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Supervised learning approach

Supervised learning approach 
1) train convolutional neural network on representative “images” deep within the two phases
2) apply trained network to “images” sampled elsewhere to predict phases + transition

What are the right images to feed into the neural network?

phase A phase B
phase

transition

train
here

train
here

predict phases by applying neural network here

step 1

step 2
�

General setup
Consider some Hamiltonian, which as a function of some parameter λ exhibits 
a phase transition between two phases.
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Figure 1 | Machine learning the ferromagnetic Ising model. a, The output layer averaged over a test set as a function of T/J for the square-lattice
ferromagnetic Ising model. The inset in a displays a schematic of the fully connected neural network used in our simulations. b, Plot showing data collapse
of the average output layer as a function of tL1/⌫ , where t=(T �Tc)/J is the reduced temperature. Linear system sizes L= 10,20,30,40 and 60 are
represented by crosses, up triangles, circles, diamonds and squares, respectively. c, Plot of the finite-size scaling of the crossing temperature T⇤/J (down
triangles). d–f, Analogous data to a–b, but for the triangular Ising ferromagnet using the neural network trained for the square-lattice model. The vertical
orange lines signal the critical temperatures of the models in the thermodynamic limit, Tc/J=2/ ln(1+

p
2) for the square lattice17 and Tc/J=4/ ln3 for the

triangular lattice19. The dashed vertical lines represent our estimates of Tc/J from finite-size scaling. The error bars represent one standard deviation
statistical uncertainty (see Supplementary Information).

and the high-temperature states are distinguished by their spin–spin
correlation functions: power-law decay at T = 0, and exponential
decay at T =1. Instead we feed raw Monte Carlo configurations
to train a neural network (Fig. 1a) to distinguish ground states
from high-temperature states (Fig. 2a,b). For a square-ice system
with N = 2⇥ 16⇥ 16 spins, we find that a neural network with
100 hidden units successfully distinguishes the states with a 99%
accuracy. The network does so solely based on spin configurations,
with no information about the underlying lattice—a feat di�cult for
the human eye, even if supplemented with a layout of the underlying
Hamiltonian locality.

We now examine an Ising lattice gauge theory, the prototypical
example of a topological phase of matter, without an order param-
eter at T = 0 (refs 8,20). The Hamiltonian is H =�J

P
p

Q
i2p � z

i ,
where the Ising spins live on the bonds of a two-dimensional square
lattice with plaquettes p (see Fig. 2c). The ground state is again a
degenerate manifold8,21 with exponentially decaying spin–spin cor-
relations. As in the square-ice model, we attempt to use the neural
network in Fig. 1a to classify the high- and low-temperature states,
but find that the training fails to classify the test sets to an accuracy
of over 50%—equivalent to simply guessing. Instead, we employ a
convolutional neural network (CNN)3,22 which readily takes advan-
tage of the two-dimensional structure as well as the translational
invariance of the model. We optimize the CNN in Fig. 2d using
Monte Carlo configurations from the Ising gauge theory at T = 0
andT =1. The CNNdiscriminates high-temperature from ground
states with an accuracy of 100% in spite of the lack of an order
parameter or qualitative di�erences in the spin–spin correlations.

We find that the discriminative power of the CNN relies on the det-
ection of satisfied local energetic constraints of the theory, namely
whether

Q
i2p � z

i is either +1 (satisfied) or �1 (unsatisfied) on
each plaquette of the system (see the Supplementary Fig. 5). We
construct an analytical model to explicitly exploit the presence of
local constraints in the classification task, which discriminates our
test sets with an accuracy of 100% (see Supplementary Fig. 6).

Notice that, because there is no finite-temperature phase
transition in the Ising gauge theory, we have restricted our analysis
to temperatures T =0 and T =1, only. However, in finite systems,
violations of the local constraints are strongly suppressed, and the
system is expected to slowly cross over to the high-temperature
phase. The crossover temperature T ⇤ happens as the number of
thermally excited defects ⇠N exp(�2J�) is of the order of one,
implying T ⇤/J ⇠1/ ln

