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Quantum Computing in the NISQ era
An experimental pivot from of a few pristine qubits  

to the realization of circuit architectures of 50-100 qubits  

but tolerating a significant level of imperfections. 

Noisy intermediate
scale quantum
devices

Google

Sycamore chip — 53 qubits

IBM

Eagle generation — 127 qubits
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Quantum Computing in the NISQ era
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error correction 101
Error correction in classical computers protects against bit flips 

principal concept 
redundancy
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<latexit sha1_base64="xaTghUifj7umTUDG/YnGHQfJl4o=">AAAAAHicdVDLSgMxFM3UV62vqks3wSK4GjK2pV0W3LisYB/QDiWTZtrQTDImGaUM/Qk3LhRx6++4829MpyOo6IELh3Pu5d57gpgzbRD6cApr6xubW8Xt0s7u3v5B+fCoq2WiCO0QyaXqB1hTzgTtGGY47ceK4ijgtBfMLpd+744qzaS4MfOY+hGeCBYygo2V+sMkxkrJ+1G5gtw6atSrHkQuypCRZhV50MuVCsjRHpXfh2NJkogKQzjWeuCh2PgpVoYRThelYaJpjMkMT+jAUoEjqv00u3cBz6wyhqFUtoSBmfp9IsWR1vMosJ0RNlP921uKf3mDxIRNP2UiTgwVZLUoTDg0Ei6fh2OmKDF8bgkmitlbIZlihYmxEZVsCF+fwv9J98L1ai66rlVazTyOIjgBp+AceKABWuAKtEEHEMDBA3gCz86t8+i8OK+r1oKTzxyDH3DePgGcfpBQ</latexit>

"

<latexit sha1_base64="xaTghUifj7umTUDG/YnGHQfJl4o=">AAAAAHicdVDLSgMxFM3UV62vqks3wSK4GjK2pV0W3LisYB/QDiWTZtrQTDImGaUM/Qk3LhRx6++4829MpyOo6IELh3Pu5d57gpgzbRD6cApr6xubW8Xt0s7u3v5B+fCoq2WiCO0QyaXqB1hTzgTtGGY47ceK4ijgtBfMLpd+744qzaS4MfOY+hGeCBYygo2V+sMkxkrJ+1G5gtw6atSrHkQuypCRZhV50MuVCsjRHpXfh2NJkogKQzjWeuCh2PgpVoYRThelYaJpjMkMT+jAUoEjqv00u3cBz6wyhqFUtoSBmfp9IsWR1vMosJ0RNlP921uKf3mDxIRNP2UiTgwVZLUoTDg0Ei6fh2OmKDF8bgkmitlbIZlihYmxEZVsCF+fwv9J98L1ai66rlVazTyOIjgBp+AceKABWuAKtEEHEMDBA3gCz86t8+i8OK+r1oKTzxyDH3DePgGcfpBQ</latexit>

"

<latexit sha1_base64="xaTghUifj7umTUDG/YnGHQfJl4o=">AAAAAHicdVDLSgMxFM3UV62vqks3wSK4GjK2pV0W3LisYB/QDiWTZtrQTDImGaUM/Qk3LhRx6++4829MpyOo6IELh3Pu5d57gpgzbRD6cApr6xubW8Xt0s7u3v5B+fCoq2WiCO0QyaXqB1hTzgTtGGY47ceK4ijgtBfMLpd+744qzaS4MfOY+hGeCBYygo2V+sMkxkrJ+1G5gtw6atSrHkQuypCRZhV50MuVCsjRHpXfh2NJkogKQzjWeuCh2PgpVoYRThelYaJpjMkMT+jAUoEjqv00u3cBz6wyhqFUtoSBmfp9IsWR1vMosJ0RNlP921uKf3mDxIRNP2UiTgwVZLUoTDg0Ei6fh2OmKDF8bgkmitlbIZlihYmxEZVsCF+fwv9J98L1ai66rlVazTyOIjgBp+AceKABWuAKtEEHEMDBA3gCz86t8+i8OK+r1oKTzxyDH3DePgGcfpBQ</latexit>

"

<latexit sha1_base64="xaTghUifj7umTUDG/YnGHQfJl4o=">AAAAAHicdVDLSgMxFM3UV62vqks3wSK4GjK2pV0W3LisYB/QDiWTZtrQTDImGaUM/Qk3LhRx6++4829MpyOo6IELh3Pu5d57gpgzbRD6cApr6xubW8Xt0s7u3v5B+fCoq2WiCO0QyaXqB1hTzgTtGGY47ceK4ijgtBfMLpd+744qzaS4MfOY+hGeCBYygo2V+sMkxkrJ+1G5gtw6atSrHkQuypCRZhV50MuVCsjRHpXfh2NJkogKQzjWeuCh2PgpVoYRThelYaJpjMkMT+jAUoEjqv00u3cBz6wyhqFUtoSBmfp9IsWR1vMosJ0RNlP921uKf3mDxIRNP2UiTgwVZLUoTDg0Ei6fh2OmKDF8bgkmitlbIZlihYmxEZVsCF+fwv9J98L1ai66rlVazTyOIjgBp+AceKABWuAKtEEHEMDBA3gCz86t8+i8OK+r1oKTzxyDH3DePgGcfpBQ</latexit>

“0” “1”

magnetic 
domains

current

“0”
“1”

time

logical fault

<latexit sha1_base64="krmPPYr2EY9w8DW8+gORwU6JU4w=">AAAB7nicdVDLSsNAFL3xWeur6tLNYBFchaSIuizowmUF+4A2lMn0ph06mYSZiVBCP8KNC0Xc+j3u/BsnbQWfB4Y5nHMv994TpoJr43nvztLyyuraemmjvLm1vbNb2dtv6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8WfjtO1SaJ/LWTFIMYjqUPOKMGiu1fdIzCfH6larn1rwC5Dfx3dnvVWGBRr/y1hskLItRGiao1l3fS02QU2U4Ezgt9zKNKWVjOsSupZLGqIN8tu6UHFtlQKJE2ScNmalfO3Iaaz2JQ1sZUzPSP71C/MvrZia6CHIu08ygZPNBUSaIPbG4nQy4QmbExBLKFLe7EjaiijJjEyrbED4vJf+TVs31z9zazWm1frWIowSHcAQn4MM51OEaGtAEBmO4h0d4clLnwXl2XualS86i5wC+wXn9APaujq8=</latexit>

1 ! 0
<latexit sha1_base64="oa+U5zz6HKF2i10TWIw/aqAOcGw=">AAAB8nicdVDLSgMxFM34rPVVdekmWARXw6SIuizowmUF+4DpUDJppg3NJENyRyiln+HGhSJu/Rp3/o2ZtoLPAyGHc+7l3nviTAoLQfDuLS2vrK6tlzbKm1vbO7uVvf2W1blhvMm01KYTU8ulULwJAiTvZIbTNJa8HY8uC799x40VWt3COONRSgdKJIJRcFJICMFd0JgEpFepBn4tKIB/E+LP/qCKFmj0Km/dvmZ5yhUwSa0NSZBBNKEGBJN8Wu7mlmeUjeiAh44qmnIbTWYrT/GxU/o40cY9BXimfu2Y0NTacRq7ypTC0P70CvEvL8whuYgmQmU5cMXmg5JcYndkcT/uC8MZyLEjlBnhdsVsSA1l4FIquxA+L8X/k1bNJ2d+7ea0Wr9axFFCh+gInSCCzlEdXaMGaiKGNLpHj+jJA+/Be/Ze5qVL3qLnAH2D9/oBuz2Pmw==</latexit>

111 ! 101

<latexit sha1_base64="XrXo6ksk7UJ+32YPRFKqRDqUlUI=">AAAB7nicdVDLSsNAFL3xWeur6tLNYBFchaSIuizowmUF+4A2lMn0ph06mYSZiVBCP8KNC0Xc+j3u/BsnbQWfB4Y5nHMv994TpoJr43nvztLyyuraemmjvLm1vbNb2dtv6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8WfjtO1SaJ/LWTFIMYjqUPOKMGiu1PdIzCfH7larn1rwC5Dfx3dnvVWGBRr/y1hskLItRGiao1l3fS02QU2U4Ezgt9zKNKWVjOsSupZLGqIN8tu6UHFtlQKJE2ScNmalfO3Iaaz2JQ1sZUzPSP71C/MvrZia6CHIu08ygZPNBUSaIPbG4nQy4QmbExBLKFLe7EjaiijJjEyrbED4vJf+TVs31z9zazWm1frWIowSHcAQn4MM51OEaGtAEBmO4h0d4clLnwXl2XualS86i5wC+wXn9APaojq8=</latexit>

0 ! 1
<latexit sha1_base64="FMtwiy/hpjF1BihXBLo1YN8N3hU=">AAAB8nicdVDLSgMxFL3js9ZX1aWbYBFcDZki6rKgC5cV7AOmQ8mkmTY0kwxJRiiln+HGhSJu/Rp3/o2ZtoLPAyGHc+7l3nviTHBjMX73lpZXVtfWSxvlza3tnd3K3n7LqFxT1qRKKN2JiWGCS9a03ArWyTQjaSxYOx5dFn77jmnDlby144xFKRlInnBKrJNCjDHqWoUCHPQqVezXcAH0mwT+7MdVWKDRq7x1+4rmKZOWCmJMGODMRhOiLaeCTcvd3LCM0BEZsNBRSVJmosls5Sk6dkofJUq7Jy2aqV87JiQ1ZpzGrjIldmh+eoX4lxfmNrmIJlxmuWWSzgcluUDuyOJ+1OeaUSvGjhCqudsV0SHRhFqXUtmF8Hkp+p+0an5w5tduTqv1q0UcJTiEIziBAM6hDtfQgCZQUHAPj/DkWe/Be/Ze5qVL3qLnAL7Be/0AtpaPmA==</latexit>

