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A renormalization method to probe the low energy properties of
a system with strong disorder is described. We explain first in
some detail a particular example and discuss afterwards some of
the general features that are present in all models in which the
procedure can be applied.

1 RTFIC

We start by considering a particular model: the Random Trans-
verse Field Ising Chain (RTFIC). This means, we consider the
model with hamiltonian

H= —Zliafafﬂ - Zhﬂf + HZUf (1)

where J; and h; are iid nonnegative random variables with distri-
butions 7w(J) and p(h) respectively. A nonzero external field H is,
in principle, allowed (and necessary to compute e.g. the magneti-
zation) but since the renormalization group (RG) procedure to be
described does not apply to it, we set it to zero for the purposes of
this note. If the square root of the variance of J, i is much bigger
than any other energy scale in the system, the system is said to
have strong disorder and in this case, we expect the couplings and
transverse fields to be widely distributed, this means in particular
that J; # J; for ¢ # j and similarly for h. An RG procedure
to find a particular ground state is performed as follows [1]. Set
Q :=max{J;, h;}. If Q@ = J; for some [, we replace the spins o;
and 041 for a spin with twice the magnetic moment and with
local transverse field

eff _ by
LI+1 — QO .
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If, instead, 2 = h; for some [, we remove the spin o; and couple
the spins 0;_1, 0741 with strength

Ji—1J]
T =2 (3)
After the decimation, the highest energy scale is changed to some
strictly smaller value, €, and the remaining couplings are still
independent, since only the removed fields and couplings play any
role in the rules (2),(3). This implies that 1) The procedure stops
when the energy scale is lowered to the minimum value of Q* =0
(this is called the fixed point of the RG flow) and 2) When iterating
this procedure, we need only consider the evolution of 7 and p at
energy scale €. Straightforward analysis leads to flow equations
for the distributions, i.e. differential equations for g—g and 3—5.
The form of these equations is not particularly enlightening, but a
solution for Q@ — 0 is given by [1, 2]

(4)

(5)

with mp = (2, Q)Q and py = p(Q, Q)Q. From equations (4) (5)
it can be seen that at the fixed point the randomness is infinite,
i.e. the support of the distributions grows without bound. With
the distributions at hand, the decimation procedure can be seen
to become asymptotically exact approaching the fixed point. For
example, the probability of decimating a field h when a bond J €
(a2, Q) for o € (0,1) (a bad decimation) goes as [2]

Pr(a) ~ —poln(a) — 0. (6)

2 General Features

The RTFIC is just one example [3, 4] where a real space RG pro-
cedure for disordered systems can be performed. Rules of dec-
imation like equations (2) and (3) are commonly referred to as
Ma-Dasgupta rules. The rules depend on the particular system
but they all share the properties [2]

1. They concern the maximum value of a random variable. This
value evolves under RG and constitutes a “cutoff” scale.

2. The decimation is local in space, that is, at each stage only
the immediate neighbors of the “cutoff” variable are affected.

Once the decimation rules are iterated, the interesting cases corre-
spond to disorder growing without bound or to some finite value.
These outcomes are referred to as the Infite and Strong random-
ness fixed points. Systems with an infinite randomness fixed point
are characterized by strong dynamical anisotropy (i.e. the typical
length scale ¢ goes as In(7), where 7 is the typical time scale) and
a broad distribution of physical observables (typical and average
observables differ significantly).
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