p
N (ref. 23). As the presence of local defects

is the mechanism through which the CNN decides whether a
system is in its ground state or not, we expect that it will be
able to detect the crossover temperature in a test set at small but
finite temperatures. In Fig. 3 we present the results of the output
neurons of our analytical model for di�erent system sizes averaged
over test sets at di�erent temperatures. We estimate the inverse
crossover temperature �⇤J based on the crossing point of the low-
and high-temperature output neurons. As expected theoretically,
this depends on the system size, and as shown in the inset in Fig. 3,
a clear logarithmic crossover is apparent. This result showcases the
ability of the CNN to detect not only phase transitions, but also
non-trivial crossovers between topological phases and their high-
temperature counterparts.
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Figure 1 | Machine learning the ferromagnetic Ising model. a, The output layer averaged over a test set as a function of T/J for the square-lattice
ferromagnetic Ising model. The inset in a displays a schematic of the fully connected neural network used in our simulations. b, Plot showing data collapse
of the average output layer as a function of tL1/⌫ , where t=(T �Tc)/J is the reduced temperature. Linear system sizes L= 10,20,30,40 and 60 are
represented by crosses, up triangles, circles, diamonds and squares, respectively. c, Plot of the finite-size scaling of the crossing temperature T⇤/J (down
triangles). d–f, Analogous data to a–b, but for the triangular Ising ferromagnet using the neural network trained for the square-lattice model. The vertical
orange lines signal the critical temperatures of the models in the thermodynamic limit, Tc/J=2/ ln(1+

p
2) for the square lattice17 and Tc/J=4/ ln3 for the

triangular lattice19. The dashed vertical lines represent our estimates of Tc/J from finite-size scaling. The error bars represent one standard deviation
statistical uncertainty (see Supplementary Information).
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decay at T =1. Instead we feed raw Monte Carlo configurations
to train a neural network (Fig. 1a) to distinguish ground states
from high-temperature states (Fig. 2a,b). For a square-ice system
with N = 2⇥ 16⇥ 16 spins, we find that a neural network with
100 hidden units successfully distinguishes the states with a 99%
accuracy. The network does so solely based on spin configurations,
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the human eye, even if supplemented with a layout of the underlying
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relations. As in the square-ice model, we attempt to use the neural
network in Fig. 1a to classify the high- and low-temperature states,
but find that the training fails to classify the test sets to an accuracy
of over 50%—equivalent to simply guessing. Instead, we employ a
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Figure 1 | Machine learning the ferromagnetic Ising model. a, The output layer averaged over a test set as a function of T/J for the square-lattice
ferromagnetic Ising model. The inset in a displays a schematic of the fully connected neural network used in our simulations. b, Plot showing data collapse
of the average output layer as a function of tL1/⌫ , where t=(T �Tc)/J is the reduced temperature. Linear system sizes L= 10,20,30,40 and 60 are
represented by crosses, up triangles, circles, diamonds and squares, respectively. c, Plot of the finite-size scaling of the crossing temperature T⇤/J (down
triangles). d–f, Analogous data to a–b, but for the triangular Ising ferromagnet using the neural network trained for the square-lattice model. The vertical
orange lines signal the critical temperatures of the models in the thermodynamic limit, Tc/J=2/ ln(1+

p
2) for the square lattice17 and Tc/J=4/ ln3 for the

triangular lattice19. The dashed vertical lines represent our estimates of Tc/J from finite-size scaling. The error bars represent one standard deviation
statistical uncertainty (see Supplementary Information).

and the high-temperature states are distinguished by their spin–spin
correlation functions: power-law decay at T = 0, and exponential
decay at T =1. Instead we feed raw Monte Carlo configurations
to train a neural network (Fig. 1a) to distinguish ground states
from high-temperature states (Fig. 2a,b). For a square-ice system
with N = 2⇥ 16⇥ 16 spins, we find that a neural network with
100 hidden units successfully distinguishes the states with a 99%
accuracy. The network does so solely based on spin configurations,
with no information about the underlying lattice—a feat di�cult for
the human eye, even if supplemented with a layout of the underlying
Hamiltonian locality.

We now examine an Ising lattice gauge theory, the prototypical
example of a topological phase of matter, without an order param-
eter at T = 0 (refs 8,20). The Hamiltonian is H =�J

P
p

Q
i2p � z

i ,
where the Ising spins live on the bonds of a two-dimensional square
lattice with plaquettes p (see Fig. 2c). The ground state is again a
degenerate manifold8,21 with exponentially decaying spin–spin cor-
relations. As in the square-ice model, we attempt to use the neural
network in Fig. 1a to classify the high- and low-temperature states,
but find that the training fails to classify the test sets to an accuracy
of over 50%—equivalent to simply guessing. Instead, we employ a
convolutional neural network (CNN)3,22 which readily takes advan-
tage of the two-dimensional structure as well as the translational
invariance of the model. We optimize the CNN in Fig. 2d using
Monte Carlo configurations from the Ising gauge theory at T = 0
andT =1. The CNNdiscriminates high-temperature from ground
states with an accuracy of 100% in spite of the lack of an order
parameter or qualitative di�erences in the spin–spin correlations.

