Topological order and quantum criticality

Les Houches March 2010

Simon Trebst Microsoft Station Q UC Santa Barbara

Charlotte Gils

Alexei Kitaev Andreas Ludwig Matthias Troyer Zhenghan Wang

11/

Physics in the plane: From **condensed matter** to **string theory**

news & views

TOPOLOGICAL PHASES

Wormholes in quantum matter

а

Proliferation of so-called anyonic defects in a topological phase of quantum matter leads to a critical state that can be visualized as a 'quantum foam', with topology-changing fluctuations on all length scales.

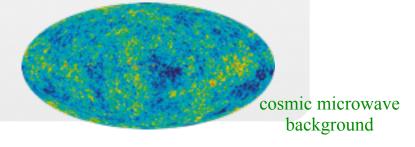
Kareljan Schoutens

© Simon Trebst

Topological quantum liquids

Spontaneous symmetry breaking

- ground state has **less** symmetry than high-*T* phase
- Landau-Ginzburg-Wilson theory
- local order parameter



Topological order

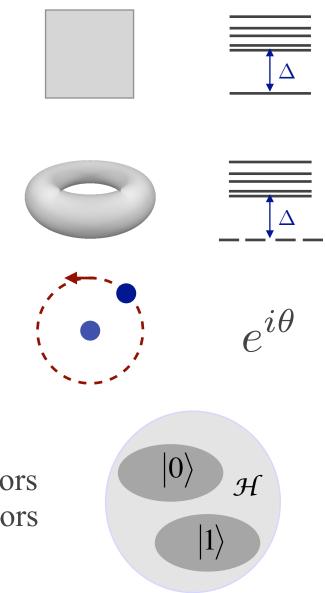
- ground state has **more** symmetry than high-*T* phase
- degenerate ground states
- non-local order parameter
- quasiparticles have fractional statistics = **anyons**

Topological quantum liquids

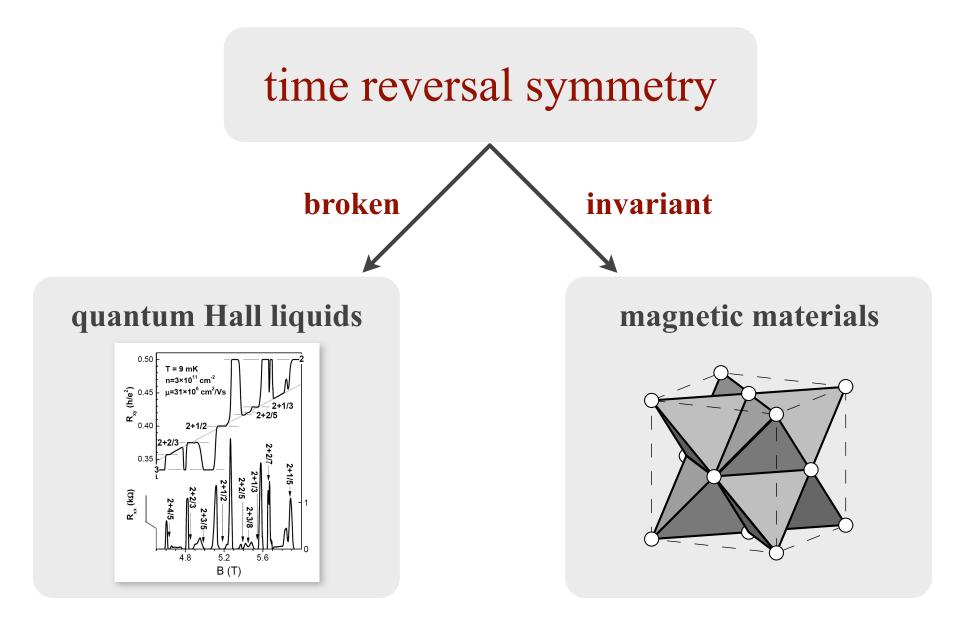
- Gapped spectrum
- No broken symmetry
- Degenerate ground state on torus

• Fractional statistics of excitations

• Hilbert space split into topological sectors No **local** matrix element mixes the sectors