000 ! 101

Error correction in quantum computers is more complicated
<latexit sha1_base64="unI65o9jUcP+KBwoi6gSU2cFJJ8=">AAACAHicdVDLSgMxFL3js9bXqAsXboJFcDXMFFGXBV24rGAf0A4lk2ba0ExmSDJCmXbjr7hxoYhbP8Odf2OmHcHnhZCTc+7l5pwg4Uxp1323FhaXlldWS2vl9Y3NrW17Z7ep4lQS2iAxj2U7wIpyJmhDM81pO5EURwGnrWB0keutWyoVi8WNHifUj/BAsJARrA3Vs/cnXldiMeAUdXWMJm7x6tkV16m6eaHfwHNmt1uBouo9+63bj0kaUaEJx0p1PDfRfoalZoTTabmbKppgMsID2jFQ4IgqP5sZmKIjw/RRGEtzhEYz9utEhiOlxlFgOiOsh+qnlpN/aZ1Uh+d+xkSSairIfFGYcmSs5mmgPpOUaD42ABPJzF8RGWKJiTaZlU0In07R/6BZdbxTp3p9UqldFnGU4AAO4Rg8OIMaXEEdGkBgCvfwCE/WnfVgPVsv89YFq5jZg29lvX4AJM6WIg==</latexit>

|1i ! |0i
<latexit sha1_base64="VtCtO9vkhn1jAw3w/scAsTKPagI=">AAACP3icdVDLSgMxFM34rPVVdekmWARBLDNF1KWgC5cV7AM6pdxJb9tgJjMmGaHU/pkbf8GdWzcuFHHrzkwfoFYPhBzOuYfkniAWXBvXfXJmZufmFxYzS9nlldW19dzGZkVHiWJYZpGIVC0AjYJLLBtuBNZihRAGAqvB9VnqV29RaR7JK9OLsRFCR/I2Z2Cs1MxVfBBxF+48X4HsCKT71A/QAL1zJ0rWv0mgRX0T0SHL/o4cTEeaubxbKLop6DTxCsPbzZMxSs3co9+KWBKiNEyA1nXPjU2jD8pwJnCQ9RONMbBr6GDdUgkh6kZ/uP+A7lqlRduRskcaOlS/J/oQat0LAzsZgunq314q/uXVE9M+afS5jBODko0eaieC2irSMmmLK2RG9CwBprj9K2VdUMCMrTwtYbIp/Z9UigXvqFC8PMyfno/ryJBtskP2iEeOySm5ICVSJozck2fySt6cB+fFeXc+RqMzzjizRX7A+fwCNWSt0w==</latexit>

↵|1i+ �|0i ! ↵|1i � �|0i
<latexit sha1_base64="lGQGx0yNUh9vl8/wO/PMElJRh3Y=">AAACF3icdVDNS8MwHE3n16xfVY9egkPwVLoh6nGgB48T7DZYy0jTdAtL05qkwqj7L7z4r3jxoIhXvfnfmHYTnB8PQh7v/X4k7wUpo1I5zodRWVhcWl6prppr6xubW9b2TlsmmcDExQlLRDdAkjDKiauoYqSbCoLigJFOMDor/M4NEZIm/EqNU+LHaMBpRDFSWupb9q2XSuoJxAeMQNO7zlAIPZXAkpkunPf7Vs2xG04B+JvU7fJ2amCGVt9698IEZzHhCjMkZa/upMrPkVAUMzIxvUySFOERGpCephzFRPp5mWsCD7QSwigR+nAFS/X7Ro5iKcdxoCdjpIbyp1eIf3m9TEWnfk55minC8fShKGNQ5y5KgiEVBCs21gRhQfVfIR4igbDSVRYlfCWF/5N2w64f243Lo1rzfFZHFeyBfXAI6uAENMEFaAEXYHAHHsATeDbujUfjxXidjlaM2c4umIPx9gl19p7Y</latexit>

| i ! U | i
bit flip phase flip arbitrary unitary

no cloning theorem
<latexit sha1_base64="TvNtUqa3iRj41lpWf4cyy2O38h4=">AAACF3icfVDLSsNAFJ3UV42vqEs3g0VwISEpoi4LunBZwT6gCWUyvWmHTiZhZiKU2L9w46+4caGIW935NyZtBd8Hhjlzzr3cuSdIOFPacd6M0tz8wuJSedlcWV1b37A2t5oqTiWFBo15LNsBUcCZgIZmmkM7kUCigEMrGJ4WfusKpGKxuNSjBPyI9AULGSU6l7qWfe0linmSiD4H7B2Y/77NrlVx7KpTAP8krj25nQqaod61Xr1eTNMIhKacKNVxnUT7GZGaUQ5j00sVJIQOSR86ORUkAuVnk73GeC9XejiMZX6ExhP1c0dGIqVGUZBXRkQP1HevEH/zOqkOT/yMiSTVIOh0UJhyrGNchIR7TALVfJQTQiXL/4rpgEhCdR5lEcLHpvhv0qza7pFdvTis1M5mcZTRDtpF+8hFx6iGzlEdNRBFN+gOPaBH49a4N56M52lpyZj1bKMvMF7eAbWRnv8=</latexit>

| i | i | i
projective measurements disturb the quantum state 

→ error detection is destructive

bit flip
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stabilizer codes

code distance

<latexit sha1_base64="7Ra0OoryO05HiG+zD5kPhDosxGs=">AAACAnicdVDLSsNAFJ3UV62vqitxM1gEVyHpK3UhFN24rGDbQFvCZDpph04mYWZSKKG48VfcuFDErV/hzr9x+hBU9MCFwzn3cu89fsyoVJb1YWRWVtfWN7Kbua3tnd29/P5BS0aJwKSJIxYJ10eSMMpJU1HFiBsLgkKfkbY/upr57TERkkb8Vk1i0gvRgNOAYqS05OWPXG8ML2A3FlHfSynsUg7HU+h61MsXLNM5r9jVErTMYs0pVxxNLLtUtRxom9YcBbBEw8u/d/sRTkLCFWZIyo5txaqXIqEoZmSa6yaSxAiP0IB0NOUoJLKXzl+YwlOt9GEQCV1cwbn6fSJFoZST0NedIVJD+dubiX95nUQFtV5KeZwowvFiUZAwqCI4ywP2qSBYsYkmCAuqb4V4iATCSqeW0yF8fQr/J62iaVfN4k25UL9cxpEFx+AEnAEbOKAOrkEDNAEGd+ABPIFn4954NF6M10VrxljOHIIfMN4+ARholqE=</latexit>

Xv =
Y

i2v

Xi

<latexit sha1_base64="RLIloeeh+N1QuiH1/zEGpNkgRWc=">AAACAnicdVDLSgMxFM3UV62vqitxEyyCqyFTprUboejGZQX7wLYMmTRtQzOZkGSEMhQ3/oobF4q49Svc+TemD0FFD1w4nHMv994TSs60QejDySwtr6yuZddzG5tb2zv53b2GjhNFaJ3EPFatEGvKmaB1wwynLakojkJOm+HoYuo3b6nSLBbXZixpN8IDwfqMYGOlIH9wE0h4BjtSxb0gZbDDBJQTeBOwIF9ALqr4ZVSCyC0j5Fd8S0p+BVnFc9EMBbBALci/d3oxSSIqDOFY67aHpOmmWBlGOJ3kOommEpMRHtC2pQJHVHfT2QsTeGyVHuzHypYwcKZ+n0hxpPU4Cm1nhM1Q//am4l9eOzH9SjdlQiaGCjJf1E84NDGc5gF7TFFi+NgSTBSzt0IyxAoTY1PL2RC+PoX/k0bR9cpu8covVM8XcWTBITgCJ8ADp6AKLkEN1AEBd+ABPIFn5955dF6c13lrxlnM7IMfcN4+Afcalos=</latexit>

Zp =
Y

i2p

Zi

Kitaev’s toric code

<latexit sha1_base64="DRTQZu2QYA2/VMaJczqXcmwHD4s=">AAACJXicdVDLSgMxFM34rPVVdekmWARXZaaIulAounFZwT6gMwx3MmkbmsmMSaZQxv6MG3/FjQuLCK78FdOHoFUPhBzOuZd77wkSzpS27XdrYXFpeWU1t5Zf39jc2i7s7NZVnEpCayTmsWwGoChngtY005w2E0khCjhtBL2rsd/oU6lYLG71IKFeBB3B2oyANpJfOMdNv4/vMzdRbOhKEB1O8QV2sEvCWM8b7l0KIXbbsQTOcd8vFO1S2R4D/yZOafLbRTRD1S+M3DAmaUSFJhyUajl2or0MpGaE02HeTRVNgPSgQ1uGCoio8rLJlUN8aJQQm9nmCY0n6veODCKlBlFgKiPQXTXvjcW/vFaq22dexkSSairIdFA75VjHeBwZDpmkRPOBIUAkM7ti0gUJRJtg8yaEr0vx/6ReLjknpfLNcbFyOYsjh/bRATpCDjpFFXSNqqiGCHpAT+gFjaxH69l6td6mpQvWrGcP/YD18QkcaqUM</latexit>

Xv| i = 1 · | i 8v

<latexit sha1_base64="lW4vJXznu8e1MWEyehYW1E+VUkg=">AAACJXicdVDLSgMxFM34rPVVdekmWARXZaaIulAounFZwT6wU8qdTNqGZjIxyQhl7M+48VfcuLCI4MpfMX0IWvVAyOGce7n3nkBypo3rvjtz8wuLS8uZlezq2vrGZm5ru6rjRBFaITGPVT0ATTkTtGKY4bQuFYUo4LQW9C5Gfu2OKs1icW36kjYj6AjWZgSMlVq5U3zTkvg+9aVmA1+B6HCKz7CHfRLGZtbwbxMIsd+OFXCOZSuXdwtFdwT8m3iF8e/m0RTlVm7ohzFJIioM4aB1w3OlaaagDCOcDrJ+oqkE0oMObVgqIKK6mY6vHOB9q4TYzrZPGDxWv3ekEGndjwJbGYHp6llvJP7lNRLTPmmmTMjEUEEmg9oJxybGo8hwyBQlhvctAaKY3RWTLiggxgabtSF8XYr/J9ViwTsqFK8O86XzaRwZtIv20AHy0DEqoUtURhVE0AN6Qi9o6Dw6z86r8zYpnXOmPTvoB5yPTwxmpQI=</latexit>

Zp| i = 1 · | i 8p

ground states

stabilizer 
operators

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

stabilizer codes

code distance

<latexit sha1_base64="7Ra0OoryO05HiG+zD5kPhDosxGs=">AAACAnicdVDLSsNAFJ3UV62vqitxM1gEVyHpK3UhFN24rGDbQFvCZDpph04mYWZSKKG48VfcuFDErV/hzr9x+hBU9MCFwzn3cu89fsyoVJb1YWRWVtfWN7Kbua3tnd29/P5BS0aJwKSJIxYJ10eSMMpJU1HFiBsLgkKfkbY/upr57TERkkb8Vk1i0gvRgNOAYqS05OWPXG8ML2A3FlHfSynsUg7HU+h61MsXLNM5r9jVErTMYs0pVxxNLLtUtRxom9YcBbBEw8u/d/sRTkLCFWZIyo5txaqXIqEoZmSa6yaSxAiP0IB0NOUoJLKXzl+YwlOt9GEQCV1cwbn6fSJFoZST0NedIVJD+dubiX95nUQFtV5KeZwowvFiUZAwqCI4ywP2qSBYsYkmCAuqb4V4iATCSqeW0yF8fQr/J62iaVfN4k25UL9cxpEFx+AEnAEbOKAOrkEDNAEGd+ABPIFn4954NF6M10VrxljOHIIfMN4+ARholqE=</latexit>