We find that the discriminative power of the CNN relies on the det-
ection of satisfied local energetic constraints of the theory, namely
whether

Q
i2p � z

i is either +1 (satisfied) or �1 (unsatisfied) on
each plaquette of the system (see the Supplementary Fig. 5). We
construct an analytical model to explicitly exploit the presence of
local constraints in the classification task, which discriminates our
test sets with an accuracy of 100% (see Supplementary Fig. 6).

Notice that, because there is no finite-temperature phase
transition in the Ising gauge theory, we have restricted our analysis
to temperatures T =0 and T =1, only. However, in finite systems,
violations of the local constraints are strongly suppressed, and the
system is expected to slowly cross over to the high-temperature
phase. The crossover temperature T ⇤ happens as the number of
thermally excited defects ⇠N exp(�2J�) is of the order of one,
implying T ⇤/J ⇠1/ ln

p
N (ref. 23). As the presence of local defects

is the mechanism through which the CNN decides whether a
system is in its ground state or not, we expect that it will be
able to detect the crossover temperature in a test set at small but
finite temperatures. In Fig. 3 we present the results of the output
neurons of our analytical model for di�erent system sizes averaged
over test sets at di�erent temperatures. We estimate the inverse
crossover temperature �⇤J based on the crossing point of the low-
and high-temperature output neurons. As expected theoretically,
this depends on the system size, and as shown in the inset in Fig. 3,
a clear logarithmic crossover is apparent. This result showcases the
ability of the CNN to detect not only phase transitions, but also
non-trivial crossovers between topological phases and their high-
temperature counterparts.
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Figure 1 | Machine learning the ferromagnetic Ising model. a, The output layer averaged over a test set as a function of T/J for the square-lattice
ferromagnetic Ising model. The inset in a displays a schematic of the fully connected neural network used in our simulations. b, Plot showing data collapse
of the average output layer as a function of tL1/⌫ , where t=(T �Tc)/J is the reduced temperature. Linear system sizes L= 10,20,30,40 and 60 are
represented by crosses, up triangles, circles, diamonds and squares, respectively. c, Plot of the finite-size scaling of the crossing temperature T⇤/J (down
triangles). d–f, Analogous data to a–b, but for the triangular Ising ferromagnet using the neural network trained for the square-lattice model. The vertical
orange lines signal the critical temperatures of the models in the thermodynamic limit, Tc/J=2/ ln(1+
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triangular lattice19. The dashed vertical lines represent our estimates of Tc/J from finite-size scaling. The error bars represent one standard deviation
statistical uncertainty (see Supplementary Information).

and the high-temperature states are distinguished by their spin–spin
correlation functions: power-law decay at T = 0, and exponential
decay at T =1. Instead we feed raw Monte Carlo configurations
to train a neural network (Fig. 1a) to distinguish ground states
from high-temperature states (Fig. 2a,b). For a square-ice system
with N = 2⇥ 16⇥ 16 spins, we find that a neural network with
100 hidden units successfully distinguishes the states with a 99%
accuracy. The network does so solely based on spin configurations,
with no information about the underlying lattice—a feat di�cult for
the human eye, even if supplemented with a layout of the underlying
Hamiltonian locality.

We now examine an Ising lattice gauge theory, the prototypical
example of a topological phase of matter, without an order param-
eter at T = 0 (refs 8,20). The Hamiltonian is H =�J

P
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where the Ising spins live on the bonds of a two-dimensional square
lattice with plaquettes p (see Fig. 2c). The ground state is again a
degenerate manifold8,21 with exponentially decaying spin–spin cor-
relations. As in the square-ice model, we attempt to use the neural
network in Fig. 1a to classify the high- and low-temperature states,
but find that the training fails to classify the test sets to an accuracy
of over 50%—equivalent to simply guessing. Instead, we employ a
convolutional neural network (CNN)3,22 which readily takes advan-
tage of the two-dimensional structure as well as the translational
invariance of the model. We optimize the CNN in Fig. 2d using
Monte Carlo configurations from the Ising gauge theory at T = 0
andT =1. The CNNdiscriminates high-temperature from ground
states with an accuracy of 100% in spite of the lack of an order
parameter or qualitative di�erences in the spin–spin correlations.

We find that the discriminative power of the CNN relies on the det-
ection of satisfied local energetic constraints of the theory, namely
whether

Q
i2p � z

i is either +1 (satisfied) or �1 (unsatisfied) on
each plaquette of the system (see the Supplementary Fig. 5). We
construct an analytical model to explicitly exploit the presence of
local constraints in the classification task, which discriminates our
test sets with an accuracy of 100% (see Supplementary Fig. 6).

