

Only under special conditions quantum correc-
tions survive the averaging process. One of the-
se special conditions is the regime of mesoscopic
length scales, making objects like the Cooperon
possible.

2.1 Weak localization

A Cooperon is an object describes two trajec-
tories (i # j) with ¥ ~ 7’ | on which the
particles passing the same scattering impuri-
ties, but in time reversed order. As long as ti-
me reversal symmetry is not broken, the clas-
sical actions and therefore the phases for both
trajectories are equal and dephasing becomes
zero and we remain quantum corrections of in-
terference effects. To determine the magnitude
of these interference effect one has to calculate
the probability for the occurrence of a Coope-
ron. The time of traveling through a Cooperon
is restricted by a lower and an upper time limit
dt € [Te,7e)p]- In d = 3 dimension the probabi-
lity of return to initial point is given b}; solving
of classical diffusion equation. (;-25;)* For an
induced dephasing smaller then 27 during dt
the final point of the path of the electron has
to enter the volume vp)\fP - dt, so that the to-
tal probability is given by the integral, which
is proportional to the relative correction of the
average conductance:

Ao /T“’/D vpAL - dt
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The minus sign has its origin in the reduction of
conductance (electron remains longer in region

of Cooperon). Since the magnitude of correcti-
on is very weak, we call it weak localization.
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By solving the former integral over time one get
for the correction Ao ~ —;—Z + rjﬁ Due to
the upper time boundary strongly depends on
temperature, the correction to conductivity de-
pends on temperature. Such that only bellow
a certain temperature negative quantum cor-
rections become important and therefore the
conductivity begins to decrease with decreasing
temperature.

3 Magnetic fields

In a loop in an external magnetic field the vec-
tor potential A changes its sign, while the mo-
mentum ‘fi—‘f does not, so that for the trajectories
of a Cooperon the resulting phase difference of
the phases ¢;/,; = S;/;/h is given by

Do = @j — @ = %fﬂdlelﬂ% with
the flux quantum &, and the magnetic field
flux @ across the loop. For a rapid change in
phase (® >> @), the phase is randomized and
correction disappears. For ® ~ &y and for ti-
mes t < 7y interference exists and for times
t > 71y it is broken (withmagnetic phase brea-
king timery).

3.1 Influence to conductivity

With a replacement of the upper time boundary
T — Ty if TH << T, the resulting correction
(in d = 3) is:

74l ) — 0uf0) ~ & (f)

So as long as the magnetic field strength is not
to strong, the magnitude of correction of inter-
ference effects depends on the strength of the
applied magnetic field.
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