Xv =
Y

i2v

Xi

<latexit sha1_base64="RLIloeeh+N1QuiH1/zEGpNkgRWc=">AAACAnicdVDLSgMxFM3UV62vqitxEyyCqyFTprUboejGZQX7wLYMmTRtQzOZkGSEMhQ3/oobF4q49Svc+TemD0FFD1w4nHMv994TSs60QejDySwtr6yuZddzG5tb2zv53b2GjhNFaJ3EPFatEGvKmaB1wwynLakojkJOm+HoYuo3b6nSLBbXZixpN8IDwfqMYGOlIH9wE0h4BjtSxb0gZbDDBJQTeBOwIF9ALqr4ZVSCyC0j5Fd8S0p+BVnFc9EMBbBALci/d3oxSSIqDOFY67aHpOmmWBlGOJ3kOommEpMRHtC2pQJHVHfT2QsTeGyVHuzHypYwcKZ+n0hxpPU4Cm1nhM1Q//am4l9eOzH9SjdlQiaGCjJf1E84NDGc5gF7TFFi+NgSTBSzt0IyxAoTY1PL2RC+PoX/k0bR9cpu8covVM8XcWTBITgCJ8ADp6AKLkEN1AEBd+ABPIFn5955dF6c13lrxlnM7IMfcN4+Afcalos=</latexit>

Zp =
Y

i2p

Zi

<latexit sha1_base64="DRTQZu2QYA2/VMaJczqXcmwHD4s=">AAACJXicdVDLSgMxFM34rPVVdekmWARXZaaIulAounFZwT6gMwx3MmkbmsmMSaZQxv6MG3/FjQuLCK78FdOHoFUPhBzOuZd77wkSzpS27XdrYXFpeWU1t5Zf39jc2i7s7NZVnEpCayTmsWwGoChngtY005w2E0khCjhtBL2rsd/oU6lYLG71IKFeBB3B2oyANpJfOMdNv4/vMzdRbOhKEB1O8QV2sEvCWM8b7l0KIXbbsQTOcd8vFO1S2R4D/yZOafLbRTRD1S+M3DAmaUSFJhyUajl2or0MpGaE02HeTRVNgPSgQ1uGCoio8rLJlUN8aJQQm9nmCY0n6veODCKlBlFgKiPQXTXvjcW/vFaq22dexkSSairIdFA75VjHeBwZDpmkRPOBIUAkM7ti0gUJRJtg8yaEr0vx/6ReLjknpfLNcbFyOYsjh/bRATpCDjpFFXSNqqiGCHpAT+gFjaxH69l6td6mpQvWrGcP/YD18QkcaqUM</latexit>

Xv| i = 1 · | i 8v

<latexit sha1_base64="lW4vJXznu8e1MWEyehYW1E+VUkg=">AAACJXicdVDLSgMxFM34rPVVdekmWARXZaaIulAounFZwT6wU8qdTNqGZjIxyQhl7M+48VfcuLCI4MpfMX0IWvVAyOGce7n3nkBypo3rvjtz8wuLS8uZlezq2vrGZm5ru6rjRBFaITGPVT0ATTkTtGKY4bQuFYUo4LQW9C5Gfu2OKs1icW36kjYj6AjWZgSMlVq5U3zTkvg+9aVmA1+B6HCKz7CHfRLGZtbwbxMIsd+OFXCOZSuXdwtFdwT8m3iF8e/m0RTlVm7ohzFJIioM4aB1w3OlaaagDCOcDrJ+oqkE0oMObVgqIKK6mY6vHOB9q4TYzrZPGDxWv3ekEGndjwJbGYHp6llvJP7lNRLTPmmmTMjEUEEmg9oJxybGo8hwyBQlhvctAaKY3RWTLiggxgabtSF8XYr/J9ViwTsqFK8O86XzaRwZtIv20AHy0DEqoUtURhVE0AN6Qi9o6Dw6z86r8zYpnXOmPTvoB5yPTwxmpQI=</latexit>
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“bit flip” errors

code distance
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The presence of a bit flip error  
is detected via a syndrome

non-destructive measurement

Stabilizer codes allow for non-destructive 
quantum error detection and correction.

Stabilizer Codes and Quantum Error Correction 
D. Gottesmann, arXiv:quant-h/9705052 

Stabilizer Formalism for Operator Quantum Error Correction 
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decoding problem
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recovery operation

goal of a decoder is to come up with a
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stabilizer codes
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which synthesize the control signals. The state of all qubits can be read 
simultaneously by using a frequency-multiplexing technique33,34. We use 
two stages of cryogenic amplifiers to boost the signal, which is digitized  
(8 bits at 1 GHz) and demultiplexed digitally at room temperature. In 
total, we orchestrate 277 digital-to-analog converters (14 bits at 1 GHz) 
for complete control of the quantum processor.

We execute single-qubit gates by driving 25-ns microwave pulses reso-
nant with the qubit frequency while the qubit–qubit coupling is turned 
off. The pulses are shaped to minimize transitions to higher transmon 
states35. Gate performance varies strongly with frequency owing to two-
level-system defects36,37, stray microwave modes, coupling to control 
lines and the readout resonator, residual stray coupling between qubits, 
flux noise and pulse distortions. We therefore optimize the single-qubit 
operation frequencies to mitigate these error mechanisms.

We benchmark single-qubit gate performance by using the cross-
entropy benchmarking protocol described above, reduced to the single-
qubit level (n = 1), to measure the probability of an error occurring 
during a single-qubit gate. On each qubit, we apply a variable number 
m of randomly selected gates and measure FXEB averaged over many 
sequences; as m increases, errors accumulate and average FXEB decays. 
We model this decay by [1 − e1/(1 − 1/D2)]m where e1 is the Pauli error prob-
ability. The state (Hilbert) space dimension term, D = 2n, which equals 
2 for this case, corrects for the depolarizing model where states with 
errors partially overlap with the ideal state. This procedure is similar to 
the more typical technique of randomized benchmarking27,38,39, but 
supports non-Clifford-gate sets40 and can separate out decoherence 
error from coherent control error. We then repeat the experiment with 
all qubits executing single-qubit gates simultaneously (Fig. 2), which 
shows only a small increase in the error probabilities, demonstrating 
that our device has low microwave crosstalk.

We perform two-qubit iSWAP-like entangling gates by bringing neigh-
bouring qubits on-resonance and turning on a 20-MHz coupling for 12 ns, 
which allows the qubits to swap excitations. During this time, the qubits 
also experience a controlled-phase (CZ) interaction, which originates 
from the higher levels of the transmon. The two-qubit gate frequency 
trajectories of each pair of qubits are optimized to mitigate the same error 
mechanisms considered in optimizing single-qubit operation frequencies.

To characterize and benchmark the two-qubit gates, we run two-qubit 
circuits with m cycles, where each cycle contains a randomly chosen 
single-qubit gate on each of the two qubits followed by a fixed two-qubit 
gate. We learn the parameters of the two-qubit unitary (such as the 
amount of iSWAP and CZ interaction) by using FXEB as a cost function. 
After this optimization, we extract the per-cycle error e2c from the decay 
of FXEB with m, and isolate the two-qubit error e2 by subtracting the two 
single-qubit errors e1. We find an average e2 of 0.36%. Additionally, we 
repeat the same procedure while simultaneously running two-qubit 
circuits for the entire array. After updating the unitary parameters to 
account for effects such as dispersive shifts and crosstalk, we find an 
average e2 of 0.62%.

For the full experiment, we generate quantum circuits using the two-
qubit unitaries measured for each pair during simultaneous operation, 
rather than a standard gate for all pairs. The typical two-qubit gate is a 
full iSWAP with 1/6th of a full CZ. Using individually calibrated gates in 
no way limits the universality of the demonstration. One can compose, 
for example, controlled-NOT (CNOT) gates from 1-qubit gates and two 
of the unique 2-qubit gates of any given pair. The implementation of 
high-fidelity ‘textbook gates’ natively, such as CZ or iSWAP , is work 
in progress.

Finally, we benchmark qubit readout using standard dispersive meas-
urement41. Measurement errors averaged over the 0 and 1 states are 
shown in Fig. 2a. We have also measured the error when operating all 
qubits simultaneously, by randomly preparing each qubit in the 0 or 1 
state and then measuring all qubits for the probability of the correct 
result. We find that simultaneous readout incurs only a modest increase 
in per-qubit measurement errors.

Having found the error rates of the individual gates and readout, we 
can model the fidelity of a quantum circuit as the product of the prob-
abilities of error-free operation of all gates and measurements. Our 
largest random quantum circuits have 53 qubits, 1,113 single-qubit gates, 
430 two-qubit gates, and a measurement on each qubit, for which we 
predict a total fidelity of 0.2%. This fidelity should be resolvable with a 
few million measurements, since the uncertainty on FXEB is N1/ s, where 
Ns is the number of samples. Our model assumes that entangling larger 
and larger systems does not introduce additional error sources beyond 
the errors we measure at the single- and two-qubit level. In the next 
section we will see how well this hypothesis holds up.

Fidelity estimation in the supremacy regime
The gate sequence for our pseudo-random quantum circuit generation 
is shown in Fig. 3. One cycle of the algorithm consists of applying 
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Fig. 2 | System-wide Pauli and measurement errors. a, Integrated histogram 
(empirical cumulative distribution function, ECDF) of Pauli errors (black, green, 
blue) and readout errors (orange), measured on qubits in isolation (dotted lines) 
and when operating all qubits simultaneously (solid). The median of each 
distribution occurs at 0.50 on the vertical axis. Average (mean) values are shown 
below. b, Heat map showing single- and two-qubit Pauli errors e1 (crosses) and e2 
(bars) positioned in the layout of the processor. Values are shown for all qubits 
operating simultaneously.