Notice that, because there is no finite-temperature phase
transition in the Ising gauge theory, we have restricted our analysis
to temperatures T =0 and T =1, only. However, in finite systems,
violations of the local constraints are strongly suppressed, and the
system is expected to slowly cross over to the high-temperature
phase. The crossover temperature T ⇤ happens as the number of
thermally excited defects ⇠N exp(�2J�) is of the order of one,
implying T ⇤/J ⇠1/ ln

p
N (ref. 23). As the presence of local defects

is the mechanism through which the CNN decides whether a
system is in its ground state or not, we expect that it will be
able to detect the crossover temperature in a test set at small but
finite temperatures. In Fig. 3 we present the results of the output
neurons of our analytical model for di�erent system sizes averaged
over test sets at di�erent temperatures. We estimate the inverse
crossover temperature �⇤J based on the crossing point of the low-
and high-temperature output neurons. As expected theoretically,
this depends on the system size, and as shown in the inset in Fig. 3,
a clear logarithmic crossover is apparent. This result showcases the
ability of the CNN to detect not only phase transitions, but also
non-trivial crossovers between topological phases and their high-
temperature counterparts.
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FIG. 3. Typical configurations of square ice and Ising gauge models. (A) A high-temperature state.

(B) A ground state of the square ice Hamiltonian. (C) A ground state configuration of the Ising

lattice gauge theory. The vertices and plaquettes defining the square ice and Ising gauge theory

Hamiltonians are shown in the insets of (B) and (C).

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[7, 20]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i

where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [7, 21] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish

from the high temperature phase.

Just as in the square ice model, we have made an attempt to use the neural network in

Figure 1(A) to classify the high- and low- temperature states in the Ising gauge theory. A

straightforward implementation of supervised training fails to classify a test set containing

samples of the two states to an accuracy over 50% – equivalent to simply guessing. Such

failures typically occur because the neural network overfits to the training set. To over-

come this di�culty we consider a convolutional neural network (CNN) [4, 22] which readily

takes advantage of the two-dimensional structure of the input configurations, as well as the

translational invariance of the model. The CNN in Figure 4 is detailed in the supplemen-

tary materials. We optimize the CNN using Monte Carlo configurations drawn from the

partition function of the Ising gauge theory at T = 0 and T = 1. Using this setting, the

CNN successfully discriminates high-temperature from ground states with an accuracy of

100% on a test set with 1 ⇥ 104 configurations, in spite of the lack of an order parameter

or qualitative di↵erences in the spin-spin correlations. Through the generation of new test

More interestingly, the convolutional neural network can also be trained to distinguish 
the high-T paramagnet from a Coulomb phase or loop gas ground state, i.e. phases 
without a local order parameter.

Carrasquilla and Melko, Nat. Phys. (2017) 
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Dirac fermions
Hubbard models on the honeycomb lattice

Spinful fermions

H = �t
X

hi,ji,�

c†i,�cj,� + U
X

i

n",in#,i

semi-metal spin density wave
Gross-Neveu type

fermionic quantum phase transition

U/t

H = �t
X

hi,ji

⇣
c†i cj + c†jci

⌘
+ V

X

hi,ji

ninj

Spinless fermions

semi-metal charge density wave
V/t

no sign
problem

severe sign
problem

http://www.thp.uni-koeln.de/trebst/
http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

Supervised learning approach

But what are the right images to represent a quantum state?

Supervised learning approach 
1) train convolutional neural network on representative “images” deep within the two phases
2) apply trained network to “images” sampled elsewhere to predict phases + transition

phase A phase B
phase

transition

train
here

train
here

predict phases by applying neural network here

step 1

step 2
�
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Monte Carlo for fermions

Determinantal (or auxiliary field) quantum Monte Carlo 
for unbiased studies of strongly interacting fermions

Path integral representation of partition sum

Decouple quartic interaction via Hubbard-Stratonovich 
transformation

Now integrate out free fermions moving in background field

Z =
X

s

detU(s)

sample Hubbard-Stratonovich field
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Hubbard-Stratonovich decoupling

Decoupling quartic interaction via Hubbard-Stratonovich 
transformation introduces an Ising-type auxiliary field

site site

auxiliary
field

Vi = n"
in

#
i Vi(s)
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Hubbard-Stratonovich decoupling

real-space coupling
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Hubbard-Stratonovich decoupling

real-space coupling
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Hubbard-Stratonovich decoupling

The auxiliary field has a natural interpretation has “image”.
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Hubbard-Stratonovich decoupling

The auxiliary field has a natural interpretation has “image”.
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Supervised learning / auxiliary fields
Case 1 – spinful fermions

The choice of Hubbard-Stratonovich transformation influences
image, i.e. when coupling to ... 

magnetization
breaks SU(2)

semi-metal

SDW

charge
preserves SU(2)

semi-metal

SDW
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Supervised learning / auxiliary fields
coupling to magnetization
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Supervised learning / auxiliary fields
coupling to charge
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Supervised learning / Green’s functions

Green’s functions sampled as complex valued matrices. 