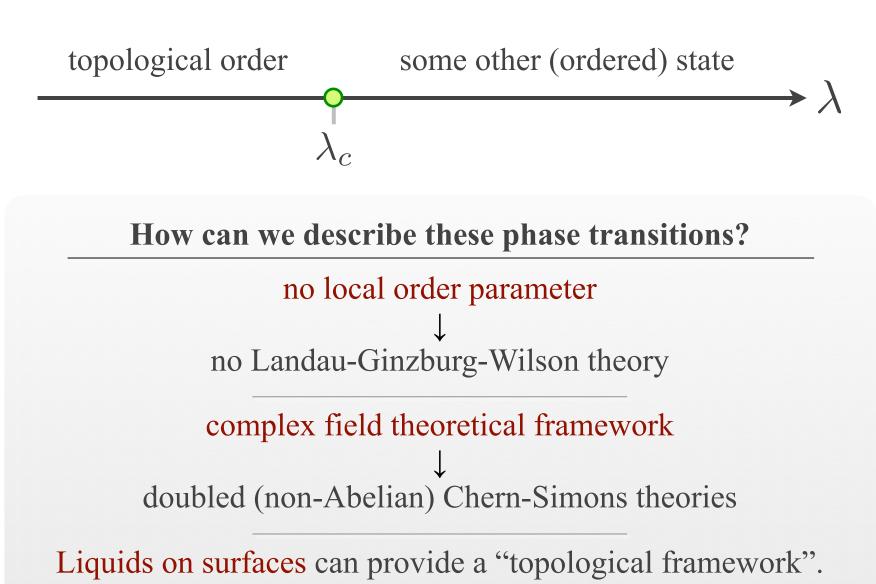


Topological order



Quantum phase transitions

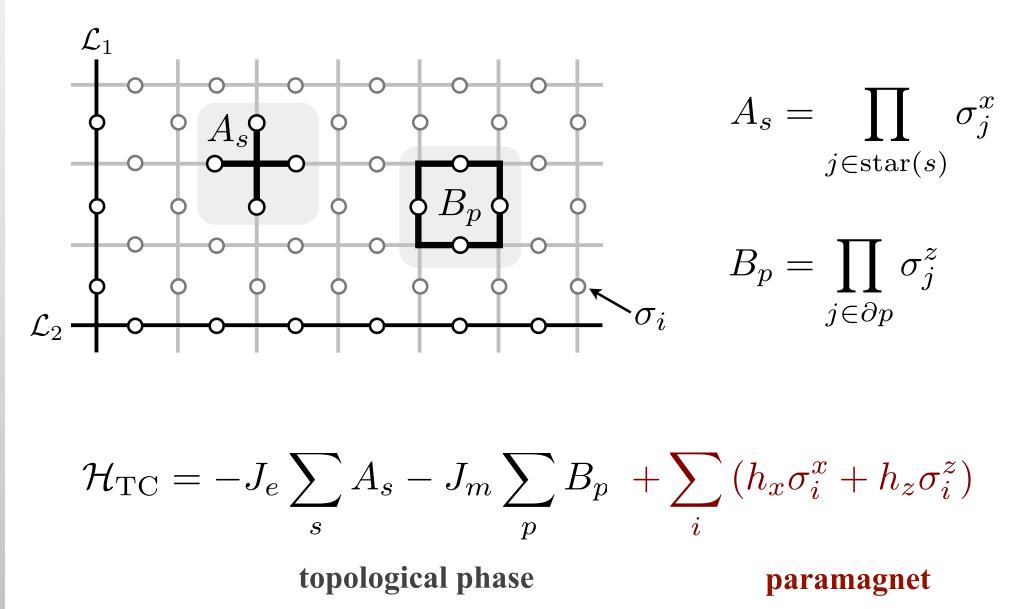
time-reversal invariant systems



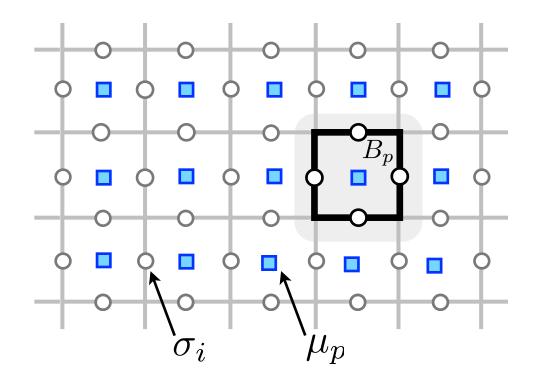
The toric code in a magnetic field A first example

