for

Scalable Neural Decoder **Topological Surface Codes**

APS March Meeting Chicago, March 2022

Simon Trebst University of Cologne

Quantum Computing in the NISQ era-

An experimental pivot from of a **few pristine qubits** to the realization of circuit architectures of **50-100 qubits** but tolerating a significant level of **imperfections**.

Eagle generation — 127 qubits

Noisy intermediate scale quantum devices

Sycamore chip — 53 qubits

Quantum Computing in the NISQ era

				IBM Quantum
2022	2023	2024	2025	2026+
	Workflow integration Application developmen Skills building Quantum model services	t		
	Natural Sciences	Finance		
	Optimization	Machine Learning		
	Prebuilt quantum runtimes		Prebuilt quantu HPC runtimes	um +
Dynamic circuits	Circuit libraries		Advanced cont	rol systems
Osprey 133 qubits	Condor 1121 qubits	Beyond 1K - 1M+ qubits		
	Models			

https://research.ibm.com/blog/quantum-development-roadmap

Kai Meinerz

Kai Meinerz, Chae-Yeun Park & ST, PRL **128**, 080505 (2022).

© Simon Trebst

meet the team

Chae-Yeun Park

https://github.com/chaeyeunpark

quantum error correction

Error correction in **quantum computers** is more complicated

$$|1\rangle \rightarrow |0\rangle \qquad \qquad \alpha |1\rangle + \beta |0\rangle \quad \rightarrow \quad \alpha |1\rangle$$

no cloning theorem

→ error detection is **destructive**

stabilizer codes

Kitaev's toric code

ground states $X_v = \prod X_i \qquad X_v |\psi\rangle = 1 \cdot |\psi\rangle \quad \forall v$

$$Z_p |\psi\rangle = 1 \cdot |\psi\rangle \quad \forall p$$

stabilizer operators

 $i \in p$

 $Z_p = \prod Z_i$

 $i {\in} v$

stabilizer codes

code distance

Kitaev's toric code

ground states $X_v = \prod X_i$ $X_v |\psi\rangle = 1 \cdot |\psi\rangle$ $\forall v$

$$Z_p |\psi\rangle = 1 \cdot |\psi\rangle \quad \forall p$$

stabilizer operators

 $i \in p$

 $Z_p = \prod Z_i$

 $i \in v$

code space is four-dimensional

 \Rightarrow encodes two logical qubits

topological order is stable to local perturbations

"bit flip" errors

The presence of a bit flip error is detected via a **syndrome**

$$Z_p = \prod_{i \in p} Z_i = -1$$

non-destructive measurement

Stabilizer codes allow for non-destructive quantum error detection and correction.

Stabilizer Codes and Quantum Error Correction D. Gottesmann, arXiv:quant-h/9705052

Stabilizer Formalism for Operator Quantum Error Correction D. Poulin, Phys. Rev. Lett. 95, 230504 (2005)

"bit flip" errors & recovery

"bit flip" errors & recovery

"bit flip" errors & recovery

multiple "bit flip" errors

decoding problem

bit flip error

syndrome

no obvious pairing of syndromes

goal of a **decoder** is to come up with a

recovery operation

without producing a logical fault

noise models

bit flip error

Z syndrome X syndrome

no obvious pairing of syndromes

depolarizing noise

goal of a **decoder** is to come up with a

recovery operation

without producing a logical fault

noise models

bit flip error

Z syndrome X syndrome

no obvious pairing of syndromes

depolarizing noise + syndrome errors

goal of a **decoder** is to come up with a

recovery operation

without producing a logical fault

stabilizer codes

	Average error	Isolated	Simultaneous	
	Single-qubit (e ₁)	0.15%	0.16%	
	Two-qubit (e ₂)	0.36%	0.62%	
Т	wo-qubit, cycle (e _{2c})	0.65%	0.93%	
	Readout (e _r)	3.1%	3.8%	

Pauli and measurement errors

1-1-1

K. J. Satzinger *et_al.* (google team), arXiv:2104.01180

Google's Sycamore chip

decoders

conventional decoders

minimum-weight perfect matching (**MWPM**) Topological quantum memory E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002)

renormalization group (**RG decoder**)

