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Machine learning

Many computer programs/apps have machine learning algorithms built-in already.

In computer science, machine learning is concerned with 
algorithms that allow for data analytics, most prominently 
dimensional reduction and feature extraction.
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Machine learning

digital assistants self-driving cars

Applications of machine learning techniques are booming 
and poised to enter our daily lives.
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Machines at play

1996: G. Kasparow vs. IBM’s deep blue 2016: L. Sedol vs. Google’s AlphaGo

Machine learning techniques can make computers play.

A computer at play is probably one of the most striking realization 
of artificial intelligence.
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How do machines learn?

How do machines learn?

What is it that they can learn?
Can we control what they learn?

How can we benefit from machine learning?
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Artificial neural networks
and deep learning

Recommended introduction: http://neuralnetworksanddeeplearning.com by Michael Nielsen
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artificial neural networks
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Artificial neural networks mimic biological neural networks 
(albeit at a much smaller scale).

They allow for an implicit knowledge representation,
which is infused in supervised or unsupervised learning settings.
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artificial neural networks
artificial neurons
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example – Should I skip the first talk?

no topology?
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artificial neural networks
Artificial neural networks are pretty powerful.
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Like circuits of NAND gates artificial neural networks can encode arbitrarily 
complex logic functions, thus allowing for universal computation.

But the power of neural networks really comes about by varying 
the weights such that one obtains some desired functionality. 
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neural network architectures

input layer output layerhidden layers
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feedforward network

Neural networks with multiple hidden layers
have been popularized as “deep learning” networks.
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How to train a neural network?

•  quadratic cost function
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output
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Small adjustments on the level of a single neuron 
should result in small changes of the cost function.
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How to train a neural network?

gradient descent

•  quadratic cost function

desired
output

actual
output

C(~w,~b) =
1

2n

X

x

||y(x)� a(x)||2

•  back propagation algorithm
Rumelhart, Hinton & Williams, Nature (1986) 
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extremely efficient way to calculate all partial derivatives

needed for a gradient descent optimization.
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Three flavors of
machine learning

* thanks to Giuseppe Carleo (ETH Zurich) for some of the slides
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Supervised Learning

•  training with labeled data

{(x1, y1), (x2, y2), . . . , (xN , yN )}

data point expected label

C(w,b) =
1

2n

X

i

C[yi, F (xi,w,b)]

cost function output
neural network

•  stochastic gradient descent

(w,b)0 = (w,b)� ⌘ ·rC[yi, F (xi,w,b)]

learning
rate back propagation

noisy approximation
of the true gradient

converges to global minimum
(~Langevin dynamics)
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Example: digit recognition

Some 60 lines of code (Python/Julia) will do this for you with >95% accuracy.

labeled data
for training

label 9 label 3 label 1 label 0 label 6

label 5 label 0 label 9 label 3 label 7

9 example of
neural network

architecture
input image
28x28 pixels

input layer
784 neurons

hidden layer
100 neurons

output layer
10 neurons

output
predicted digit
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Physics: phase classification
NATURE PHYSICS DOI: 10.1038/NPHYS4035 LETTERS
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Figure 2 | Typical configurations of square-ice and Ising gauge models. a, A high-temperature state. b, A ground state of the square-ice Hamiltonian.
c, A ground state configuration of the Ising lattice gauge theory. Dark circles represent spins up, while white circles represent spins down. The vertices and
plaquettes defining the models are shown in the insets of b and c. d, Illustration of the convolutional neural network of the Ising gauge theory. The
convolutional layer applies 64 2⇥2 filters to the configuration on each sublattice, followed by rectified linear units (ReLu). The outcome is followed by a
fully connected layer with 64 units and a softmax output layer. The green line represents the sliding of the maps across the configuration.
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Figure 3 | Detecting the logarithmic crossover temperatures in the Ising
gauge theory. Output neurons for di�erent system sizes averaged over test
sets versus �J. Linear system sizes L=4,8, 12, 16,20,24 and 28 are
represented by crosses, up triangles, circles, diamonds, squares, stars and
hexagons. The inset displays �⇤J (octagons) versus L in a semilog scale.
The error bars represent one standard deviation statistical uncertainty.

A final implementation of our approach on a system of non-
interacting spinless fermions subject to a quasi-periodic poten-
tial24 demonstrates that neural networks can distinguish metallic

from Anderson localized phases, and can be used to study
the localization transition between them (see the Supplementary
Figs 3 and 4).