The toric code

A. Kitaev, Ann. Phys. 303, 2 (2003).



Toric code and the transverse field Ising model



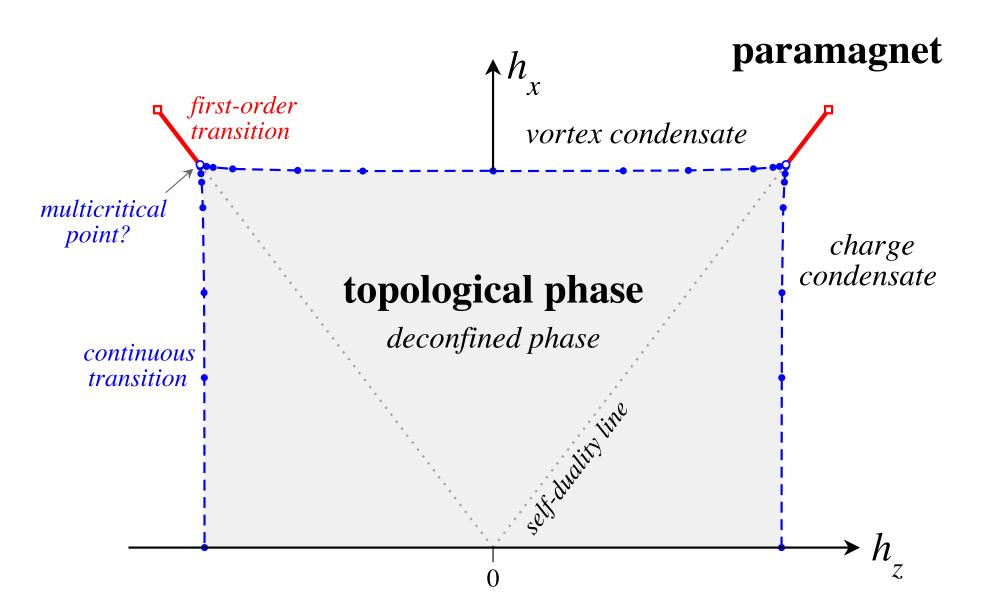
$$B_p = \prod_{j \in \partial p} \sigma_j^z$$

$$B_p = 2\mu_p^z$$
$$\sigma_i^x = \mu_p^x \mu_q^x$$

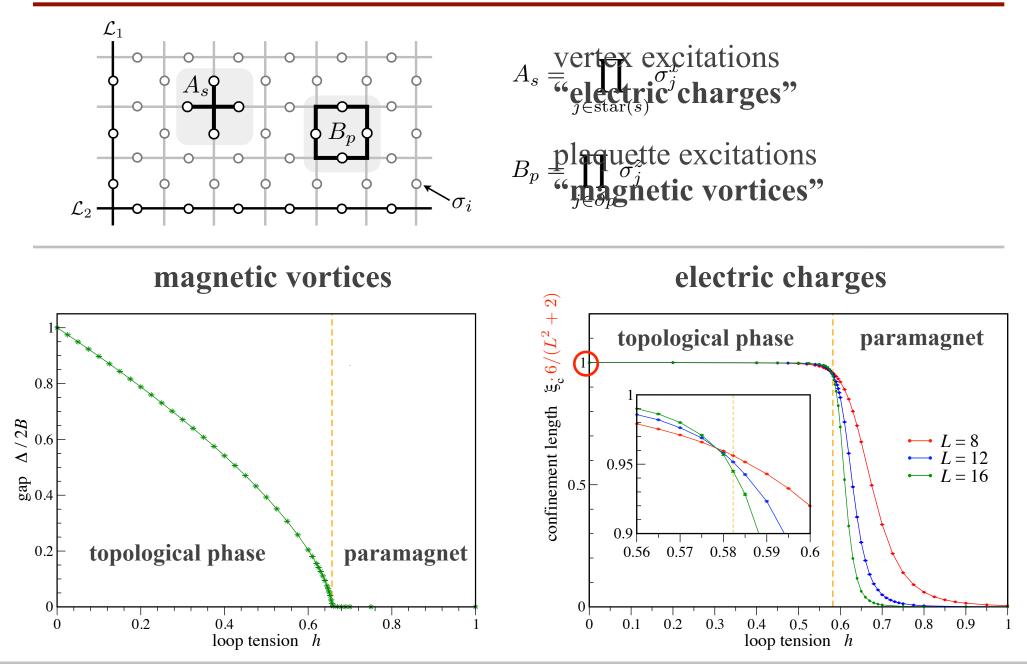
$$\mathcal{H}_{\rm TC} = -J_m \sum_p B_p + h_x \sum_i \sigma_i^x$$
$$\mathcal{H}_{\rm TFIM} = -2J_m \sum_p \mu_p^z + h_x \sum_{\langle p,q \rangle} \mu_p^x \mu_q^x$$