Convert into color-coded image  using HSV color scheme.

Hue

Saturation

Value (opacity)

hue

saturationc = |c| · ei�
Our color mapping

Alternative – Green’s functions G(i, j) = hci c
†
ji
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Supervised learning / Green’s functions
Green’s functions for spinful fermion model 

semi-metal

SDW

L = 2x9x9
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Spinful fermions
Green’s functions are ideal objects/images for machine learning 
based discrimination of quantum phases.
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Some intermediate conclusions

QMC + machine learning approach can be used to 
distinguish phases of interacting many-fermion systems.

The ensemble of sampled Green’s functions contains 
sufficient information to discriminate fermionic phases.

Green’s functions are ideal “images” for machine learning.
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sign problem
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Algorithmic power of Monte Carlo

c1 ! c2 ! . . . ci ! ci+1 ! . . .

Sample configurations in high-dimensional space

Metropolis (1953): accept new configuration with probability

pacc = min

✓
1,

w(cj)

w(ci)

◆

Simultaneously measured observables converge in polynomial time.

Tremendous impact across many different fields. 
In hard condensed matter • percolation

• phase transitions
• quantum magnetism
• ultracold bosons
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Quantum Monte Carlo

classical Monte Carlo hOi =
P

C O(C) e��E(C)
P

C e
��E(C)

quantum Monte Carlo hOi = TrOe��H

Tr e��H

Map quantum to classical system Z = Tr e��H =
X

C
p(C)

Map to “world lines” of the 
trajectories of the particles

Monte Carlo sampling
of these world lines 

space

im
ag

in
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y 
tim

e

�
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The sign problem

hOi =
PO(C)p(C)P

p(C) =

PO(C)�(C)|p(C)|P
�(C)|p(C)| =

hO · �iabs
h�iabs

Expectation value for observables

when we ignore the sign of the configuration weights.

... resulting in an exponentially slow convergence of the statistical error

... but the average sign decreases exponentially 

h�iabs =
P

�(C)|p(C)|P
|p(C)| =

Z

Zabs
= exp (��N�f)

Fundamental limit for quantum Monte Carlo simulations of
• fermions
• many-electron systems
• frustrated quantum magnetism, spin liquids

��

h�i =

p
h�2i � h�i2p

Mh�i
⇡ e�N�f

p
M
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Is there a way out?
The sign problem is basis dependent

energy eigenbasis simulation basis

exponentially hard

Successful basis changes
meron cluster Wiese et al.,  PRL (1995)

fermion bag Chandrasekharan,  PRD (2009)

Majorana fermion basis Yao et al.,  PRB (2015)

no general solution Troyer and Wiese,  PRL (2005) the sign problem is NP-hard

Change of perspective

entanglement entropies Broecker and Trebst, PRB (2016)

effective, sign-problem free actions Berg, Metlitski, and Sachdev,  Science (2012)
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sign problem
+ machine learning

arXiv:1608.07848
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Can we bypass the sign problem?
QMC sampling + statistical analysis

hOi =
PO(C)p(C)P

p(C) =

PO(C)�(C)|p(C)|P
�(C)|p(C)| =

hO · �iabs
h�iabs

QMC sampling + machine learning

hFiabs =
P

F(C)|p(C)|P
|p(C)

Assume there exists a “state function”

that is 0 deep in phase A and 1 deep in phase B.
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Spinless fermions
QMC + machine learning approach gives useful results even
for systems with a severe sign problem.
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unsupervised learning

Peter Broecker, Fakher Assaad, and ST, in preparation 
related ideas in Evert van Nieuwenburg, Ye-Hua Liu, and Sebastian Huber, Nature Physics (2017)
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Unsupervised learning
Employ ability to “blindly” distinguish phases to map out an entire
phase diagram with no hitherto knowledge about the phases. 

