Spin-Peierls Instabilities of three-dimensional Kitaev Spin Liquids

KITP Santa Barbara September 2015

Simon Trebst

University of Cologne

arXiv:1506.01379 PRL 114, 157202 (2015) PRB 89, 235102 (2014)

Collaborators

Maria Hermanns University of Cologne

Kevin O'Brien University of Cologne

Achim Rosch University of Cologne

5d transition metal oxides

Largely *accidental* degeneracy of electronic correlations, spin-orbit entanglement, and crystal field effects results in a **broad variety of metallic and insulating states**.

spin-orbit coupling λ/t

W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annual Review of Condensed Matter Physics 5, 57 (2014).

j=1/2 Mott insulators

Why are these spin-orbit entangled j=1/2 Mott insulators interesting?

Sr ₂ IrO ₄	exhibits cuprate-like magnetism superconductivity?	B.J. Kim et al. PRL 101, 076402 (2008) B.J. Kim et al. Science 323, 1329 (2009)
(Na,Li) ₂ IrO ₃	exhibits Kitaev-like magnetism spin liquids?	G. Jackeli, G. Khaliullin, J. Chaloupka PRL 102, 017205 (2009); PRL 105, 027204 (2010)

Family of Li₂IrO₃ compounds

hexagonal layers

Kitaev exchange

Tricoordinated lattices in 3D

How many such lattices exist?

Tricoordinated lattices in 3D

Classification by elementary loop length (polygonality)

hyperoctagon

hyperhoneycomb

Lattice classifications

Tricoordinated lattices

Tricoordinated lattices

Classification by elementary loop length (polygonality)

hyperoctagon

hyperhoneycomb

(8,3)

Tricoordinated lattices

		other names	Ζ	inversion	space gr	oup
	(10,3)a	hyperoctagon, K4 crystal	4	×	14 ₁ 32	214
	(10,3)b	hyperhoneycomb	4	\checkmark	Fddd	70
	(10,3)c		6	×	P3112	151
attices	(9,3)a		12	\checkmark	R3m	166
3D 18	(8,3)a		6	×	P6222	180
	(8,3)b		6	\checkmark	R3m	166
	(8,3)c		8	\checkmark	P6 ₃ / mmc	194
	(8,3)n		16	\checkmark	14 / mmm	139
2D	(6,3)	honeycomb	2	\checkmark		

A family of 3D Kitaev models

Solving 3D Kitaev models – fractionalization

Solving 3D Kitaev models – the fine print

The emergent **Z**₂ gauge field are static degrees of freedom. Generically, one has to find its gapped ground-state configuration* via educated guesses, Monte Carlo sampling or for some lattices via Lieb's theorem.

There are only two lattices fulfilling Lieb's theorem, the two-dimensional **honeycomb lattice** and the three-dimensional **(8,3)b lattice**.

Solving 3D Kitaev models – the fine print

The emergent **Z**₂ gauge field are static degrees of freedom. Generically, one has to find its gapped ground-state configuration* via educated guesses, Monte Carlo sampling or for some lattices via Lieb's theorem.

*For 3D Kitaev models the gauge fields freeze out at a *finite-temperature* Ising transition. Nasu, Udagawa, Motome PRL (2015)

The emergent **Majorana fermions** are **itinerant** degrees of freedom. Generically, they form a **gapless** collective state – a **Majorana metal**.

		Majorana metal	TR breaking	Peierls instability
	(10,3)a	Fermi surface	Fermi surface	\checkmark
	(10,3)b	nodal line	Weyl nodes	X
	(10,3)c	nodal line	Fermi surface	X
attices	(9,3)a	Weyl nodes	Weyl nodes	X
	(8,3)a	Fermi surface	Fermi surface	\checkmark
	(8,3)b	Weyl nodes	Weyl nodes	\checkmark
	(8,3)c	nodal line	Weyl nodes	X
	(8,3)n	gapped	gapped	X
20	(6,3)	Dirac nodes	gapped	X

		Majorana metal	TR breaking	Peierls instability
	(10,3)a	Fermi surface	Fermi surface	\checkmark
	(10,3)b	nodal line	Weyl nodes	X
	(10,3)c	nodal line	Fermi surface	X
attices	(9,3)a	Weyl nodes	Weyl nodes	X
	(8,3)a	Fermi surface	Fermi surface	\checkmark
	(8,3)b	Weyl nodes	Weyl nodes	\checkmark
	(8,3)c	nodal line	Weyl nodes	X
	(8,3)n	gapped	gapped	X
20	(6,3)	Dirac nodes	gapped	X