We have shown that neural network technology, developed
for applications such as computer vision and natural language
processing, can be used to encode phases ofmatter and discriminate
phase transitions in correlated many-body systems. In particular,
we have argued that neural networks encode information about
conventional ordered phases by learning the order parameter of the
phase, without knowledge of the energy or locality conditions of
theHamiltonian. Furthermore, we have shown that neural networks
can encode basic information about unconventional phases such
as the ones present in the square-ice model and the Ising lattice
gauge theory, as well as Anderson localized phases. These results
indicate that neural networks have the potential to represent ground
state wavefunctions. For instance, ground states of the toric code1,8
can be represented by convolutional neural networks akin to the
one in Fig. 2d (see Supplementary Fig. 6 and Supplementary
Table 1). We thus anticipate their use in the field of quantum
technology25, such as quantum error correction protocols26, and
quantum state tomography27. As in all other areas of ‘big data’,
we are already witnessing the rapid adoption of machine learning
techniques as a basic research tool in condensed matter and
statistical physics.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon request.

Received 27 June 2016; accepted 11 January 2017;
published online 13 February 2017

NATURE PHYSICS | VOL 13 | MAY 2017 | www.nature.com/naturephysics

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Carrasquilla and Melko, Nat. Phys. (2017) 

After training, 100% of configurations shown are correctly identified.
Try to do it by eye instead ...
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Unsupervised Learning

•  training with unlabeled data

{x1, x2, . . . , xN}

data point uniformly drawn
from (unknown)

P (x)

F (x,w,b) ' P (x)

Goal: Find an approximation for the 
data distribution (to find correlations etc.) 

•  typical cost function

Kullback-Leibler 
divergence

normalized probability 
(intractable)

DKL(P ||F ) =

X

i

P (xi) log
P (xi)

¯

F (xi)
rDKL(P ||F ) = hG(x)iP � hG(x)iF

gradient is difference between two expectation values 
(tractable with sampling, no need to know P) 
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Example: forging hand writing
http://www.cs.toronto.edu/~graves/handwriting.cgi

unsupervised
learning

on different
hand-writing

styles

arbitrary
sentences

using different
hand-writing

styles
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Physics: improve Monte Carlo moves
Huang, and Wang, PRB 95, 035105 (2017)

Liu, Qi, and Fu, PRB 95, 041101 (2017) 

We want to sample
efficiently from this

probability distribution.

P (x) F (x,w,b) ' P (x)

We can learn P, 
and perform standard 
cluster updates on F.

•  unsupervised training

•  transition probabilities

A(x ! x

0) = min

✓
1,

P (x0)

P (x)
· F (x)

F (x0)

◆

Use samples from 
machine as proposed 

configurations 

For perfectly learned F=P,
one always accepts move. 
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Reinforcement Learning

•  generate data, obtain feedback, come up with strategy

S[F ] min
F

S[F ]

“Scoring function” is a 
functional of the network 

Network generates/harvests 
data by some “strategy”

The best “strategy” 
obtains the best score

•  learning

Produce meaningful
input/output with F

Feedback from S
(reinforcement stimulus)

Adapt the network
accordingly

http://www.thp.uni-koeln.de/trebst/
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Example: game playing

after a short training period after a few hours of training

Silver et al., Nature 529, 484 (2016) 
(AlphaGo)

http://www.thp.uni-koeln.de/trebst/
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convolutional neural networks
Convolutional neural networks preprocess data by first looking for recurring 
patterns using small filters (and then sending it into a neural network).
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.

Slide filters across image and create new image based on how well they fit.

⌦
1 1 -1

-11 1
11 1

X

5
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.

http://www.thp.uni-koeln.de/trebst/
http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

convolutional neural networks
Convolutional neural networks have proved to be some of the most powerful 
ingredients for pattern recognition/machine learning.

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Physics: topological preprocessing

Quantum loop topography is a physics preprocessor allowing to identify
features associated with topological order in quantum many-body systems.

Yi (Frank) Zhang and Eun-Ah Kim,  PRL (2017)

What is Quantum Loop Topography? 

• Left side: 2D input lattice model 

• Mid-right: simple, fully-connected neural network 

• Right side: output judgement on the corresponding phase 

Quantum loop = sample of two-point operators that form loops.

What is Quantum Loop Topography? 

• Quantum loop: sample of two-point operators that form 
loops. Example: 
-  For a triangular loop jkl with length scale d 
-  operator evaluated at a Monte Carlo step a: 

YZ, Eun-Ah Kim,  PRL Editors’ Suggestion (2017). 
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Physics: topological preprocessing

Quantum loop topography is a physics preprocessor allowing to identify
features associated with topological order in quantum many-body systems.

Yi (Frank) Zhang and Eun-Ah Kim,  PRL (2017)
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GPUs & open-source codes
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Thanks!
Let’s take a break.
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