Example: hardcore bosons / XXZ model on a square lattice
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Finite-Temperature Phase Diagram of Hard-Core Bosons in Two Dimensions

Guido Schmid,1 Synge Todo,1,2 Matthias Troyer,1 and Ansgar Dorneich3
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We determine the finite-temperature phase diagram of the square lattice hard-core boson Hubbard
model with nearest neighbor repulsion using quantum Monte Carlo simulations. This model is equivalent
to an anisotropic spin-1!2 XXZ model in a magnetic field. We present the rich phase diagram with a
first order transition between a solid and superfluid phase, instead of a previously conjectured supersolid
and a tricritical end point to phase separation. Unusual reentrant behavior with ordering upon increasing
the temperature is found, similar to the Pomeranchuk effect in 3He.
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A nearly universal feature of strongly correlated systems
is a phase transition between a correlation-induced insulat-
ing phase, with localized charge carriers, and an itinerant
phase. High-temperature superconductors [1], manganites
[2], and the controversial two-dimensional (2D) “metal-
insulator transition” [3] are just a few examples of this
phenomenon. The 2D hard-core boson Hubbard model
provides the simplest example of such a transition from
a correlation-induced charge density wave insulator near
half filling to a superfluid (SF). It is a prototypical model
for preformed Cooper pairs [4], spin flops in anisotropic
quantum magnets [5,6], SF helium films [7], and super-
solids [8,9].

In simulations of this model, which does not suffer from
the negative sign problem of fermionic simulations, we
can investigate some of the pertinent questions about such
phase transitions: what is the order of the quantum phase
transitions in the ground state and the finite-temperature
phase transitions? Are there special points with dynami-
cally enhanced symmetry [10]? Can there be coexistence
of two types of order (such as a supersolid–coexisting
solid and superfluid order)? Answers to these questions
also provide insight into the other problems alluded to
above.

The Hamiltonian of the hard-core boson Hubbard model
we study is

H ! 2t
X

"i,j#
$ay

i aj 1 ay
j ai% 1 V

X

"i,j#
ninj 2 m

X

i
ni ,

(1)

where ay
i $ai% is the creation (annihilation) operator for

hard-core bosons, ni ! ay
i ai is the number operator,

V is the nearest neighbor Coulomb repulsion, and m is
the chemical potential. This model is equivalent to an
anisotropic spin-1!2 XXZ model with Jz ! V and jJxyj !
2t in a magnetic field h ! 2V 2 m. The zero field (and
zero magnetization mz ! 0) case of the spin model
corresponds to the half filled bosonic model (density
r ! "mz# ! 1!2) at m ! 2V . Throughout this Letter
we will use the bosonic language, and refer to the corre-

sponding quantities in the spin model where appropriate.
Because of the absence of efficient Monte Carlo algo-
rithms for classical magnets in a magnetic field there are
still many open questions even in the classical version of
this model, which was only studied by a local updated
method [11].

In Fig. 1 we show the ground-state phase diagram
[6,9,12]. For dominating chemical potential m the system
is in a band insulating state (r ! 0 and r ! 1, respec-
tively), while it shows staggered checkerboard charge
order (r ! 1!2) for dominating repulsion V . These solid
phases are separated from each other by a SF. Earlier
indications for a region of supersolid phase between the
checkerboard solid and SF phase turned out to be due to
phase separation at this transition which is of first order
at T ! 0 [6,9,12].

All of these phases extend to finite temperatures. On
the strong repulsion side the hard-core boson Hubbard
model is equivalent to an antiferromagnetic Ising model at
t ! 0, and the insulating behavior extends up to a finite-
temperature phase transition of the Ising universality class
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FIG. 1. Ground-state phase diagram of the hard-core boson
Hubbard model. The dashed line indicates the cut along which
we calculated the finite-temperature phase diagram shown in
Fig. 2.
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Unsupervised learning
Employ ability to “blindly” distinguish phases to map out an entire
phase diagram with no hitherto knowledge about the phases. 

Example: hardcore bosons / XXZ model on a square lattice
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We determine the finite-temperature phase diagram of the square lattice hard-core boson Hubbard
model with nearest neighbor repulsion using quantum Monte Carlo simulations. This model is equivalent
to an anisotropic spin-1!2 XXZ model in a magnetic field. We present the rich phase diagram with a
first order transition between a solid and superfluid phase, instead of a previously conjectured supersolid
and a tricritical end point to phase separation. Unusual reentrant behavior with ordering upon increasing
the temperature is found, similar to the Pomeranchuk effect in 3He.
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A nearly universal feature of strongly correlated systems
is a phase transition between a correlation-induced insulat-
ing phase, with localized charge carriers, and an itinerant
phase. High-temperature superconductors [1], manganites
[2], and the controversial two-dimensional (2D) “metal-
insulator transition” [3] are just a few examples of this
phenomenon. The 2D hard-core boson Hubbard model
provides the simplest example of such a transition from
a correlation-induced charge density wave insulator near
half filling to a superfluid (SF). It is a prototypical model
for preformed Cooper pairs [4], spin flops in anisotropic
quantum magnets [5,6], SF helium films [7], and super-
solids [8,9].