		Majorana metal	TR breaking	Peierls instability
	(10,3)a	Fermi surface	Fermi surface	\checkmark
	(10,3)b	nodal line	Weyl nodes	X
	(10,3)c	nodal line	Fermi surface	X
attices	(9,3)a	Weyl nodes	Weyl nodes	X
	(8,3)a	Fermi surface	Fermi surface	\checkmark
	(8,3)b	Weyl nodes	Weyl nodes	\checkmark
	(8,3)c	nodal line	Weyl nodes	X
	(8,3)n	gapped	gapped	X
20	(6,3)	Dirac nodes	gapped	X

Majorana Fermi lines

(10,3)b – hyperhoneycomb

		Majorana metal	TR breaking	Peierls instability
	(10,3)a	Fermi surface	Fermi surface	\checkmark
IIICES	(10,3)b	nodal line	Weyl nodes	X
	(10,3)c	nodal line	Fermi surface	X
	(9,3)a	Weyl nodes	Weyl nodes	X
	(8,3)a	Fermi surface	Fermi surface	\checkmark
-	(8,3)b	Weyl nodes	Weyl nodes	\checkmark
	(8,3)c	nodal line	Weyl nodes	X
	(8,3)n	gapped	gapped	X
N N	(6,3)	Dirac nodes	gapped	X

Majorana Fermi surface

(10,3)a – hyperoctagon

Majorana Fermi surface

The hyperoctagon Kitaev model exhibits a full two-dimensional Majorana Fermi surface.

Recasting our result in the language of spin liquids, what we have found is the first **exactly solvable microscopic model** of a spin liquid with a **spinon Fermi surface**.

Experimental signatures?

correlation functions

spin-spin correlations $\langle S_i^z S_j^z \rangle$ decay exponentially.

bond-bond energy correlations $\langle (S_i^z)^2 (S_j^z)^2 \rangle$ exhibit algebraic divergence on Majorana Fermi surface.

specific heat

U(1) spin liquid $C(T) \propto T \ln(1/T)$ $\gamma = C/T$ diverges

Z₂ spin liquid with spinon Fermi surface

$$C(T) \propto T$$

 $C(T) \propto T^2$

 $\gamma = C/T$ constant

Z₂ spin liquid with spinon Fermi line

 $\gamma = C/T$ vanishes

Why is the Fermi surface stable?

 \mathbf{k}_0 is the reciprocal lattice vector of the translation vector of the sublattice

Why is the Fermi surface stable?

Stability of gapless modes in the honeycomb model

$$H = \begin{pmatrix} \mathbf{0} & if(\mathbf{k}) \\ -if^{\star}(\mathbf{k}) & \mathbf{0} \end{pmatrix} \xrightarrow{\text{complex-valued function}} E(\mathbf{k}) = \pm |f(\mathbf{k})|$$

Stability of gapless modes in the **hyperhoneycomb** model

$$H = \begin{pmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^{\dagger} & \mathbf{0} \end{pmatrix} \longrightarrow \begin{array}{c} \text{complex matrix} \\ E(\mathbf{k}) = \pm |\lambda_j(\mathbf{k})| \end{array}$$

Stability of gapless modes in the **hyperoctagon** model

Fermi surface instabilities arise from additional spin interactions (e.g. a Heisenberg term), which introduce interactions between the Majorana fermions.

The generic instability is a **spin-Peierls instability**, i.e. the system spontaneously dimerizes at exponentially small temperatures and forms a spin liquid with a Fermi line.

perfect nesting between the two surfaces

(complex) fermion

conventional **BCS instability**

$$\epsilon_{\mathbf{k}} = \epsilon_{\mathbf{k}+\mathbf{k}_0}$$

time-reversal symmetry

$$c_j(\mathbf{R}) \xrightarrow{\mathcal{T}} (-1)^j e^{i\mathbf{k}_0 \cdot \mathbf{R}} c_j(\mathbf{R})$$

 $E_{\mathbf{k}_0/2+\mathbf{k}} = E_{\mathbf{k}_0/2-\mathbf{k}}$

time-reversal symmetry

 $f^{\dagger}_{\mathbf{k}_0/2+\mathbf{k}} \xrightarrow{\mathcal{T}} f^{\dagger}_{\mathbf{k}_0/2-\mathbf{k}}$

Fermi surface instabilities arise from additional spin interactions (e.g. a Heisenberg term), which introduce interactions between the Majorana fermions.