Fast Decoders for Topological Quantum Codes, G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. **104**, 050504 (2010)

union find (**UF decoder**)

Almost-linear time decoding algorithm for topological codes N. Delfosse and N. H. Nickerson, Quantum 5, 595 (2021)

tensor networks (**TN decoder**)

General tensor network decoding of 2D Pauli codes C. T. Chubb, arXiv:2101.04125 (2021).

minimum weight perfect matching

Open-source Python implementation **PyMatching** Oscar Higgott, arXiv:2105.13082 https://github.com/oscarhiggott/PyMatching

threshold theorem

arbitrarily long, reliable computation is possible provided the error rate is below the threshold value

Topological quantum memory E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. **43**, 4452 (2002)

union find decoder

Almost-linear time decoding algorithm for topological codes N. Delfosse and N. H. Nickerson, Quantum **5**, 595 (2021)

Open-source C++ implementation of the Union-Find decoder Chae-Yeun Park & Kai Meinerz, https://github.com/chaeyeunpark

conventional decoders

minimum-weight perfect matching (MWPM)

Topological quantum memory E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. **43**, 4452 (20

renormalization group (RG decoder)

Fast Decoders for Topological Quantum Codes, G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. **104**, 050504 (2010)

union find (**UF decoder**)

Almost-linear time decoding algorithm for topological codes N. Delfosse and N. H. Nickerson, Quantum **5**, 595 (2021)

tensor networks (TN decoder)

General tensor network decoding of 2D Pauli codes C. T. Chubb, arXiv:2101.04125 (2021).

	threshold	dmax	scaling
002)	0.154	63*	$\mathcal{O}(n^3)$ $\mathcal{O}(d^{2.11})$
.002)	0.164	128	$\mathcal{O}(d^2 \log d)$
	0.146	255*	$\mathcal{O}(n \cdot lpha(n)$
	0.188	64	$\mathcal{O}(n\log n + r)$

*benchmark calculations by ourselves that go beyond the published literature

ML-assisted decoders

PRL 119, 030501 (2017)

PHYSICAL REVIEW LETTERS

week ending 21 JULY 2017

Neural Decoder for Topological Codes

Giacomo Torlai and Roger G. Melko Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Received 20 October 2016; published 18 July 2017)

PHYSICAL REVIEW LETTERS 122, 200501 (2019)

Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes

Ye-Hua Liu^{1,*} and David Poulin^{1,2,†}

¹Département de Physique & Institut Quantique, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec, Canada ²Canadian Institute for Advanced Research, M5G 1Z8 Toronto, Ontario, Canada

(Received 26 November 2018; published 22 May 2019)

IOP Publishing

CrossMark

PAPER

Reinforcement learning decoders for fault-tolerant quantum computation

Ryan Sweke¹, Markus S Kesselring¹, Evert P L van Nieuwenburg² and Jens Eisert^{1,3}

¹ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

² Niels Bohr International Academy, University of Copenhagen, 2100 Copenhagen, Denmark

³ Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany

E-mail: rsweke@gmail.com

Keywords: quantum error correction, reinforcement learning, fault tolerant quantum computing