In simulations of this model, which does not suffer from
the negative sign problem of fermionic simulations, we
can investigate some of the pertinent questions about such
phase transitions: what is the order of the quantum phase
transitions in the ground state and the finite-temperature
phase transitions? Are there special points with dynami-
cally enhanced symmetry [10]? Can there be coexistence
of two types of order (such as a supersolid–coexisting
solid and superfluid order)? Answers to these questions
also provide insight into the other problems alluded to
above.

The Hamiltonian of the hard-core boson Hubbard model
we study is

H ! 2t
X

"i,j#
$ay

i aj 1 ay
j ai% 1 V

X

"i,j#
ninj 2 m

X

i
ni ,

(1)

where ay
i $ai% is the creation (annihilation) operator for

hard-core bosons, ni ! ay
i ai is the number operator,

V is the nearest neighbor Coulomb repulsion, and m is
the chemical potential. This model is equivalent to an
anisotropic spin-1!2 XXZ model with Jz ! V and jJxyj !
2t in a magnetic field h ! 2V 2 m. The zero field (and
zero magnetization mz ! 0) case of the spin model
corresponds to the half filled bosonic model (density
r ! "mz# ! 1!2) at m ! 2V . Throughout this Letter
we will use the bosonic language, and refer to the corre-

sponding quantities in the spin model where appropriate.
Because of the absence of efficient Monte Carlo algo-
rithms for classical magnets in a magnetic field there are
still many open questions even in the classical version of
this model, which was only studied by a local updated
method [11].

In Fig. 1 we show the ground-state phase diagram
[6,9,12]. For dominating chemical potential m the system
is in a band insulating state (r ! 0 and r ! 1, respec-
tively), while it shows staggered checkerboard charge
order (r ! 1!2) for dominating repulsion V . These solid
phases are separated from each other by a SF. Earlier
indications for a region of supersolid phase between the
checkerboard solid and SF phase turned out to be due to
phase separation at this transition which is of first order
at T ! 0 [6,9,12].

All of these phases extend to finite temperatures. On
the strong repulsion side the hard-core boson Hubbard
model is equivalent to an antiferromagnetic Ising model at
t ! 0, and the insulating behavior extends up to a finite-
temperature phase transition of the Ising universality class
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FIG. 1. Ground-state phase diagram of the hard-core boson
Hubbard model. The dashed line indicates the cut along which
we calculated the finite-temperature phase diagram shown in
Fig. 2.

167208-1 0031-9007!02!88(16)!167208(4)$20.00 © 2002 The American Physical Society 167208-1

PRL 88, 167208 (2002) preliminary results

checkerboard 
solid

superfluidempty full

�

h

6

�12
0

12 h�12 12 h�12 12

�

6

0

(a) (b) (c)
hS+

i S�
j i+ hS�

i S+
j i real space hwindow in    direction

learning rate 0.0001
window width 0.5
fully connected network, 1024 neurons

http://www.thp.uni-koeln.de/trebst/
http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

Topological order

Toy model for topological order in a fermionic system: 
fermions coupled to (quantum) Z2 (Ising) spins on bonds 

Assaad and Grover, PRX (2016)
Gazit, Randeria & Vishwanath,  Nature Physics (2017) 

H =
X

hi,ji

Zhi,ji

 
NX

↵=1

c†i,↵cj,↵ + h.c.

!
+Nh
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hiji
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Topological order

Toy model for topological order in a fermionic system: 
fermions coupled to (quantum) Z2 (Ising) spins on bonds 

H =
X

hi,ji

Zhi,ji
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!
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Z2 Dirac SDW
h

Assaad and Grover, PRX (2016)
Gazit, Randeria & Vishwanath,  Nature Physics (2017) 
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Topological order
Toy model for topological order in a fermionic system: 
fermions coupled to (quantum) Z2 (Ising) spins on bonds 
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quantum state tomography

