Fractionalization in synthetic quantum matter Quantum Magnetism meets Quantum Computing

Pre-March (Meeting)² Fine Theoretical Physics Institute, March 2024

Simon Trebst University of Cologne

QUANTUM COMPUTING

quantum hardware in the NISQ era -

An experimental pivot from of a **few pristine qubits** to the realization of circuit architectures of **50 ... 1000 qubits** but tolerating a significant level of **imperfections**.

Osprey generation — 433 qubits

noisy intermediate scale quantum (NISQ) devices

Sycamore chip — 53 qubits

quantum hardware in the NISQ era

computational physics in the NISQ era

© Simon Trebst

Fractionalization & Emergent Gauge Fields in Quantum Circuits

Quantum Magnetism meets Quantum Computing

quantum circuits in a nutshell

Quantum computing in a nutshell, Qiskit documentation / IBM Quantum

quantum measurements

"About your cat, Mr. Schrödinger — I have good news and bad news."

Quantum measurements can

extract information

from a system

shape entanglement

of a quantum system

double-faced Janus

entanglement phase transitions

hybrid unitary/projective dynamics

- competition between scrambling (unitary) and **disentangling** (measurement) dynamics
- entanglement dynamics along single quantum trajectories
- entanglement phase transition as function of measurement rate

A. Potter & R. Vasseur, Springer QST book series (2022)

quantum states from measurements

unitary circuit

 $t \propto L$

paradigmatic example: stabilizer code

Kitaev (1997)

The toric code came alive as a

measurement protocol.

commuting vs non-commuting measurements

Nishimori's cat

- commuting
- parallelized
- no dynamics

Guo-Yi Zhu

Kitaev spin liquid

- non-commuting
- sequential
- dynamics

Nishimori's cat

commuting vs non-commuting measurements

Nishimori's cat

- commuting
- parallelized
- no dynamics

Kitaev spin liquid

- non-commuting
- sequential
- dynamics

Kitaev circuits

imaginary time vs. measurement-only

$$\cdots e^{\mp \tau H_0} \left| \psi_0 \right\rangle$$

random weak/strong measurement

- **stochastic** circuit
- Born disorder

random projective Kitaev measurements

Majorana interaction \rightarrow Majorana surface code

Clifford circuit

even **interacting** problem can be simulated in polynomial time (in Heisenberg picture)

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2022; Sriram, Rakovszky, Khemani, Ippoliti 2022; Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

entanglement phase diagram

Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

© Simon Trebst

side remark: computational complexity

Gottesman-Knill theorem, quant-ph/9807006

measurement, teleportation, and beyond

dynamical protocol

 $\rho_0 \propto \mathbb{I}$

Hastings, Haah (2021)

$H = \pm \infty ZZ \quad \pm YY \quad \pm XX$

Gauge flux \rightarrow a glassy toric code

Majoranas are confined in *hard-core* dimers

dynamical protocol

 $\rho_0 \propto \mathbb{I}$

Hastings, Haah (2021)

$H = \pm \infty ZZ \quad \pm YY \quad \pm XX$

Gauge flux \rightarrow a glassy toric code

Majoranas are confined in *hard-core* dimers

Questions:

- How to liberate Majorana?
- Stability of the code?

coherent error / weak measurement \rightarrow soften dimers – a channel for Majorana to escape !

Majorana, flux pillars, loops

random Gaussian fermion circuit conditioned on gauge trajectory su

Majorana partition function

Born probability

but there is more – double-peaks

purification of Majoranas

Majorana entropy density [ln 2]

$$S = \beta(E - F)$$

 \mathcal{S}

dynamical critical exponent

summary

- frustration & qubit fractionalization by tunable weak measurement
- Floquet code breakdown to non-trivial state under coherent error
- Majoranas escape confinement and form long-range entangled liquid

Outlook

- Feed-forward deterministic preparation?
- topological phase transition from a parent color code (+ Majorana interaction)?

Guo-Yi Zhu & ST, arXiv: 2311.08450

Hamiltonian vs. monitored dynamics

Hamiltonian dynamics

- equilibrium dynamics of isolated systems
- unitary evolution
- energy conserved
- quantum ground states
- area-law entanglement structures
- macroscopic entanglement (spin liquids)

measurement dynamics

- out-of-equilibrium dynamics of open systems
- non-unitary evolution
- energy not conserved
- long-time steady states
- plethora of entanglement structures
- macroscopic entanglement (spin liquids)