Google’s Sycamore chipRealizing topologically ordered states on a quantum processor 
K. J. Satzinger et al. (google team), arXiv:2104.01180 
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conventional decoders

minimum-weight perfect matching (MWPM)

renormalization group (RG decoder)

union find (UF decoder)

tensor networks (TN decoder)

Topological quantum memory 
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002)

Fast Decoders for Topological Quantum Codes,  
G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104, 050504 (2010) 

Almost-linear time decoding algorithm for topological codes  
N. Delfosse and N. H. Nickerson, Quantum 5, 595 (2021)

General tensor network decoding of 2D Pauli codes 
C. T. Chubb, arXiv:2101.04125 (2021).
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minimum weight perfect matching

arbitrarily long, reliable computation is possible 
provided the error rate is below the threshold value

threshold theorem

Open-source Python implementation PyMatching 
Oscar Higgott, arXiv:2105.13082 

https://github.com/oscarhiggott/PyMatching

data 
collapse

Topological quantum memory 
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002)
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union find decoder
Almost-linear time decoding algorithm for topological codes  
N. Delfosse and N. H. Nickerson, Quantum 5, 595 (2021)
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syndromes using the local error decoding in the previous
stage. To do so, we employ a conventional UF decoder on
the remaining syndrome. Doing so is significantly more ef-
ficient than employing the UF decoder on the bare decoding
problem (without the preprocessing), as we will see that the
effective error rate for this UF decoding step is up to two or-
ders of magnitude smaller than the original error rate (see the
results section below).

Neural decoder.– At the heart of our hierarchical QEC
approach is a neural network that decodes error syndromes
within a local subsystem, as illustrated in Fig. 1. We train this
neural network to output the most probable error (among the
four possible {I,X, Y, Z} errors) of the central qubit given
2`2 nearby syndromes as an input (with the factor of 2 com-
ing from the two types of X and Z measurements). In ma-
chine learning, this type of task is commonly known as mul-
ticlass classification problem and exceedingly well-studied in
the context of supervised learning approaches (e.g. in image
classification). To adopt such a supervised learning approach
to optimize our neural network, we do training with a labeled
dataset, i.e. batches of error-syndrome pairs generated for a
given error rate (and noise model), training separate networks
for each error rates. In doing so, we use the error of each
qubit directly touching a defect (as in the inference step out-
lined above) as a label and X , Z syndromes of size ` ⇥ `

surrounding this qubit as input. In practice, we train our net-
works in 106 epochs, for which we create independent sets of
512 error-syndrome batches ‘on the fly’, which also reduces
the chance of overfitting.

In designing the neural network architecture, we realize that
there is an inherent trade-off between the two algorithmic lay-
ers of our hierarchical approach: If one opts for a small neural
network, its computation time remains low but its accuracy in
resolving local syndromes drops, resulting in more computa-
tional load for the UF decoder on the higher algorithmic layer.
If, on the other hand, one opts for a large neural network, its
accuracy in resolving syndromes goes up at the cost of larger
compute times, while also alleviating the load of the higher-
level UF decoder. Indeed, this trade off leads to a sweet spot,
i.e. an intermediate neural network size that results, e.g., in
minimal wall-clock run times or maximal error thresholds. To
identify an optimal configuration, we have explored a multi-
tude of different network architectures for the case of depo-
larizing noise, varying the size of the subsystem, the depth of
the network, and the number of nodes per layer as main pa-
rameters (as detailed in Supplemental Materials [39]). When
optimizing for compute speed a 5⇥5 subsystem turns out to be
ideal, while pushing the error threshold one might want to go
with a 7⇥ 7 subsystem – see Table I. However, since the error
threshold of the speed-optimized network is only 3% smaller
than the threshold-optimized network, we consider the 5 ⇥ 5
neural network approach the best compromise in achieving
fast decoding and high error thresholds for an algorithm that
also delivers on high scalability.

Benchmark results.– In benchmarking our hierarchical
QEC algorithm, we start in the high-noise regime and calcu-
late the error threshold of our approach. Decoding 106 ran-
dom instances of depolarizing noise for different error rates

Figure 2. Error threshold and scaling behavior for the con-
ventional union find (UF) algorithm (upper panel), and the ma-
chine learning assisted union find (ML+UF) algorithm (lower panel)
for depolarizing noise. The ML assisted algorithm shifts the er-
ror threshold by some 10%, from perr = 0.146(1) for the UF to
perr = 0.162(5) for the ML+UF algorithm.

and linear system sizes in the range L = 7, . . . , 127 we can
readily deduce the error threshold from the finite-size scaling
shown in Fig. 2. In comparison to the bare UF algorithm (top
panel), which exhibits an error threshold of pUF

th = 0.146(1),
our algorithm yields a 10% higher value of 0.162(5) (when
we employ a 5 ⇥ 5 subsystem) and an increase of more than
20% compared to the lazy UF decoder’s threshold of 0.131(9)
[40]. This notable increase of the error threshold indicates
that our ML-assisted approach is capable of identifying and
resolving correlated errors in the depolarizing noise, which
the bare UF decoder cannot handle. The strength of the ML-
assisted decoder in the dense error regime can also be exem-
plified by the logical accuracy near the threshold plotted in
Fig. 3, which shows a higher logical accuracy for the ML+UF
decoder in this regime, independent of system size. It should
further be noted that our threshold values are higher than the
one of the bare RG decoder [16] with p

RG
th = 0.153 and com-

parable to those found for a combination of RG and sparse de-
coders [18], or the best ML-based decoders using deep neural
networks, for which error thresholds of pML

th ⇡ 0.165 are re-
ported [24, 30] for depolarizing noise. However, our result is
still significantly below the optimal value of popt = 0.189(3),
inferred from a mapping [41] of the decoding problem to the
classical disordered eight-vertex Ising model. Performing a
similar analysis for the scenario of depolarizing noise and
syndrome measurement errors, we come to analogous con-
clusions with a spread of the error threshold between pth =
0.031(3) for the lazy UF decoder and 0.044(5) obtained for
ML-assisted MWPM decoding (lower panel of Table I).
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20% compared to the lazy UF decoder’s threshold of 0.131(9)
[40]. This notable increase of the error threshold indicates
that our ML-assisted approach is capable of identifying and
resolving correlated errors in the depolarizing noise, which
the bare UF decoder cannot handle. The strength of the ML-
assisted decoder in the dense error regime can also be exem-
plified by the logical accuracy near the threshold plotted in
Fig. 3, which shows a higher logical accuracy for the ML+UF
decoder in this regime, independent of system size. It should
further be noted that our threshold values are higher than the
one of the bare RG decoder [16] with p

RG
th = 0.153 and com-

parable to those found for a combination of RG and sparse de-
coders [18], or the best ML-based decoders using deep neural
networks, for which error thresholds of pML

th ⇡ 0.165 are re-
ported [24, 30] for depolarizing noise. However, our result is
still significantly below the optimal value of popt = 0.189(3),
inferred from a mapping [41] of the decoding problem to the
classical disordered eight-vertex Ising model. Performing a
similar analysis for the scenario of depolarizing noise and
syndrome measurement errors, we come to analogous con-
clusions with a spread of the error threshold between pth =
0.031(3) for the lazy UF decoder and 0.044(5) obtained for
ML-assisted MWPM decoding (lower panel of Table I).

Open-source C++ implementation of the Union-Find decoder 
Chae-Yeun Park & Kai Meinerz,  https://github.com/chaeyeunpark
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conventional decoders

minimum-weight perfect matching (MWPM)

renormalization group (RG decoder)

union find (UF decoder)

tensor networks (TN decoder)

Fast Decoders for Topological Quantum Codes,  
G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104, 050504 (2010) 

Almost-linear time decoding algorithm for topological codes  
N. Delfosse and N. H. Nickerson, Quantum 5, 595 (2021)

General tensor network decoding of 2D Pauli codes 
C. T. Chubb, arXiv:2101.04125 (2021).

threshold dmax scaling
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Neural Decoder for Topological Codes

Giacomo Torlai and Roger G. Melko
Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada

and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(Received 20 October 2016; published 18 July 2017)

We present an algorithm for error correction in topological codes that exploits modern machine learning
techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine,
of the type extensively used in deep learning. We provide a general prescription for the training of the
network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little
specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric
code with phase-flip errors.

DOI: 10.1103/PhysRevLett.119.030501

Introduction.—Much of the success of modern machine
learning stems from the flexibility of a given neural network
architecture to be employed for a multitude of different tasks.
This generalizability means that neural networks can have
the ability to infer structure from vastly different data sets
with only a change in optimal hyperparameters. For this
purpose, the machine learning community has developed a
set of standard tools, such as fully connected feed forward
networks [1] and Boltzmann machines [2]. Specializations
of these underlie many of the more advanced algorithms,
including convolutional networks [3] and deep learning
[4,5], encountered in real-world applications such as image
or speech recognition [6].
These machine learning techniques may be harnessed for

a multitude of complex tasks in science and engineering
[7–17]. An important application lies in quantum computing.
For a quantum logic operation to succeed, noise sources that
lead to decoherence in a qubit must be mitigated. This can be
done through some type of quantum error correction—a
process where the logical state of a qubit is encoded
redundantly so that errors can be corrected before they
corrupt it [18]. A leading candidate for this is the imple-
mentation of fault-tolerant hardware through surface codes,
where a logical qubit is stored as a topological state of an
array of physical qubits [19]. Random errors in the states of
the physical qubits can be corrected before they proliferate
and destroy the logical state. The quantum error correction
protocols that perform this correction are termed “decoders,”
and must be implemented by classical algorithms running on
conventional computers [20,21].
In this Letter we demonstrate how one of the simplest

stochastic neural networks for unsupervised learning, the
restricted Boltzmann machine [22], can be used to con-
struct a general error-correction protocol for stabilizer
codes. Give a syndrome, defined by a measurement of
the end points of an (unknown) chain of physical qubit
errors, we use our Boltzmann machine to devise a protocol
with the goal of correcting errors without corrupting the

logical bit. Our decoder works for generic degenerate
stabilizer codes that have a probabilistic relation between
the syndrome and errors, which does not have to be a priori
known. Importantly, it is very simple to implement, requiring
no specialization regarding code locality, dimension, or
structure. We test our decoder numerically on a simple
two-dimensional surface code with phase-flip errors.
The 2D toric code.—Most topological codes can be

described in terms of the stabilizer formalism [23]. A
stabilizer code is a particular class of error-correcting code
characterized by a protected subspace C defined by a
stabilizer group S. The simplest example is the 2D toric
code, first introduced by Kitaev [24]. Here, the quantum
information is encoded into the homological degrees of
freedom, with topological invariance given by the first
homology group [25]. The code features N qubits placed
on the links of an L × L square lattice embedded on a
torus. The stabilizer group is S ¼ fẐp; X̂vg, where the
plaquette and vertex stabilizers are defined respectively as
Ẑp ¼ ⊗

l∈p
σ̂zl and X̂v ¼ ⊗

l∈v
σ̂xl with σ̂zl and σ̂xl acting,

respectively, on the links contained in the plaquette p
and the links connected to the vertex v. There are two
encoded logical qubits, manipulated by logical operators
Ẑð1;2Þ
L as σ̂z acting on the noncontractible loops on the real

lattice and logical X̂ð1;2Þ
L as the noncontractible loops on the

dual lattice (Fig. 1).
Given a reference state jψ0i ∈ C, let us consider the

simple phase-flip channel described by a Pauli operator
where σ̂z is applied to each qubit with probability perr. This
operator can be efficiently described by a mapping between
the links and Z2, called an error chain e, whose boundary is
called a syndrome SðeÞ. In a experimental implementation,
only the syndrome (and not the error chain) can be
measured. Error correction (decoding) consists of applying
a recovery operator whose chain r generates the same
syndrome, SðeÞ ¼ SðrÞ. The recovery succeeds only if the
combined operation is described by a cycle (i.e., a chain

PRL 119, 030501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
21 JULY 2017

0031-9007=17=119(3)=030501(5) 030501-1 © 2017 American Physical Society

 

Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes

Ye-Hua Liu1,* and David Poulin1,2,†
1Département de Physique & Institut Quantique, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec, Canada

2Canadian Institute for Advanced Research, M5G 1Z8 Toronto, Ontario, Canada

(Received 26 November 2018; published 22 May 2019)

Belief-propagation (BP) decoders play a vital role in modern coding theory, but they are not suitable to
decode quantum error-correcting codes because of a unique quantum feature called error degeneracy.
Inspired by an exact mapping between BP and deep neural networks, we train neural BP decoders for
quantum low-density parity-check codes with a loss function tailored to error degeneracy. Training
substantially improves the performance of BP decoders for all families of codes we tested and may solve
the degeneracy problem which plagues the decoding of quantum low-density parity-check codes.

