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1 Introduction

In the semi-classical Drude model of conduction, where the
electrons are assumed to bounce between impurities in a fully
classical way, the diffusive zigzag motion will merely be re-
duced by increasing the amount of disorder, furthermore the
zigzag motion itself is locally not influenced by the extent of
the material. Therefore, the conductivity will neither (i) van-
ish suddenly with an increasing strength of disorder, nor (ii)
is there an explicit dependency on the extent of the sample.
Yet both phenomena occur when a material is highly disor-
dered, because the wave nature of the electron then becomes
important. In the limit of high disorder, the electrons local-
ize as standing waves due to backscattering in the disordered
ion-potential. The diffusion then is governed by tunneling pro-
cesses, which give rise for a strong dependence on the sample
size and the disorder strength. The scaling theory now, aims to
describe the behaviour of the scaling function, that describes
the scaling behaviour of the conductance characteristically.

2 Weak-localization and Anderson-localization

Due to backscattering processes, it is possible that electrons
pass the same point twice. To take first quantum mechanical
corrections into account, one has to consider the propagation
along the path in the opposite direction. This in conclusion
leads to a constructive interference at the starting point, that
means an enhanced probability to find the elctron there again.
The correction therefore, decreases the conductivity. By ex-
plicit calculations one finds a dependence of the deviation ‘Z—g
on the sidelength L of a d-dimensional hypercubic sample, i.e.
‘Z—‘O’ = ‘Z—‘;(L,d). These first corrections are called weak local-
ization.

Based on a Tight-Binding model, where the disorder is sim-
ulated by a random potential, it turns out that, for a certain
disorder strength, the electrons begin to localize as standing
waves. Therefore, the diffusion is given by tunneling pro-
cesses, consequently we assume an exponentially decrease
with the sidelength L of the material

G = Goexp(—L/n) (H
with a the localization length 1. This correction is called

strong localization or Anderson localization.

3 Scaling Theory of Localization

Consider a hypercubic sample of size L¢ in dimension d =
1,2,3 with sidelength L and cross section A = L?~!. Starting
with the familiar description of conduction, we find for the
conductance G

A
G=0p; = oL )
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with the conductivity oy. To scale the sample size, add up b*
further hypercubes with an equally amount of cubes in each
spatial direction. To proceed in our attempt to describe the
change in the scaling behaviour, we have to define a character-
istic entity. According to the scaling hypothesis of localization
this entity just depends on the conductance G and not explic-
ity on L, that is underpinned by a deeper physical principle,
that cannot be discussed here in a proper way. Heuristically,
the following definition of the scaling function can be moti-
vated by the fact that in a low disordered material, i.e. with
G # G(L), the scaling is determined by the exponent of L. As-
suming that a change of the scaling behaviour again appears
in the exponent of L we define
dinG

BG(L) = S

In the metallic limit with low disorder, one finds (i) B =
d—2= 561 . In case of weak localization, G is still assumed
to be high, therefore suppose that 8 can be calculated as a
perturbation series in G~!, that means (i) B(G) =d —2 —
G./G+0(G?) =~ B —exp(—InG/G,). In case of high disor-
der, Anderson localization leads to (iii) 8(G) = InG/G,. With
knowledge of (i)-(iii) and the assumption of continuity and a
simple behaviour, we can draw a Graph. Furthermore, due to
the change in sign, we find a fixed point for d = 3 for a certain
strength of disorder and a flow depending on L.
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Fig. 1 The scaling function of conduction. For d = 3 we have a
fixed point and a metallic behavior, that is not the case ford = 1,2
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