The generic instability is a **spin-Peierls instability**, i.e. the system spontaneously dimerizes at exponentially small temperatures and forms a spin liquid with a Fermi line.

Fermi surface instabilities arise from additional spin interactions (e.g. a Heisenberg term), which introduce interactions between the Majorana fermions.

Generic form of the induced interactions between Majorana fermions

$$H_{\text{int}} = -U\left(\cos\alpha \sum_{\vec{R}} c_1(\vec{R})c_2(\vec{R})c_3(\vec{R})c_1(\vec{R} + \vec{a}_2) + \sin\alpha \sum_{\vec{R}} c_1(\vec{R})c_2(\vec{R})c_3(\vec{R})c_4(\vec{R}) + \text{sym.}\right)$$

Recast the Majorana Hamiltonian in terms of complex fermions (at low energies)

$$\begin{split} H_{\rm eff} = &\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} f_{\mathbf{k}}^{\dagger} f_{\mathbf{k}} + \sum_{\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3}} V_{\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3}}^1 f_{\mathbf{k_1}}^{\dagger} f_{\mathbf{k_2}}^{\dagger} f_{\mathbf{k_3}} f_{\mathbf{k_1} + \mathbf{k_2} - \mathbf{k_3}} \\ &+ \sum_{\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3}} V_{\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3}}^2 f_{\mathbf{k_1}}^{\dagger} f_{\mathbf{k_2}}^{\dagger} f_{\mathbf{k_3}}^{\dagger} f_{-\mathbf{k_1} - \mathbf{k_2} - \mathbf{k_3}}^{\dagger} + h.c. \end{split}$$

spinless fermions
$$\rightarrow$$
 p-wave superconductivity

$$T_c = E_{0,\alpha} e^{-c_\alpha J/U} \quad \text{for} \quad U \ll J$$

high-energy

$$H_{\rm BCS} = \sum_{k} \epsilon_k f_{\mathbf{k}}^{\dagger} f_{\mathbf{k}} +$$

 $\sum_{k_x>0} \Delta_{\mathbf{k}} f^{\dagger}_{\mathbf{k}_0/2+\mathbf{k}} f^{\dagger}_{\mathbf{k}_0/2-\mathbf{k}} + h.c.$

Fermi surface instabilities arise from additional spin interactions (e.g. a Heisenberg term), which introduce interactions between the Majorana fermions.

0

Generic form of the induced interactions between Majorana fermions

$$H_{\text{int}} = -U\left(\cos\alpha \sum_{\vec{R}} c_1(\vec{R})c_2(\vec{R})c_3(\vec{R})c_1(\vec{R} + \vec{a}_2) + \sin\alpha \sum_{\vec{R}} c_1(\vec{R})c_2(\vec{R})c_3(\vec{R})c_4(\vec{R}) + \text{sym.}\right)$$

$$\Delta \sim \langle f_{\mathbf{k}_0+\mathbf{q}}^{\dagger} f_{\mathbf{k}_0-\mathbf{q}}^{\dagger} \rangle$$

All phases break translational symmetry.

Phases A – D break additional (rotational) lattice symmetries.

The **doubling of the unit cell** will generically be reflected in **shifts of the position of atoms** and in **valence bond correlations**.

valence bond correlations along $\mathbf{v} = (1/2, 1/2, 1/2)$

 $\langle \mathbf{S}(\mathbf{r}_0 + n\mathbf{v}) \mathbf{S}(\mathbf{r}_0 + (n+1)\mathbf{v}) \rangle \sim (-1)^n \Delta$

		Majorana metal	TR breaking	Peierls instability
	(10,3)a	Fermi surface	Fermi surface	\checkmark
IIICES	(10,3)b	nodal line	Weyl nodes	X
	(10,3)c	nodal line	Fermi surface	X
	(9,3)a	Weyl nodes	Weyl nodes	X
	(8,3)a	Fermi surface	Fermi surface	\checkmark
-	(8,3)b	Weyl nodes	Weyl nodes	\checkmark
	(8,3)c	nodal line	Weyl nodes	X
	(8,3)n	gapped	gapped	X
N N	(6,3)	Dirac nodes	gapped	X