DOI: 10.1103/PhysRevLett.122.200501

Statistical inference on a graph is an important paradigm
in many areas of science, and equivalent heuristic algo-
rithms have been developed by different communities,
including the cavity method in statistical physics [1] and
the belief-propagation (BP) algorithm in information sci-
ence [2]. In the latter case, BP is the standard decoding
algorithm for low-density parity-check (LDPC) codes [3],
which form the backbone of modern coding theory and are
widely used in wireless communication [4]. With the
growing interest for quantum technologies, quantum gen-
eralizations of LDPC codes have been proposed [5–7], but
BP was found to be inadequate for their decoding [8]
because of error degeneracy, a feature unique to quantum
codes. Despite many improvements [8–10] to BP, there is
still no accurate decoding algorithm for general quantum
LDPC codes. This contrasts with statistical physics where
the cavity method has been generalized to the quantum
setting with some success [11–14].
Recently, an exact mapping between BP and artificial

neural networks has been revealed [15], which implies a
general machine-learning strategy to adapt BP to any
specific task. In this Letter, we use this strategy for the
decoding of quantum LDPC codes. Neural-network-based
decoders for quantum error-correcting codes have attracted
great interest recently, particularly in the context of
topological codes [16–27]. But near optimal (or very fast
suboptimal) decoding algorithms are already proposed for
these codes [28–31], which exploit their regular lattice
structure. In contrast, for quantum LDPC codes, which are
defined on random graphs, only recently has a decoding
algorithm been found for the special family of expander
codes [7,32,33] and the general case remains open. Our
main motivation to study this problem is that quantum
LDPC codes have the potential of greatly reducing the
overhead required to realize robust quantum processors
[34,35].

In this Letter, we train neural BP (NBP) decoders for
quantum LDPC codes. To guide the learning process, we
construct a loss function that takes into account error
degeneracy. We present results for the toric code [36],
the quantum bicycle code [5], and the quantum hypergraph-
product code [6]. Decoding accuracy improves up to 3
orders of magnitude compared with the untrained BP
decoder, and the improvement is even more substantial
when we ignore detected but uncorrected errors. While we
do not completely solve the LDPC decoding problem here,
our results suggest that an important step forward was
realized, and the strategy could be applied more broadly,
for instance in many-body physics. That general strategy
consists in training a neural network to solve a quantum
problem, with initial conditions corresponding to the BP
algorithm that solves the classical counterpart.
LDPC codes.—A linear error-correcting code can be

represented by its parity-check matrix H with binary (0 or
1) matrix elements. Codewords c’s satisfying Hc ¼
0mod 2. As a result, when an error pattern e is imposed
on the codeword c → c0 ¼ cþ emod 2, there will be a
measurable syndrome pattern s ¼ Hc0 ¼ Hemod 2, which
signals the occurrence of the error e. The role of the decoder
is to infer the error pattern e from the measured syndrome
pattern s. Classical LDPC codes are error-correcting codes
with sparse parity-check matrices, i.e., where the number of
1’s in each column and row are bounded by constants
independent of the matrix size.
Belief propagation.—The Tanner graph is a graphical

representation of the parity-check matrix H, with a set of
variable nodes fevjv ¼ 1;…; ng (containing the error
pattern) and a set of check nodes fscjc ¼ 1;…; mg (con-
taining the syndrome pattern). There is an edge between ev
and sc if Hcv ¼ 1. Neighborhoods of variables and checks
are defined by N ðvÞ¼fcjHcv¼1g and N ðcÞ¼fvjHcv¼1g,
respectively.
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!BSTRACT
4OPOLOGICAL ERROR CORRECTING CODES� AND PARTICULARLY THE SURFACE CODE� CURRENTLY PROVIDE THE MOST
FEASIBLE ROAD
MAP TOWARDS LARGE
SCALE FAULT
TOLERANT QUANTUM COMPUTATION� !S SUCH� OBTAINING FAST
AND FLEXIBLE DECODING ALGORITHMS FOR THESE CODES� WITHIN THE EXPERIMENTALLY REALISTIC AND
CHALLENGING CONTEXT OF FAULTY SYNDROME MEASUREMENTS� WITHOUT REQUIRING ANY FINAL READ
OUT OF THE
PHYSICAL QUBITS� IS OF CRITICAL IMPORTANCE� )N THIS WORK� WE SHOW THAT THE PROBLEM OF DECODING SUCH
CODES CAN BE NATURALLY REFORMULATED AS A PROCESS OF REPEATED INTERACTIONS BETWEEN A DECODING AGENT
AND A CODE ENVIRONMENT� TO WHICH THE MACHINERY OF REINFORCEMENT LEARNING CAN BE APPLIED TO
OBTAIN DECODING AGENTS� 7HILE IN PRINCIPLE THIS FRAMEWORK CAN BE INSTANTIATED WITH ENVIRONMENTS
MODELLING CIRCUIT LEVEL NOISE� WE TAKE A FIRST STEP TOWARDS THIS GOAL BY USING DEEP1 LEARNING TO
OBTAIN DECODING AGENTS FOR A VARIETY OF SIMPLIFIED PHENOMENOLOGICAL NOISE MODELS� WHICH YIELD
FAULTY SYNDROME MEASUREMENTS WITHOUT INCLUDING THE PROPAGATION OF ERRORS WHICH ARISE IN FULL
CIRCUIT LEVEL NOISE MODELS�

�� )NTRODUCTION

)N ORDER TO IMPLEMENT LARGE SCALE QUANTUM COMPUTATIONS IT IS NECESSARY TO BE ABLE TO STORE AND MANIPULATE
QUANTUM INFORMATION IN A MANNER THAT IS ROBUST TO THE UNAVOIDABLE ERRORS INTRODUCED THROUGH INTERACTION OF
THE PHYSICAL QUBITS WITH A NOISY ENVIRONMENT� 4HE KNOWN STRATEGY FOR ACHIEVING SUCH ROBUSTNESS IS TO ENCODE
A SINGLE LOGICAL QUBIT INTO THE STATE OF MANY PHYSICAL QUBITS� VIA A QUANTUM ERROR CORRECTING CODE� FROM WHICH
IT IS POSSIBLE TO ACTIVELY DIAGNOSE AND CORRECT ERRORS THAT MAY OCCUR ;�� �=� 7HILE MANY QUANTUM ERROR
CORRECTING CODES EXIST� TOPOLOGICAL QUANTUM CODES ;�n�=� IN WHICH ONLY LOCAL OPERATIONS ARE REQUIRED TO
DIAGNOSE AND CORRECT ERRORS� ARE OF PARTICULAR INTEREST AS A RESULT OF THEIR EXPERIMENTAL FEASIBILITY ;�n��=� )N
PARTICULAR� THE SURFACE CODE HAS EMERGED AS AN ESPECIALLY PROMISING CANDIDATE FOR LARGE
SCALE FAULT
TOLERANT
QUANTUM COMPUTATION� DUE TO THE COMBINATION OF ITS COMPARATIVELY LOW OVERHEAD AND LOCALITY REQUIREMENTS�
COUPLED WITH THE AVAILABILITY OF CONVENIENT STRATEGIES FOR THE IMPLEMENTATION OF ALL REQUIRED LOGICAL GATES
;��� ��=� )N FACT� CURRENT ROAD MAPS TOWARDS THE REALIZATION OF ROBUST QUANTUM COMPUTING HAVE IDENTIFIED
SURFACE CODE BASED APPROACHES AS THE MOST FEASIBLE METHODOLOGY FOR ACHIEVING THIS GOAL ;��=�

(OWEVER� THE KNOWN REALISTIC TOPOLOGICAL QUANTUM ERROR CORRECTING CODES� INCLUDING THE SURFACE CODE� ARE
NOT SELF
CORRECTING� AND ARE THEREFORE NOT ROBUST TO NATURAL THERMAL NOISE� &OR THIS REASON ONE HAS TO ACTIVELY
DIAGNOSE AND CORRECT FOR ERRORS� AND AS SUCH� IN ANY CODE
BASED STRATEGY FOR FAULT
TOLERANT QUANTUM
COMPUTATION DECODING ALGORITHMS PLAY A CRITICAL ROLE� !T A HIGH LEVEL� THESE ALGORITHMS TAKE AS INPUT THE
OUTCOMES OF SYNDROME MEASUREMENTS �WHICH PROVIDE A DIAGNOSIS OF ERRORS THAT HAVE OCCURRED ON THE
PHYSICAL QUBITS	� AND PROVIDE AS OUTPUT A SUGGESTION OF CORRECTIONS FOR ANY ERRORS THAT MAY HAVE OCCURRED
DURING THE COMPUTATION� )N PRACTICE� THESE DECODING ALGORITHMS HAVE TO BE EXTREMELY FAST�IN PARTICULAR� ONE
HAS TO BE ABLE TO DECODE FASTER THAN THE RATE AT WHICH ERRORS OCCUR� !S SUCH� THE DEVELOPMENT OF DECODING
ALGORITHMS CONSTITUTES A SERIOUS BOTTLENECK IN THE REALIZATION OF FAULT
TOLERANT QUANTUM COMPUTERS AND ARE
KEY TO GAINING AN UNDERSTANDING OF QUANTUM COMPUTING IN REALISTIC REGIMES�

Ç ���� 4HE !UTHOR�S	� 0UBLISHED BY )/0 0UBLISHING ,TD

high adaptability

easily parallelized

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

ML-assisted decoders

5

title date QECC noise model pth dmax algorithmic scaling

conventional decoders (non-ML)

Analysis of quantum error-correcting codes: sym-
plectic lattice codes and toric codes [9] (MWPM) 05/2004 TC DP⇤ 0.154⇤ 63⇤

O(n3) (worst-case)
O(d2.11) (PyMatching [3])

Fast Decoders for Topological Quantum Codes
[14] (RG-decoder) 02/2010 TC DP 0.164 128

O(d2 log d) (serial)
O(log d) (parallel)

Almost-linear time decoding algorithm for topo-
logical codes [11] (UF-decoder) 09/2017 TC DP⇤ 0.146⇤ 127⇤

O(n · ↵(n))
General tensor network decoding of 2D Pauli
codes [15] (TN-decoder) 01/2021 TC DP 0.1881(3) 64 O(n log n+ n�3)

ML-assisted decoders

Decoding Small Surface Codes with Feedforward
Neural Networks [16] 05/2017 SC DP ⇠ 0.15 7 O(MWPM)
Neural Decoder for Topological Codes [17] 07/2017 TC i.i.d bit flip ⇠ 0.110 6 > O(MWPM)
Deep Neural Network Probabilistic Decoder for
Stabilizer Codes [18] 09/2017 TC DP 0.164 11 � O(MWPM)
Deep neural decoders for near term fault-tolerant
experiments [19] 07/2018 SC CLN

✏ ⇠
7.11⇥10�4 5 n.a.