ML-assisted decoders

								3	
		title	date	QECC	noise model	$p_{ m th}$	d_{\max}	algorithmic s	scaling
				·					
		Decoding Small Surface Codes with Feedforward							
		Neural Networks [16]	05/2017	SC	DP	~ 0.15	7	$\mathcal{O}(\mathrm{MWPM})$	
	syndromes	Neural Decoder for Topological Codes [17]	07/2017	TC	i.i.d bit flip	~ 0.110	6	$> \mathcal{O}(MWPM)$	
	Deep Neural Network Probabilistic Decoder for								
		Stabilizer Codes [18]	09/2017	TC	DP	0.164	11	$\gg \mathcal{O}(MWPM)$	
		Deep neural decoders for near term fault-tolerant				$\epsilon \sim$			
		experiments [19]	07/2018	SC	CLN	7.11×10^{-4}	5	n.a.	
		Neural network decoder for topological color							
		codes with circuit level noise [20]	01/2019	CC	CLN	$\epsilon \sim 0.0023$	7	n.a.	
		Neural Belief-Propagation Decoders for Quantum							
		Error-Correcting Codes [21]	05/2019	TC	i.i.d. X&Z	~ 0.07	10	n.a.	
		Quantum error correction for the toric code using							
	decoder	deep reinforcement learning [22]	09/2019	TC	i.i.d. bit flip	~ 0.1	7	$\gg \mathcal{O}(n)$	(estimate
		Symmetries for a High Level Neural Decoder on							
		the Toric Code [23]	10/2019	TC	DP	n.a.	7	$\mathcal{O}(\mathrm{MWPM})$	
		Deep Q-learning decoder for depolarizing noise on							
		the toric code [24]	05/2020	TC	DP	~ 0.165	7 (9)	$\gg \mathcal{O}(n)$	(estimate
		Reinforcement learning for optimal error correc-							
		tion of toric codes [25]	06/2020	TC	i.i.d bit flip	0.103	9	$> \mathcal{O}(MWPM)$	
		Neural Network Decoders for Large-Distance 2D							
		Toric Codes [26]	08/2020	TC	i.i.d. bit flip	~ 0.103	64	$> \mathcal{O}(\mathrm{RG})$	
	Determination of the semion code threshold using								
	recovery	neural decoders [27]	09/2020	SM	DP	~ 0.105	13	n.a.	
		Reinforcement learning decoders for fault-tolerant			i.i.d. bit flip				
		quantum computation [28]	12/2020	SC	& DP	n.a.	5	$\gg \mathcal{O}(n)$	(estimate
		Scalable Neural Decoder for Topological Surface							
		Codes (this work)	01/2021	TC	DP	0.167	255	$\mathcal{O}(\mathrm{UF})$	

ML-assisted decoders

	date	QECC	noise model	$p_{ m th}$	d_{\max}	algorithmic	scaling
Feedforward					_		
	05/2017	SC	DP	~ 0.15	7	$\mathcal{O}(MWPM)$	1
	<i>.</i>						L
neratio	on of	ML-	based o	decode	rs		
doliv	orod	only	one of	two be	anch	marke	
	CICU	Unity			511611	illai kə	
			_		-		L
e error	^t thres	shol	d at exp	oense c	of sca	alability	(action at a
			I				(estimate
		OR					<u> </u>
							(estimate
calabil	itv bi	ut re	duced	error th	reshr	olds	
	, , , , , , , , , , , , , , , , , , ,						
				<u> </u>		<u> </u>	
ault-tolerant			i.i.d. bit flip		_		, .
	· · · · · / · · / · · · · · · · · · · ·				E I		I a atima - t -

ult-tolerant			i.i.d. bit flip				
	12/2020	SC	& DP	n.a.	5	$\gg \mathcal{O}(n)$	(estimate)
cal Surface							
	01/2021	TC	DP	0.167	255	$\mathcal{O}(\mathrm{UF})$	
				ĴĮ.			

preprocessing

image classification

Adjustable filters help to identify and encode **local information** within the image at hand.

ML-assisted preprocessing

Convolutional neural networks (CNN) do preprocessing by looking for recurring patterns.

original image

convoluted image

Slide filters across image and create new image encoding how well these filters fit.

multiclass classification task

noural decoder setup

optimized network architecture

hidden	hidden	tota	l parame	ters
layers	nodes	$\ell = 3$	$\ell = 5$	$\ell = 7$
1	32	740	1764	3300
1	64	1476	3526	6596
1	128	2948	7044	13188
1	256	5892	14084	26372
2	32	1796	2820	4356
2	64	5636	7684	10756
2	128	19460	23556	29700
2	256	71684	79876	92164
3	32	2852	3876	5412
3	64	9796	11844	14916
3	128	35972	40068	46212
3	256	137476	145668	157956

multiclass classification task

noural decoder setup

	optimized network ar	chitecture
	depolarizing nois	se
	$\ell = 5$ network parameters (optimal	al wall-clock t
	hidden layers	3
	hidden nodes per layer	128
	total number free parameter	40 068
$[p_{p_{z_{i}}}] = [p_{p_{z_{i}}}]$	activation functions hidden layer	Relu
	activation functions output layer	Softmax
	$\ell = 7$ network parameters (optim	al error thresh
	hidden layers	5
	hidden nodes per layer	512
	total number free parameter	1 103 364
	activation functions hidden layer	Relu
ptimized	activation functions output layer	Softmax

noise models

smaller code distances

preprocessing + MWPM

depolarizing noise

threshold theorem

arbitrarily long, reliable computation is possible provided the error rate is below the threshold value