		Majorana metal	TR breaking	Peierls instability
	(10,3)a	Fermi surface	Fermi surface	\checkmark
	(10,3)b	nodal line	Weyl nodes	X
	(10,3)c	nodal line	Fermi surface	X
attices	(9,3)a	Weyl nodes	Weyl nodes	X
30 10	(8,3)a	Fermi surface	Fermi surface	\checkmark
	(8,3)b	Weyl nodes	Weyl nodes	\checkmark
	(8,3)c	nodal line	Weyl nodes	×
	(8,3)n	gapped	gapped	X
20	(6,3)	Dirac nodes	gapped	X

Breaking time-reversal symmetry

$$H_{\text{Kitaev}} = -J_K \sum_{\gamma - \text{bonds}} \sigma_i^{\gamma} \sigma_j^{\gamma} - \sum_j \vec{h} \cdot \vec{\sigma}_j$$

Fermi surface

Fermi surface deforms

(10,3)b - hyperhoneycomb

Fermi line

Fermi line gaps out, but two Weyl nodes remain

Weyl physics – energy spectrum

(10,3)b - hyperhoneycomb

Touching of two bands in 3D is generically linear

$$\hat{H} = ec{v}_0 \cdot ec{q}\,\mathbb{1} + \sum_{i=1}^3 ec{v}_j \cdot ec{q}\,\sigma_j$$
 Weyl nodes

Weyl physics – Chern numbers

Weyl nodes are sources or sinks of Berry flux

$$\vec{B}_n(\vec{k}) = \nabla_{\vec{k}} \times \left(i \langle n(\vec{k}) | \nabla_{\vec{k}} | n(\vec{k}) \rangle \right)$$
with chirality $\operatorname{sign}[\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)]$

Weyl physics – surface states

Experimental signatures?

specific heat

Specific heat has bulk and surface contributions

$$C(T) \sim a_{\text{bulk}} \cdot L^3 \cdot T^3 + a_{\text{surf}} \cdot L^2 \cdot T$$

Could be distinguished via sample size variation.

thermal Hall effect

Applying a thermal gradient to the system, a net heat current perpendicular to the gradient arises due to the chiral nature of the surface modes.

Thermal Hall conductance given by

$$K = \frac{1}{2} \frac{k_B^2 \pi^2 T}{3h} \frac{d}{2\pi} L_z$$

see also T. Meng and L. Balents, Phys. Rev. B 86, 054504 (2012).

		Majorana metal	TR breaking	Lieb theorem
	(10,3)a	Fermi surface	Fermi surface	X
	(10,3)b	nodal line	Weyl nodes	X
	(10,3)c	nodal line	Fermi surface	X
attices	(9,3)a	Weyl nodes	Weyl nodes	X
30 10	(8,3)a	Fermi surface	Fermi surface	×
	(8,3)b	Weyl nodes	Weyl nodes	\checkmark
	(8,3)c	nodal line	Weyl nodes	×
	(8,3)n	gapped	gapped	X
20	(6,3)	Dirac nodes	gapped	\checkmark

Three scenarios for Weyl physics

(10,3)b – hyperhoneycomb

explicit breaking of time-reversal symmetry

symmetry class D

(9,3)a

spontaneous breaking of time-reversal symmetry

symmetry class D

finite-temperature transition possibly interesting (beyond Ising, LGW)

(8,3)b

no breaking of time-reversal symmetry (nor inversion symmetry)

symmetry class BDI

symmetry scenario beyond electronic systems

Summary

(stay tuned for more) arXiv:1506.01379 PRL 114, 157202 (2015) PRB 89, 235102 (2014)

Kitaev models are paradigmatic examples for **spin fractionalization**.

spin-1/2
$$\sigma_j^\gamma = i\, b_j^\gamma c_j$$
 Majorana fermion + Z_2 gauge field

3D Kitaev models host a surprisingly rich variety of **gapless Z₂ spin liquids**.

$$H_{\rm Kitaev} = -J_K \sum_{\gamma-\rm bonds} \sigma_i^{\gamma} \sigma_j^{\gamma}$$

Analytical control of these models allows to provide first examples of tractable spin models with a **spinon Fermi surface** or a **Weyl spin liquid** ground state.

Dirac **points**

Fermi **lines** Weyl **nodes** + Fermi **arcs**