Neural network decoder for topological color
codes with circuit level noise [20] 01/2019 CC CLN ✏ ⇠ 0.0023 7 n.a.
Neural Belief-Propagation Decoders for Quantum
Error-Correcting Codes [21] 05/2019 TC i.i.d. X&Z ⇠ 0.07 10 n.a.
Quantum error correction for the toric code using
deep reinforcement learning [22] 09/2019 TC i.i.d. bit flip ⇠ 0.1 7 � O(n) (estimate)
Symmetries for a High Level Neural Decoder on
the Toric Code [23] 10/2019 TC DP n.a. 7 O(MWPM)
Deep Q-learning decoder for depolarizing noise on
the toric code [24] 05/2020 TC DP ⇠ 0.165 7 (9) � O(n) (estimate)
Reinforcement learning for optimal error correc-
tion of toric codes [25] 06/2020 TC i.i.d bit flip 0.103 9 > O(MWPM)
Neural Network Decoders for Large-Distance 2D
Toric Codes [26] 08/2020 TC i.i.d. bit flip ⇠ 0.103 64 > O(RG)
Determination of the semion code threshold using
neural decoders [27] 09/2020 SM DP ⇠ 0.105 13 n.a.
Reinforcement learning decoders for fault-tolerant
quantum computation [28] 12/2020 SC

i.i.d. bit flip
& DP n.a. 5 � O(n) (estimate)

Scalable Neural Decoder for Topological Surface
Codes (this work) 01/2021 TC DP 0.167 255 O(UF)

Table IV. Literature overview summarizing key characteristics of a selection of ‘conventional’ decoders and ML-assisted decoders for differ-
ent quantum error correcting codes (QECC) including the toric code (TC), the surface code (SC), the semion code (SM), and the color code
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ML-assisted preprocessing

Convolutional neural networks (CNN) do preprocessing by looking for recurring patterns.
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Slide filters across image and create new image 
encoding how well these filters fit.

image classification

Adjustable filters help to identify and encode  
local information within the image at hand.
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(Dated: October 21, 2021)

These Supplemental Materials provide a more detailed description of the neural network, MWPM, and UF ,
as well as a comparison to other decoding algorithms.

I. NEURAL NETWORKS

This supplemental material provides a detailed overview of
the tested network architectures to find an optimal decoding
setup, along with an expose of the hyperparameters used in
the training of the neural network(s).

Network Architecture

In order to optimize our hierarchical algorithm to simulta-
neously achieve minimal wall-clock run times and high error
thresholds, while remaining scalable, we have explored a mul-
titude of different network architectures, varying the size of
the subsystem, the depth of the network, and the number of
nodes per layer as main parameters. A systematic overview of
some of the tested network architectures is provided in Table I
below.

As discussed in the main text, our hierarchical approach has
an inherent trade off between the two hierarchical algorithmic
layers: If one opts for a small neural network, its computa-
tion time remains low but its accuracy in resolving syndromes
drops, resulting in more computational load for the UF de-
coder on the higher algorithmic layer. If, on the other hand,
one opts for a large neural network, its accuracy in resolving
syndromes goes up at the cost of larger compute times, while
also alleviating the load of the higher-level UF decoder. In-

hidden hidden total parameters
layers nodes ` = 3 ` = 5 ` = 7

1 32 740 1764 3300
1 64 1476 3526 6596
1 128 2948 7044 13188
1 256 5892 14084 26372
2 32 1796 2820 4356
2 64 5636 7684 10756
2 128 19460 23556 29700
2 256 71684 79876 92164
3 32 2852 3876 5412
3 64 9796 11844 14916
3 128 35972 40068 46212
3 256 137476 145668 157956

Table I. Overview of neural network architectures tested to solely
optimize the wall-clock run time by varying the size of the ` ⇥ `
subsystem (see Fig. 1 of the main text), the number of hidden layers,
and nodes per layer. The optimal configuration is highlighted in bold-
face. Note that when vying to solely maximizing the error threshold,
a different network architecture is singled out as ideal (see main text).

depolarizing noise
` = 5 network parameters (optimal wall-clock time)

hidden layers 3
hidden nodes per layer 128

total number free parameter 40 068
activation functions hidden layer Relu
activation functions output layer Softmax
` = 7 network parameters (optimal error threshold)

hidden layers 5
hidden nodes per layer 512

total number free parameter 1 103 364
activation functions hidden layer Relu
activation functions output layer Softmax

depolarizing noise + syndrome measurement errors
` = 3 network parameters (optimal wall-clock time)

hidden layers 3
hidden nodes per layer 128

total number free parameter 43 396
activation functions hidden layer Relu
activation functions output layer Softmax

Table II. Optimized network architectures. The upper two pan-
els provide, for depolarizing noise, detailed parameters for a speed-
optimized decoder (minimizing the wall-clock time), based on a 5⇥5
subsystem neural network and a threshold-optimized decoder, based
on a 7 ⇥ 7 subsystem neural network. The lower panel, for depo-
larizing noise and syndrome measurement errors, provides detailed
parameters for a 3-dimensional adaptation of the speed-optimized
decoder in this effectively three-dimensional settings with a 3⇥3⇥3
octahedral subsystem as illustrated in Fig. 1.

deed, this trade off leads to a sweet spot, i.e. an intermediate
neural network size that results, e.g., in optimal compute time.

If our goal is to optimize for decoding speed, i.e. minimiz-
ing the wall-clock time measured for decoding 106 random
instances for a toric code with linear system size L = 255
(corresponding to the values listed in Table I of the main
manuscript), we find that among the multitude of different net-
work architectures listed in Table I, the 5 ⇥ 5 neural network
with 3 hidden layers and 128 nodes per layer (resulting in a
total of 40068 adjustable parameters) is the best choice (see
also Table III).

If, on the other hand, our goal is to optimize the decoding
efficiency, i.e.maximizing the error threshold, then we find
that a 7⇥7 neural network with 5 hidden layers and 512 nodes
per layer (resulting in more than 106 adjustable parameters in
total) is the most favorable network configuration.

However, we note that the error threshold of the speed-
optimized network already comes in at pth = 0.162(5) and

optimized network architecture

optimized 
network  

parameters

2

Figure 1. Three-dimensional subsystem. For the augmented noise
model where we pair depolarizing noise with syndrome measure-
ment errors we apply an octahedral subsystem in lieu of the two-
dimensional setting described in Fig. 1 of the main text.

as such is only slightly smaller than the maximal threshold of
pth = 0.167(0), which we find for the efficiency-optimized
network – in particular when comparing this to the thresh-
old values of the conventional decoders (with error thresh-
olds around pth ⇡ 0.150 ± 0.004) and the ideal threshold
pth = 0.189 inferred from a mapping of the decoding prob-
lem to the classical disordered eight-vertex Ising model [1].
As such, we conclude that the speed-optimized 5 ⇥ 5 neural
network already presents a good compromise in achieving fast
decoding and high error thresholds for an algorithm that also
delivers on high scalability.

Training

Each neural network configuration has been trained using
standard supervised learning techniques, using labeled data
sets of syndromes and their corresponding underlying errors
For each error rate we train a separate neural network, using
only error-syndrome pairs generated at that given rate. Be-
cause such error-syndromes pairs can be generated in very ef-
ficient ways, we have generated, for every epoch of the train-
ing, a new set of 512 such pairs ‘on the fly’. In effect, this
procedure increases the size of the training dataset to be of
the order ‘batch size ⇥ training epochs’, and significantly re-
duces the chance of overfitting. Detailed training parameters
are provided in Table III, which have been optimized (via a
grid search) for the error threshold probability of the decoder
and then employed to every training process regardless of the
underlying error probability.

training parameters
batch size 512

epochs 106

learning rate 0.001
optimizer ADAM

loss function categorical cross-entropy
training lattice size Ltrain 7

section distance ` 5

Table III. Hyperparameters used for the training of our various net-
work architectures. An epoch corresponds to the number of gener-
ated training batches (see text).

II. BENCHMARKING

In performing our wall-clock run time benchmarks to pro-
vide a measure for real-life applicability we have employed a
hardware setup based on the following CPU/GPU tandem for
the depolarizing noise measurements

• CPU: Intel Xeon CPU E5-2699A v4 @ 2.40 GHz,

• GPU: Nvidia Tesla V100 SXM2.

and for the measurements of the depolarizing noise plus syn-
drome measurement error model

• CPU: AMD EPYC Rome 7402 CPU @ 2.80 GHz,

• GPU: Nvidia A100 Tensor Core-GPU.

The times measured are the bare times needed to decode
a given syndrome and apply the error correction. As dis-
cussed in the main text, our GPU-assisted calculations for the
machine learning parts include a ‘kernel time’, i.e. the time
needed to launch the CUDA and TensorFlow [2] kernel, every
time a syndrome is decoded. We estimate this kernel time as
the GPU time needed to run a neural network with subsystem
` = 7 for a relatively small error rate of perr = 0.01, where
the kernel launch times dominates over the data transfer time
and actual GPU calculation time.