Giuseppe Carleo and Matthias Troyer, Science 355, 602 (2017)
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quantum state tomographyNeural-Network Quantum States  (I)
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Figure 3. Finding the many-body ground-state energy with neural-network quantum states. Shown is the error of
the NQS ground-state energy relative to the exact value, for several test cases. Arbitrary precision on the ground-state energy
can be obtained upon increasing the hidden units density, ↵. (Left panel) Accuracy for the one-dimensional TFI model, at a
few values of the field strength h, and for a 80 spins chain with PBC. Points below 10�8 are not shown to easy readability.
(Central panel) Accuracy for the one-dimensional AFH model, for a 80 spins chain with PBC, compared to the Jastrow ansatz
(horizontal dashed line). (Right panel) Accuracy for the AFH model on a 10 ⇥ 10 square lattice with PBC, compared to the
precision obtained by EPS (upper dashed line) and PEPS (lower dashed line). For all cases considered here the NQS description
reaches MPS-grade accuracies in 1D, while it systematically improves the best known variational states for 2D finite lattice
systems.

accuracy which is compatible with a power-law behavior
in ↵. The hardest to learn ground-state is at the quan-
tum critical point h = 1, where nonetheless a remarkable
accuracy of one part per million can be easily achieved
with a relatively modest density of hidden units. The
same remarkable accuracy is obtained for the more com-
plex one-dimensional AFH model (central panel). In this
case we observe as well a systematic drop in the ground-
state energy error, which for a small ↵ = 4 attains the
same very high precision obtained for the TFI model at
the critical point. Our results are compared with the
accuracy obtained with the spin-Jastrow ansatz (dashed
line in the central panel), which we improve by several
orders of magnitude. It is also interesting to compare
the value of ↵ with the MPS bond dimension M , needed
to reach the same level of accuracy. For example, on
the AFH model with PBC, we find that with a standard
DMRG implementation [30] we need M ⇠ 160 to reach
the accuracy we have at ↵ = 4. This points towards a
more compact representation of the many-body state in
the NQS case, which features about 3 orders of magni-
tude less variational parameters than the corresponding
MPS ansatz.

We next study the AFH model on a two-dimensional
square lattice, comparing in the right panel of Fig. 3
to QMC results [31]. As expected from entanglement
considerations, the 2D case proves harder for the NQS.
Nonetheless, we always find a systematic improvement
of the variational energy upon increasing ↵, qualitatively
similar to the 1D case. The increased difficulty of the
problem is reflected in a slower convergence. We still ob-
tain results at the level of existing state-of-the-art meth-
ods or better. In particular, with a relatively small hid-

den unit density (↵ ⇠ 4) we already obtain results at
the same level than the best known variational ansatz
to-date for finite clusters (the EPS of Ref. [32] and the
PEPS states of Ref. [33]). Further increasing ↵ then
leads to a sizable improvement and consequently yields
the best variational results so-far-reported for this 2D
model on finite lattices.

Unitary Dynamics — NQS are not limited to ground-
state problems but can be extended to the time-
dependent Schrödinger equation. For this purpose we de-
fine complex-valued and time-dependent network weights
W(t) which at each time t are trained to best reproduce
the quantum dynamics, in the sense of the Dirac-Frenkel
time-dependent variational principle [34, 35]. In this con-
text, the variational residuals

R(t; ˙W(t)) = dist(@
t

 (W(t)), �iH ) (3)

are the objective functions to be minimized as a func-
tion of the time derivatives of the weights ˙W(t) (see
Supp. Mat.) In the stochastic framework, this is achieved
by a time-dependent VMC method [22, 23], which sam-
ples | 

M

(S; W(t))|2 at each time and provides the best
stochastic estimate of the ˙W(t) that minimize R2

(t), with
a computational cost O(↵N2

). Once the time derivatives
determined, these can be conveniently used to obtain the
full time evolution after time-integration.

To demonstrate the effectiveness of the NQS in the
dynamical context, we consider the unitary dynamics in-
duced by quantum quenches in the coupling constants of
our spin models. In the TFI model we induce a non-
trivial quantum dynamics by means of an instantaneous
change in the transverse field: the system is initially pre-
pared in the ground-state of the TFI model for some

1D transverse field Ising model 1D Heisenberg model 2D Heisenberg model

Variational energies.

very high precision, limited only by stochastic sampling

compact representation
~102 less parameters than corresponding MPS in 1D

improvements over best PEPS results
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Summary

QMC + machine learning approaches can be used to 
distinguish phases of interacting quantum many-body systems
(and opens opportunities to overcome the sign problem).

This is just the beginning. Probably, we will see, in the coming 
years, a similarly productive interplay between machine learning 
and quantum statistical physics as we have seen with quantum 
information.

There are a number of interesting analytical connections between 
neural networks and matrix product states as wells as the 
renormalization group.
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