ML-assisted preprocessing allows us to **push up the error threshold** for MWPM

(about 10% increase)

preprocessing + UF

depolarizing noise

[©] Simon Trebst

N. Delfosse, arXiv:2001.11427

"lazy preprocessing" (strictly local) is fast but pushes down the error threshold for UF

(about 10% decrease)

bare UF decoder has a slightly lower threshold than MWPM decoder

ML-assisted preprocessing allows us to push up the error threshold for UF

(about 10% increase)

preprocessing + UF

depolarizing noise

© Simon Trebst

preprocessing + UF

depolarizing noise

including syndrome errors do not qualitatively alter these observations

© Simon Trebst

compute times

orithmic scaling

- for small code distances

dedicated hardware

• in situ decoding

Startu Cloud

Engin

Google

Engin Fitbit -

Google

Agenc Custor Google

	●	a careers.google.com C ★	[
Careers Teams Locations	Life at Google	How we hire Students Jobs	
obs matched			
rs Sort by Relevance 🔻		Error Correction Decoder, Software Engineer, Quantum Al	
Ip Success Manager, le Cloud (German) - Dublin Ireland		Apply [2]	
		(i) Note: By applying to this position you will have an opportunity to share your preferred working location for this position from the following: Goleta, CA, USA; Los Angeles, CA, USA	
FD Verification		 Minimum qualifications: Bachelor's degree in Computer Science, a related technical coding field (Physics, Mathematics), or equivalent practical experience. 3 years of experience with C/C++ and Python. Experience in one or more of the following: systems programming, high-performance computing (HPC), real-time 	
eering Manager, Fitbit 🛛 🖓 Bucharest Romania		Preferred qualifications:	
ip Success Lead, Google ロ		 programmable gate array (FPGA) systems. Experience with quantum computing. Knowledge with graph algorithms such as the minimum weight perfect matching. 	
- Dublin Ireland		About the job	
cy Lead, Google mer Solutions, Alpine Dublin Ireland		The Quantum team's mission is to make useful quantum computing tools available to the world to enable humankind to solve problems that would otherwise be impossible. Google AI Quantum is building novel systems that can leverage quantum mechanics to outperform computers at certain classes of problems. As an Error Correction Decoder, you will focus on our quantum error correction (QEC) system. In addition to working on coding, you will help organize and coordinate the coding efforts of the QEC project's software engineers and researchers. You will interact with our Quantum	

Hardware Engineers and engage with people of diverse expertise and obtain the necessary information to keep the project

compute time

depolarizing noise		+ t	hreshold optir
algorithm	p_{th}	$t_{p=0}$	
ML(7) + UF	0.167(0)	10.	
ML(5) + UF	0.162(5)	6.'	
Lazy + UF	0.131(9)	6.9	
UF	0.146(1)	8.4	
ML(7) + MWPM	0.167(1)	~ 2	
ML(5) + MWPM	0.163(8)	$\sim 2^{1}$	
MWPM	0.154(2)	~ 5	
	1	L	

depolarizing noise + syndrome errors

algorithm	p_{th}	$t_{p=1}$
ML(3) + UF	0.043(4)	12
Lazy + UF	0.031(3)	11
UF	0.037(8)	11
$ML(3) + MWPM^*$	0.044(5)	14
MWPM	0.043(7)	21
		1

 $\bigcirc \Box$

conclusions

Our hierarchical decoder with **ML-assisted preprocessing** simultaneously achieves

- **improved error threshold** for depolarizing noise (even w/ syndrome errors)
- algorithmic scalability up to tens of thousands of qubits
- real-life wall-clock times that best even those of the bare UF algorithm

Scalable Neural Decoder for Topological Surface Codes Kai Meinerz, Chae-Yeun Park & ST, PRL 128, 080505 (2022).

summary

This can be further improved by closer **hardware integration**, e.g. in situ decoding using FPGAs.

Open-source C++ implementation of the Union-Find decoder Chae-Yeun Park & Kai Meinerz, https://github.com/chaeyeunpark