III. MINIMUM WEIGHT PERFECT MATCHING (MWPM)

To make this manuscript self-contained, we also provide
an error threshold calculation of the minimum weight perfect
matching (MWPM) decoder for the depolarized noise model
using PyMatching [3] – a particularly efficient implementa-
tion of MWPM decoder. The most widely used MWPM al-
gorithm for general graphs is the one by Edmonds [4], which
is also widely known as the Blossom algorithm. The time
complexity of the original Blossom algorithm is O(|E||V |

2)
where |E| and |V | are the number of edges and vertices,
respectively. In the toric code set-up, which we have con-
sidered throughout the paper, a simple implementation gives
O(n4) (where n = 2L2 is the total number of qubits) as
|V | / n (number of qubits) and |E| / n

2. Fortunately, the
algorithm for MWPM has been improved and some suggest
O(|V |

3) [5, 6] which gives O(n3) for the toric code. We thus
consider this as the worst-time complexity of the decoding
problem using the MWPM decoder.

However, for decoding the toric code, an even more sub-
stantial speed up is possible by adopting the idea of locality
– instead of constructing edges between all defects, one may
construct edges only between nearby defects within some con-
stant distance. Such an idea has been considered in Refs. [7, 8]
and gave a visible speed-up for the decoding problem albeit
this may potentially harm the threshold. PyMatching [3],
which we have utilized for the MWPM decoder in this paper,
could achieve O(L2.11) in benchmarks by combining this idea
with an efficient C++ implementation of graph algorithms.

multiclass classification task
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activation functions output layer Softmax

depolarizing noise + syndrome measurement errors
` = 3 network parameters (optimal wall-clock time)

hidden layers 3
hidden nodes per layer 128

total number free parameter 43 396
activation functions hidden layer Relu
activation functions output layer Softmax

Table II. Optimized network architectures. The upper two pan-
els provide, for depolarizing noise, detailed parameters for a speed-
optimized decoder (minimizing the wall-clock time), based on a 5⇥5
subsystem neural network and a threshold-optimized decoder, based
on a 7 ⇥ 7 subsystem neural network. The lower panel, for depo-
larizing noise and syndrome measurement errors, provides detailed
parameters for a 3-dimensional adaptation of the speed-optimized
decoder in this effectively three-dimensional settings with a 3⇥3⇥3
octahedral subsystem as illustrated in Fig. 1.

deed, this trade off leads to a sweet spot, i.e. an intermediate
neural network size that results, e.g., in optimal compute time.

If our goal is to optimize for decoding speed, i.e. minimiz-
ing the wall-clock time measured for decoding 106 random
instances for a toric code with linear system size L = 255
(corresponding to the values listed in Table I of the main
manuscript), we find that among the multitude of different net-
work architectures listed in Table I, the 5 ⇥ 5 neural network
with 3 hidden layers and 128 nodes per layer (resulting in a
total of 40068 adjustable parameters) is the best choice (see
also Table III).

If, on the other hand, our goal is to optimize the decoding
efficiency, i.e.maximizing the error threshold, then we find
that a 7⇥7 neural network with 5 hidden layers and 512 nodes
per layer (resulting in more than 106 adjustable parameters in
total) is the most favorable network configuration.

However, we note that the error threshold of the speed-
optimized network already comes in at pth = 0.162(5) and

2

Figure 1. Three-dimensional subsystem. For the augmented noise
model where we pair depolarizing noise with syndrome measure-
ment errors we apply an octahedral subsystem in lieu of the two-
dimensional setting described in Fig. 1 of the main text.

as such is only slightly smaller than the maximal threshold of
pth = 0.167(0), which we find for the efficiency-optimized
network – in particular when comparing this to the thresh-
old values of the conventional decoders (with error thresh-
olds around pth ⇡ 0.150 ± 0.004) and the ideal threshold
pth = 0.189 inferred from a mapping of the decoding prob-
lem to the classical disordered eight-vertex Ising model [1].
As such, we conclude that the speed-optimized 5 ⇥ 5 neural
network already presents a good compromise in achieving fast
decoding and high error thresholds for an algorithm that also
delivers on high scalability.

Training

Each neural network configuration has been trained using
standard supervised learning techniques, using labeled data
sets of syndromes and their corresponding underlying errors
For each error rate we train a separate neural network, using
only error-syndrome pairs generated at that given rate. Be-
cause such error-syndromes pairs can be generated in very ef-
ficient ways, we have generated, for every epoch of the train-
ing, a new set of 512 such pairs ‘on the fly’. In effect, this
procedure increases the size of the training dataset to be of
the order ‘batch size ⇥ training epochs’, and significantly re-
duces the chance of overfitting. Detailed training parameters
are provided in Table III, which have been optimized (via a
grid search) for the error threshold probability of the decoder
and then employed to every training process regardless of the
underlying error probability.

training parameters
batch size 512

epochs 106

learning rate 0.001
optimizer ADAM

loss function categorical cross-entropy
training lattice size Ltrain 7

section distance ` 5

Table III. Hyperparameters used for the training of our various net-
work architectures. An epoch corresponds to the number of gener-
ated training batches (see text).

II. BENCHMARKING

In performing our wall-clock run time benchmarks to pro-
vide a measure for real-life applicability we have employed a
hardware setup based on the following CPU/GPU tandem for
the depolarizing noise measurements

• CPU: Intel Xeon CPU E5-2699A v4 @ 2.40 GHz,

• GPU: Nvidia Tesla V100 SXM2.

and for the measurements of the depolarizing noise plus syn-
drome measurement error model

• CPU: AMD EPYC Rome 7402 CPU @ 2.80 GHz,

• GPU: Nvidia A100 Tensor Core-GPU.

The times measured are the bare times needed to decode
a given syndrome and apply the error correction. As dis-
cussed in the main text, our GPU-assisted calculations for the
machine learning parts include a ‘kernel time’, i.e. the time
needed to launch the CUDA and TensorFlow [2] kernel, every
time a syndrome is decoded. We estimate this kernel time as
the GPU time needed to run a neural network with subsystem
` = 7 for a relatively small error rate of perr = 0.01, where
the kernel launch times dominates over the data transfer time
and actual GPU calculation time.

III. MINIMUM WEIGHT PERFECT MATCHING (MWPM)

To make this manuscript self-contained, we also provide
an error threshold calculation of the minimum weight perfect
matching (MWPM) decoder for the depolarized noise model
using PyMatching [3] – a particularly efficient implementa-
tion of MWPM decoder. The most widely used MWPM al-
gorithm for general graphs is the one by Edmonds [4], which
is also widely known as the Blossom algorithm. The time
complexity of the original Blossom algorithm is O(|E||V |

2)
where |E| and |V | are the number of edges and vertices,
respectively. In the toric code set-up, which we have con-
sidered throughout the paper, a simple implementation gives
O(n4) (where n = 2L2 is the total number of qubits) as
|V | / n (number of qubits) and |E| / n

2. Fortunately, the
algorithm for MWPM has been improved and some suggest
O(|V |

3) [5, 6] which gives O(n3) for the toric code. We thus
consider this as the worst-time complexity of the decoding
problem using the MWPM decoder.

However, for decoding the toric code, an even more sub-
stantial speed up is possible by adopting the idea of locality
– instead of constructing edges between all defects, one may
construct edges only between nearby defects within some con-
stant distance. Such an idea has been considered in Refs. [7, 8]
and gave a visible speed-up for the decoding problem albeit
this may potentially harm the threshold. PyMatching [3],
which we have utilized for the MWPM decoder in this paper,
could achieve O(L2.11) in benchmarks by combining this idea
with an efficient C++ implementation of graph algorithms.

multiclass classification task
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preprocessing + MWPM
depolarizing noise

arbitrarily long, reliable computation is possible 
provided the error rate is below the threshold value

threshold theorem

ML-assisted preprocessing allows us to 
push up the error threshold for MWPM

( about 10% increase )
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preprocessing + UF
depolarizing noise

ML-assisted preprocessing allows us to 
push up the error threshold for UF

( about 10% increase )

bare UF decoder has a slightly lower threshold 
than MWPM decoder

“lazy preprocessing” (strictly local) is fast but 
pushes down the error threshold for UF

( about 10% decrease )

N. Delfosse, arXiv:2001.11427
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preprocessing + UF
depolarizing noise

higher logical accuracy for ML+UF 
independent of system size
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depolarizing noise depolarizing noise + syndrome errors

including 
syndrome errors

do not qualitatively alter 
these observations
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comparison to bare UF decoder

• speedup in asymptotic regime

• breakdown of (linear) scaling  
for small code distances

algorithmic scaling

2 x 255 x 255 
≈ 130,000 qubits

algorithmic scaling

• asymptotic scaling close to linear  
similar to bare UF decoder

• scalable to tens of thousands of qubits

GPUGPU

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

dedicated hardware

2 x 255 x 255 
≈ 130,000 qubits

• tighter hardware integration 
e.g. FPGAs or TPUs 

• in situ decoding
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compute times / comparison
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depolarizing noise (L = 255)
algorithm pth tp=0.01 tp=0.05 tp=0.1 tp=0.1461

ML(7) + UF 0.167(0) 10.5 25.1 43.4 78.6
ML(5) + UF 0.162(5) 6.7 12.8 26.2 56.2

Lazy + UF 0.131(9) 6.9 20.7 51.1 —
UF 0.146(1) 8.4 22.5 44.9 92.8

ML(7) + MWPM 0.167(1) ⇠ 210 ⇠ 530 ⇠ 650 ⇠ 980
ML(5) + MWPM 0.163(8) ⇠ 270 ⇠ 510 ⇠ 650 ⇠ 970

MWPM 0.154(2) ⇠ 560 ⇠ 840 ⇠ 1100 ⇠ 1300

depolarizing noise + syndrome errors (L = 31)
algorithm pth tp=0.01 tp=0.02 tp=0.03 tp=0.0378

ML(3) + UF 0.043(4) 12.1 13.5 15.4 17.8

Lazy + UF 0.031(3) 11.1 12.8 16.6 —
UF 0.037(8) 11.5 13.4 15.7 18.9

ML(3) + MWPM⇤
0.044(5) 14.6 25.8 81.5 229

MWPM 0.043(7) 211 239 273 294

Table I. Overview of results. For a number of variants of our de-
coding algorithm we provide the error threshold pth (2nd column)
for depolarizing noise (upper panel) and additional syndrome mea-
surement errors (lower panel) where ancillary qubits for measuring
syndromes are also subject to depolarizing noise, as well as wall-
clock time measurements (in milliseconds) of the decoding time for
different error rates (averaged over 106 instances) for code distances
L = 255 and L = 31, respectively. The bold-faced entries identify
the best performing algorithm when optimizing for error threshold or
compute times. Comparisons are shown for the union-find (UF) and
minimum weight perfect matching (MWPM) decoders, combined
with either lazy [35] or machine learning (ML) assisted preprocess-
ing using subsystems of size ` = 3, 5 or 7 as indicated in brackets
(see main text). We have used a custom implementation for the UF
decoder [37] and PyMatching [38] for the MWPM. In the presence
of additional syndrome errors, the pure MWPM calculation was op-
timized by combining the Blossom and Dykstra algorithms and for
the ML-assisted MWPM with precomputed shortest paths. Details
of our CPU/GPU hardware setup are provided in the Supplemental
Material [39].

cessing) and decodes local errors in these subsystems. After
this step, the system still exhibits errors that require longer
range corrections, for which we employ a conventional UF
decoder. However, since the preprocessing reduces the ef-
fective error rate – up to two orders of magnitude depend-
ing on the original error rate – this second step is extremely
performant as compared to, e.g., employing UF decoding to
the original unprocessed error instances. Extensive wall-clock
time measurements of our approach (the true performance in-
dicator in many real-life applications) show that our algorithm
outperforms the bare UF decoder in a noise regime from 1%
(in which one might want to operate quantum computing de-
vices) up to the 10% regime where our ML-assisted approach
is found to push the error threshold by some 15 percent above
the value of the bare UF decoder. Our approach bears some
similarity to the ‘lazy UF decoder’ [35], which also employs
hierarchical decoding with a strictly local, hard decision pre-
processing step and has been shown to substantially improve
UF decoding for ultralow error rates below the per mil range.

