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1 Specific heat of phonons (⋆)

The goal of this exercise is to study the contribution of phonons to the specific heat of a crystal.
To this end, let us consider the phonon Hamiltonian in the harmonic approximation

Hph =
∑

k∈1.BZ;n=1,2,...,d r

ℏωn(k)

(
b†k,nbk,n +

1

2

)
(1)

with b†k,n and bk,n being bosonic creation and annihilation operators, respectively, n = 1, 2, ..., d r
labels the phonon branches for r ions per unit cell in d dimensions, and ωn(k) denote the energy
dispersions.
The average occupation number of a phonon mode at temperature T ≥ 0 is given by the
Bose-Einstein distribution function (β = 1

kBT )

nB(ℏωn(k)) ≡ ⟨b†k,nbk,n⟩ =
1

eβℏωn(k) − 1
.

The thermal average is defined via ⟨Ô⟩ =
Tr

(
e−βĤÔ

)
Z , where Z = Tr

(
e−βĤ

)
is the partition

function. We want to calculate the specific heat C given by

C(T ) =
∂⟨Ĥ⟩
∂T

.

a) Show that

C(T ) =
⟨Ĥ2⟩ − ⟨Ĥ⟩2

kB T 2
,

i.e. that the specific heat is a measure of variations in energy

High-temperature limit:
The phonon dispersions are bounded from above with a maximum value ωmax ≡ max

n,k
{ωn(k)}.

b) Show that for high temperatures T ≫ ℏωmax/kB, the specific heat follows the law of Dulong-
Petit and is given by the constant value

C (T ≫ ℏωmax/kB) = d r kB N,

where N is the number of unit cells.

Phonon density of states:
It is convenient to write the specific heat in the form

C(T ) = d r kB N

∞̂

0

dε g(ε)
(βε)2eβε

(eβε − 1)2
, (2)
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where g(ε) is the phonon density of states:

g(ε) =
1

drN

∑
k∈1.BZ;n=1,2,...d r

δ(ε− ℏωn(k)). (3)

c) Evaluate the integral
´∞
0 dεg(ε) to show the density of states in normalised.

Low-temperature limit:
The energy of the optical branches is also bounded from below with a minimum value ωopt

min ≡
min
n,k

{ωn(k)|ωn optical}.

At low temperatures kBT ≪ ℏωopt
min, the phonon density of states is solely determined by the d

acoustic phonon branches. Their dispersions assume the form ωj(k) = vs,j(k̂)|k| with j = 1, ..., d.

In general, these sound velocities vs,j(k̂) depend on k̂ = k/|k|. In the following calculation

assume the velocites are isotropic vs,j(k̂) = vs for simplicity. Additionally assume continuous k
values and replace the corresponding sum by an integral.

d) Evaluate the phonon specific heat, Eq. (2), at low temperatures to show that

C
(
T ≪ ℏωopt

min/kB

)
∼ T d. (4)

Hints: Show that g(ε ≪ ℏωopt
min) ∼ εd−1 and subsitute ε = kBTx in Eq. (2).

e) Calculate the prefactor in d = 3 dimensions. Hint:
´∞
0 dx x4 ex

(ex−1)2
= 4π4
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2 Debye model

In order to describe the crossover between the low- and high-temperature limits, one often uses
the Debye model. Here, the phonon density of states is assumed to have the form

gD(ε) = d
εd−1

εdD
Θ(εD − ε), (5)

where εD is the Debye energy, which also defines the Debye temperature TD = εD/kB.

a) Show that this density of state is correctly normalised by evaluating the integral
´∞
0 dεgD(ε).

b) Confirm that the expression Eq. (2) for the specific heat with the Debye density of states
Eq. (5) indeed recovers the Dulong-Petit law at high temperatures and the behavior C ∼ T d

at low temperatures.

c) Compare the result in the low-temperature regime for d = 3 with the result obtained in the
final task of the previous exercise and use this to derive an explicit formula for εD.
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