Machine Learning – *an introduction* –

Summer School on Emergent Phenomena in Quantum Materials Cornell, May 2017

Machine learning

In computer science, machine learning is concerned with algorithms that allow for **data analytics**, most prominently **dimensional reduction** and **feature extraction**.

Many computer programs/apps have machine learning algorithms built-in already.

Machine learning

Applications of machine learning techniques are booming and poised to enter our daily lives.

digital assistants

self-driving cars

Machines at play

Machine learning techniques can make **computers play**.

A computer at play is probably one of the most striking realization of **artificial intelligence**.

1996: G. Kasparow vs. IBM's deep blue

2016: L. Sedol vs. Google's AlphaGo

How do machines learn?

How do machines learn?

What is it that they can learn?

Can we **control** what they learn?

How can we **benefit** from machine learning?

biological neural network

artificial neural network

Artificial neural networks and deep learning

Recommended introduction: <u>http://neuralnetworksanddeeplearning.com</u> by Michael Nielsen

artificial neural networks

Artificial neural networks **mimic biological neural networks** (albeit at a much smaller scale).

They allow for an **implicit knowledge representation**, which is infused in **supervised** or **unsupervised learning** settings.

artificial neural networks

example – Should I skip the first talk?

artificial neural networks

Artificial neural networks are pretty powerful.

Like circuits of NAND gates artificial neural networks can encode arbitrarily complex logic functions, thus allowing for **universal computation**.

But the power of neural networks really comes about by **varying the weights** such that one obtains some desired **functionality**.

neural network architectures

Neural networks with **multiple hidden layers** have been popularized as **"deep learning"** networks.

How to train a neural network?

quadratic cost function

$$C(\vec{w}, \vec{b}) = \frac{1}{2n} \sum_{x} ||y(x) - a(x)||^2$$

desired actual output

Small adjustments on the level of a single neuron should result in small changes of the cost function.

perceptrons

sigmoid neurons

How to train a neural network?

quadratic cost function

$$C(\vec{w}, \vec{b}) = \frac{1}{2n} \sum_{x} ||y(x) - a(x)||^2$$

desired actual
output output

back propagation algorithm

Rumelhart, Hinton & Williams, Nature (1986)

extremely efficient way to calculate *all* partial derivatives

∂C	∂C
$\overline{\partial w}$	$\overline{\partial b}$

needed for a gradient descent optimization.

gradient descent

Three flavors of machine learning

* thanks to Giuseppe Carleo (ETH Zurich) for some of the slides

Supervised Learning

• training with labeled data

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

$$C(\mathbf{w}, \mathbf{b}) = \frac{1}{2n} \sum_i C[y_i, F(x_i, \mathbf{w}, \mathbf{b})]$$

$$data point expected label cost function output neural network$$

• stochastic gradient descent

$$(\mathbf{w}, \mathbf{b})' = (\mathbf{w}, \mathbf{b}) - \eta \cdot \nabla C[y_i, F(x_i, \mathbf{w}, \mathbf{b})]$$

$$(\mathbf{w}, \mathbf{b})' = (\mathbf{w}, \mathbf{b}) - \eta \cdot \nabla C[y_i, F(x_i, \mathbf{w}, \mathbf{b})]$$

$$(\mathbf{w}, \mathbf{b})' = (\mathbf{w}, \mathbf{b}) - \eta \cdot \nabla C[y_i, F(x_i, \mathbf{w}, \mathbf{b})]$$

$$(\mathbf{w}, \mathbf{b})' = (\mathbf{w}, \mathbf{b}) - \eta \cdot \nabla C[y_i, F(x_i, \mathbf{w}, \mathbf{b})]$$

Example: digit recognition

© Simon Trebst

Physics: phase classification

Carrasquilla and Melko, Nat. Phys. (2017)

After training, 100% of configurations shown are correctly identified. Try to do it by eye instead ...

Unsupervised Learning

• training with **unlabeled data**

 $F(x, \mathbf{w}, \mathbf{b}) \simeq P(x)$

Goal: Find an approximation for the data distribution (to find correlations etc.)

typical cost function

$$D_{\mathrm{KL}}(P||F) = \sum_{i} P(x_i) \log \frac{P(x_i)}{\bar{F}(x_i)}$$

Kullback-Leibler normalized probability (intractable)

 $\nabla D_{\mathrm{KL}}(P||F) = \langle G(x) \rangle_P - \langle G(x) \rangle_F$

gradient is difference between two expectation values (tractable with sampling, no need to know P)

Example: forging hand writing

http://www.cs.toronto.edu/~graves/handwriting.cgi

Connell'is the best place for a summer school. Cornell is the best place for a summer school. Comell is the best place for a summer school.

unsupervised learning on different hand-writing styles

Machine learning is farmating. Physicists are always skeptical. Does it really work?

arbitrary sentences using different hand-writing styles

Physics: improve Monte Carlo moves

Huang, and Wang, PRB 95, 035105 (2017) Liu, Qi, and Fu, PRB 95, 041101 (2017)

P(x)

We want to sample efficiently from this probability distribution.

 $F(x, \mathbf{w}, \mathbf{b}) \simeq P(x)$

We can learn *P*, and perform standard cluster updates on *F*.

Use samples from transition probabilities machine as proposed configurations $A(x \to x') = \min\left(1, \frac{P(x')}{P(x)} \cdot \frac{F(x)}{F(x')}\right)$ For perfectly learned F=P,

Reinforcement Learning

• generate data, obtain feedback, come up with strategy

Example: game playing

Silver et al., Nature 529, 484 (2016) (AlphaGo)

after a few hours of training

after a short training period

Preprocessing

Convolutional neural networks preprocess data by first looking for **recurring patterns** using small filters (and then sending it into a neural network).

Convolutional neural networks look for **recurring patterns** using small filters.

Convolutional neural networks look for **recurring patterns** using small filters.

Slide filters across image and create new image based on how well they fit.

Convolutional neural networks look for **recurring patterns** using small filters.

Convolutional neural networks have proved to be some of the most powerful ingredients for **pattern recognition**/machine learning.

mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golf cart	egyptian cat

convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grapes	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	shaffordshire Bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

Physics: topological preprocessing

Yi (Frank) Zhang and Eun-Ah Kim, PRL (2017)

Quantum loop topography is a physics preprocessor allowing to identify features associated with topological order in quantum many-body systems.

Quantum loop = sample of two-point operators that form loops.

$$\tilde{P}_{jk}\tilde{P}_{kl}\tilde{P}_{lj}$$
$$\tilde{P}_{jk} \equiv \left\langle c_j^{\dagger}c_k \right\rangle_{\alpha}$$

Physics: topological preprocessing

Yi (Frank) Zhang and Eun-Ah Kim, PRL (2017)

Quantum loop topography is a physics preprocessor allowing to identify features associated with topological order in quantum many-body systems.

© Simon Trebst

Need for Speed

GPUs & open-source codes

Thanks!

Let's take a break.