Hierarchical QEC.– Throughout the paper, we apply our
decoding algorithm to the toric code in the presence of depo-
larizing noise as well as a scenario with additional syndrome

Figure 1. Construction of the input data and neural network.
A single qubit (cyan circle) is selected as the reference point of the
construction. All syndromes in the immediate vicinity (red square)
are used as the input, whereby measured syndromes (blue/yellow)
are assigned the value +1/-1 and not measured syndromes (grey) are
assigned value 0, respectively. Passing the input through the feed for-
ward network results in the error probabilities of the initially selected
qubit.

measurement errors. For the latter, we use a phenomenologi-
cal noise model where ancilla qubits for measuring syndromes
are also subject to depolarizing noise but propagation of er-
rors between data and ancilla qubits is neglected. We con-
sider a standard setup, where the toric code is defined on a
square lattice of size L⇥L and the stabilizer operators around
the vertices and plaquettes are given by Xv =

Q
i2v Xi and

Zp =
Q

i2p Zi. The code space is then spanned by the basis
vectors {| i : Xv | i = 1 8v, Zp | i = 1 8p}, which, for
periodic boundary conditions, is 4 dimensional (and thus en-
codes 2 qubits) and the distance of the code (i.e. the minimum
length of a Pauli string that transforms one states in the code
space to another state) is L. Each Z (X) error on a qubit (lo-
cated on the edges of the lattice) flips the value of the nearby
Xv (Zp) operators.

The decoding problem is then defined as identifying the er-
ror configuration for a given syndrome, i.e. a given measure-
ment of the outcomes of all stabilizers Xv and Zp. To do so,
we employ a two-step hierarchical procedure. In the first stage
– the ML-assisted preprocessing – we aim to remove those er-
rors that can be inferred from local syndromes. To this end,
we only consider qubits directly connected to so-called de-
fects (identified by an odd syndrome measurement Xv = �1
or Zp = �1), as they are the typical source of locally cor-
rectable errors. To infer which error is the most probable for
a given qubit, our preprocessing step shifts through all qubits
with a subsystem of size ` ⇥ ` centered around an ‘examina-
tion qubit’ located at its center (see the setup in Fig. 1). The
local inference task for each such examination qubit is then
assigned to a neural network, whose details we discuss below.
The results of the inference are collected and the resulting cor-
rections are applied in one shot at the end. The result of this
step is that a large number of local errors are decoded and only
a small fraction of non-local errors, manifest on scales beyond
the range of our subsystem, remain.

The second stage of our algorithm is to then process these
remaining non-local errors, which are left after updating the

depolarizing noise

speed optimized

threshold optimized

preprocessing always wins 
independent of objective 
(speed vs. threshold)
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depolarizing noise (L = 255)
algorithm pth tp=0.01 tp=0.05 tp=0.1 tp=0.1461

ML(7) + UF 0.167(0) 10.5 25.1 43.4 78.6
ML(5) + UF 0.162(5) 6.7 12.8 26.2 56.2

Lazy + UF 0.131(9) 6.9 20.7 51.1 —
UF 0.146(1) 8.4 22.5 44.9 92.8

ML(7) + MWPM 0.167(1) ⇠ 210 ⇠ 530 ⇠ 650 ⇠ 980
ML(5) + MWPM 0.163(8) ⇠ 270 ⇠ 510 ⇠ 650 ⇠ 970

MWPM 0.154(2) ⇠ 560 ⇠ 840 ⇠ 1100 ⇠ 1300

depolarizing noise + syndrome errors (L = 31)
algorithm pth tp=0.01 tp=0.02 tp=0.03 tp=0.0378

ML(3) + UF 0.043(4) 12.1 13.5 15.4 17.8

Lazy + UF 0.031(3) 11.1 12.8 16.6 —
UF 0.037(8) 11.5 13.4 15.7 18.9

ML(3) + MWPM⇤
0.044(5) 14.6 25.8 81.5 229

MWPM 0.043(7) 211 239 273 294

Table I. Overview of results. For a number of variants of our de-
coding algorithm we provide the error threshold pth (2nd column)
for depolarizing noise (upper panel) and additional syndrome mea-
surement errors (lower panel) where ancillary qubits for measuring
syndromes are also subject to depolarizing noise, as well as wall-
clock time measurements (in milliseconds) of the decoding time for
different error rates (averaged over 106 instances) for code distances
L = 255 and L = 31, respectively. The bold-faced entries identify
the best performing algorithm when optimizing for error threshold or
compute times. Comparisons are shown for the union-find (UF) and
minimum weight perfect matching (MWPM) decoders, combined
with either lazy [35] or machine learning (ML) assisted preprocess-
ing using subsystems of size ` = 3, 5 or 7 as indicated in brackets
(see main text). We have used a custom implementation for the UF
decoder [37] and PyMatching [38] for the MWPM. In the presence
of additional syndrome errors, the pure MWPM calculation was op-
timized by combining the Blossom and Dykstra algorithms and for
the ML-assisted MWPM with precomputed shortest paths. Details
of our CPU/GPU hardware setup are provided in the Supplemental
Material [39].

cessing) and decodes local errors in these subsystems. After
this step, the system still exhibits errors that require longer
range corrections, for which we employ a conventional UF
decoder. However, since the preprocessing reduces the ef-
fective error rate – up to two orders of magnitude depend-
ing on the original error rate – this second step is extremely
performant as compared to, e.g., employing UF decoding to
the original unprocessed error instances. Extensive wall-clock
time measurements of our approach (the true performance in-
dicator in many real-life applications) show that our algorithm
outperforms the bare UF decoder in a noise regime from 1%
(in which one might want to operate quantum computing de-
vices) up to the 10% regime where our ML-assisted approach
is found to push the error threshold by some 15 percent above
the value of the bare UF decoder. Our approach bears some
similarity to the ‘lazy UF decoder’ [35], which also employs
hierarchical decoding with a strictly local, hard decision pre-
processing step and has been shown to substantially improve
UF decoding for ultralow error rates below the per mil range.

Hierarchical QEC.– Throughout the paper, we apply our
decoding algorithm to the toric code in the presence of depo-
larizing noise as well as a scenario with additional syndrome

Figure 1. Construction of the input data and neural network.
A single qubit (cyan circle) is selected as the reference point of the
construction. All syndromes in the immediate vicinity (red square)
are used as the input, whereby measured syndromes (blue/yellow)
are assigned the value +1/-1 and not measured syndromes (grey) are
assigned value 0, respectively. Passing the input through the feed for-
ward network results in the error probabilities of the initially selected
qubit.

measurement errors. For the latter, we use a phenomenologi-
cal noise model where ancilla qubits for measuring syndromes
are also subject to depolarizing noise but propagation of er-
rors between data and ancilla qubits is neglected. We con-
sider a standard setup, where the toric code is defined on a
square lattice of size L⇥L and the stabilizer operators around
the vertices and plaquettes are given by Xv =

Q
i2v Xi and

Zp =
Q

i2p Zi. The code space is then spanned by the basis
vectors {| i : Xv | i = 1 8v, Zp | i = 1 8p}, which, for
periodic boundary conditions, is 4 dimensional (and thus en-
codes 2 qubits) and the distance of the code (i.e. the minimum
length of a Pauli string that transforms one states in the code
space to another state) is L. Each Z (X) error on a qubit (lo-
cated on the edges of the lattice) flips the value of the nearby
Xv (Zp) operators.

The decoding problem is then defined as identifying the er-
ror configuration for a given syndrome, i.e. a given measure-
ment of the outcomes of all stabilizers Xv and Zp. To do so,
we employ a two-step hierarchical procedure. In the first stage
– the ML-assisted preprocessing – we aim to remove those er-
rors that can be inferred from local syndromes. To this end,
we only consider qubits directly connected to so-called de-
fects (identified by an odd syndrome measurement Xv = �1
or Zp = �1), as they are the typical source of locally cor-
rectable errors. To infer which error is the most probable for
a given qubit, our preprocessing step shifts through all qubits
with a subsystem of size ` ⇥ ` centered around an ‘examina-
tion qubit’ located at its center (see the setup in Fig. 1). The
local inference task for each such examination qubit is then
assigned to a neural network, whose details we discuss below.
The results of the inference are collected and the resulting cor-
rections are applied in one shot at the end. The result of this
step is that a large number of local errors are decoded and only
a small fraction of non-local errors, manifest on scales beyond
the range of our subsystem, remain.

The second stage of our algorithm is to then process these
remaining non-local errors, which are left after updating the

depolarizing noise + syndrome errors

more nuanced observation:
lazy decoding for small error rates 
ML-decoding for large error rates
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summary

Code
Open-source C++ implementation of the Union-Find decoder 

Chae-Yeun Park & Kai Meinerz,  https://github.com/chaeyeunpark

Paper
Scalable Neural Decoder for Topological Surface Codes 
Kai Meinerz, Chae-Yeun Park & ST,  PRL 128, 080505 (2022).

Our hierarchical decoder with ML-assisted preprocessing simultaneously achieves

• improved error threshold for depolarizing noise (even w/ syndrome errors)

• algorithmic scalability up to tens of thousands of qubits

• real-life wall-clock times that best even those of the bare UF algorithm

This can be further improved by closer hardware integration, e.g. in situ decoding using FPGAs.
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