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1 Tight binding chain (⋆)

In this exercise, we are revisiting the results we obtained studying the chemical bonds on the
2nd problem sheet to gain insight into electron waves in solids. We considered a system of two
nuclei, each with one orbital, and a wavefunction that is a superposition of the two orbitals whose
coefficients were found by a variational approach. For this exercise, we are going to consider a
chain of N nuclei with periodic boundary conditions. On each nucleus n there is an orbital |n⟩
that we consider to be mutually orthogonal to each other

⟨m|n⟩ = δm,n . (1)

The Hamiltonian for one electron interacting with the nuclei via an interaction Vn looks as
follows:

H = K +
∑
n

Vn , (2)

where the Vn are the interaction terms of the electron with the n-th nucleus. Thus, each orbital
|n⟩ is an eigenvector of the operator K + Vn. We continue by splitting the Hamiltonian operator
into a part that is diagonal and one that is off-diagonal:

H |n⟩ = (K + Vn) |n⟩+
∑
m̸=n

Vm |n⟩ (3)

= ϵn |n⟩+
∑
m̸=n

Vm |n⟩ . (4)

1. By multiplying a ⟨m| from the left, use the expression above to write down the entry
Hm,n = ⟨m|H |n⟩ of the Hamiltonian matrix.

2. Give an interpretation of the three different terms that appear in the summation
∑
j
⟨n|Vj |m⟩.

3. Combine the diagonal elements into one term with prefactor ϵ0,n and argue why we can
approximate the above expression in the form

Hm,n = ϵ0,nδm,n − t (δn+1,m + δn−1,m) (5)

Which part of this equation encodes the geometry of the chain?

The trial wavefunction we are going to use is a superposition of all orbitals

|ψ⟩ =
∑
n

ϕn |n⟩ . (6)
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Remember from our previous study on chemical bonding that the Schrödinger equation is then
given as ∑

n

Hm,nϕn = Eϕm . (7)

To simplify the following calculation, we choose all ϵn and Vn to be equal, thus ϵ0,n = ϵ ∀ n.

4. Use the Ansatz ϕn = N− 1
2 e−inka on both sides of the equation to derive the dispersion

relation of the chain, where a is the distance between two nuclei.

5. Compare your result to the dispersion of free electrons. How many distinct eigenstates are
there? Why are these energy levels also referred as an energy band?

2 Diatomic tight binding chain

We now exchange every second atom for another species so that the chain is made up of atoms
of types A and B whose on-site energies are ϵA and ϵB. To keep the notation clean, we will also
double the length of our chain such that there is a total number of N unit cells, i.e. N atoms of
type A and N atoms of type B. Accordingly, the coefficients of the trial wavefunction acquire an
index n for the unit cell and a second index A or B for the type of atom.

1. Show that the Schrödinger equation now becomes the set of coupled equations

EϕAn = ϵAϕ
A
n − t

(
ϕBn + ϕBn−1

)
(8)

EϕBn = ϵBϕ
B
n − t

(
ϕAn + ϕAn+1

)
. (9)

2. Use the same Ansatz as in the previous exercise for each of the atom types, but with
different amplitudes (i.e. ϕAn = N−1/2Aeinka, ϕBn = N−1/2Beinka). This will lead you to an
eigenvalue problem that results in the dispersion relation for the diatomic tight binding
chain

E±(k) =
1

2

(
ϵA + ϵB ±

√
(ϵA − ϵB)

2 + 4t2(2 + 2 cos (ka))

)
(10)

3. Show that in the limit ϵA = ϵB the dispersion from the first exercise is recovered. What
happens to the band structure once the on-site energies differ by an infinitesimal δ?
Hint: Use

√
2 + cosx = 2 cos(x/2) for x ∈ [−π, π]
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3 Tight binding in second quantisation

Solving a tight binding model becomes particularly easy if the formulation of second quantisation
is used. We will do this for a variety of lattices in this exercise. Setting up the Hamiltonian
matrix becomes rather tedious when the lattice has a large number of atoms in the unit cell,
if you are interested we provide an IPython notebook that contains routines to solve the tight
binding problem for arbitrary lattices. However there is no need to use this IPython
notebook for this particular exercise.
We start by recapitulating the essentials of the tight binding technique and solve a few simple
models using second quantisation.

Isotropic chain

Consider a one-dimensional chain described by a Hamiltonian

H = −t
N∑
i=1

(
c†i−1ci + c†ici−1

)
. (11)

with periodic boundary conditions (c†0 = c†N , c0 = cN )

a) Fourier transforming the creation/annihilation operators to show that each term of the form

c†icj contributes c†kcke
ik (ri−rj).

b) Use this to solve for the energy spectrum ξ(k) of the tight binding chain by rewriting the

Hamiltonian in the form H =
∑

k ξ(k)c
†
kck.

Hint: Use the definitions for Fourier-transformation given on the first exercise sheet (you can set
the lattice constant to a = 1.)

Square lattice

Tight binding is applicable regardless of the dimensionality of the problem. Only the phase factor
c†kcke

ik (ri−rj) changes such that each term is now determined by a scalar product c†kcke
ik·(ri−rj).

Our first example is easily extended to two dimensions:

H = −t
∑
⟨i,j⟩

(
c†icj + c†jci

)
(12)

where the sum runs over all nearest neighbors i, j.

c) Proceed as previously to determine the energy spectrum of the square lattice.

Diatomic chain

The number of bands that we find for a given Hamiltonian depends on the number of atoms per
unit cell. If we change the hopping parameters to be alternating

H = −t
N/2∑
i=1

c†2i−1c2i − t′
N/2∑
i=1

c†2ic2i+1 + h.c. , (13)

we are dealing with two atoms A and B, per unit cell which will be described by two types of
annihilation and creation operators that we may call a, a† and b, b†, respectively.

d) Rewrite the Hamiltonian using these new operators.
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e) Continue by transforming the Hamiltonian into Fourier space and rewrite the result in the
form of a vector-matrix-vector product.

f) Solve for the energy spectrum by diagonalizing this matrix.

Bonus: Honeycomb lattice

As our final example we take the honeycomb lattice. This is the lattice upon which carbon atoms
are placed to form graphene. The basis vectors are given by

a1 =
1

2

(
3√
3

)
, a2 =

1

2

(
−3√
3

)
(14)

The two atoms A and B in same the unit cell are connected by a vector

δ1 = (1, 0) . (15)

Connecting one atom of species A to its remaining two neighbors in surrounding unit cells is
achieved by the

δ2 =
1

2

(
1√
3

)
, δ3 =

1

2

(
1

−
√
3

)
(16)

g) Draw a quick sketch of one unit cell as defined above and its neighboring unit cells. Label
the connecting vectors between atoms in the unit cell and its neighbors with δ1, δ2, and δ3.

h) Set up the Hamiltonian matrix and solve for the dispersion relation as a function of k.

i) Now switch to the notebook or another computer programme (e.g. Mathematica) and
compute the spectrum along the following path in the Brillouin zone:

Γ =

(
0
0

)
→ K1 =

2π

3

(
1

1/
√
3

)
→ K2 =

2π

3

(
1

−1/
√
3

)
→ Γ (17)

Do you observe any special features along this path?
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