Phase diagram

I.S. Tupitsyn et al., arXiv:0804.3175



Excitations: condensation vs. confinement

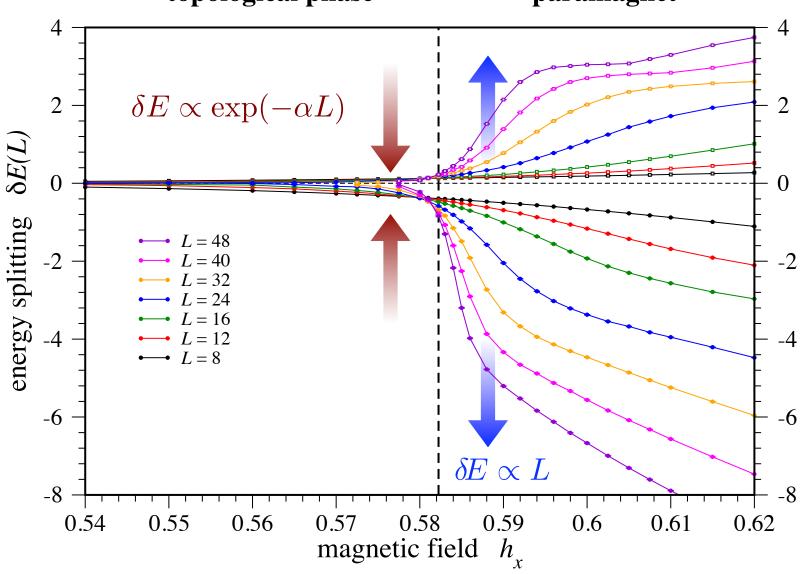


Splitting the topological degeneracy

ST et al., Phys. Rev. Lett. 98, 070602 (2007).

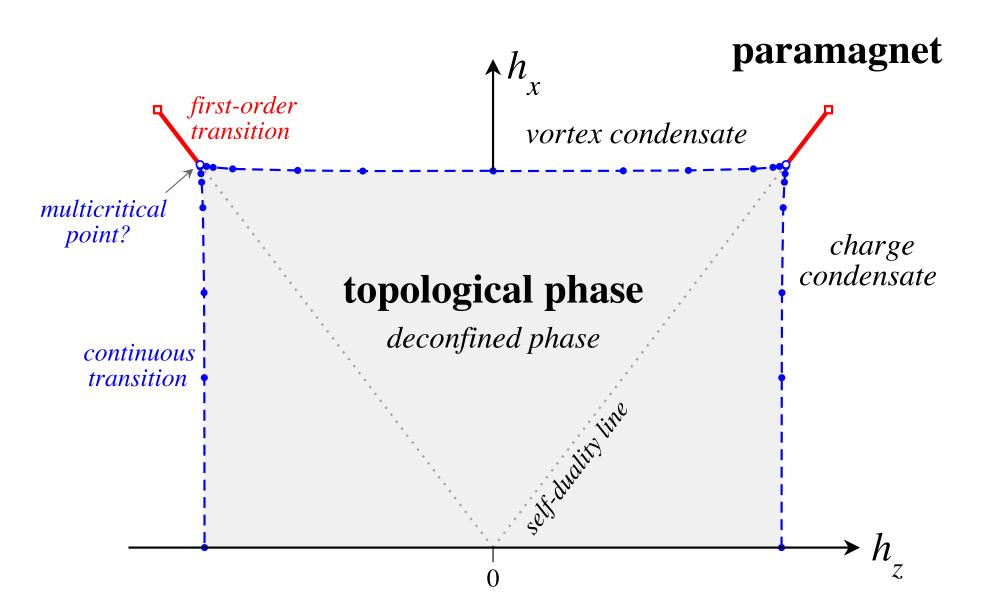
topological phase

paramagnet

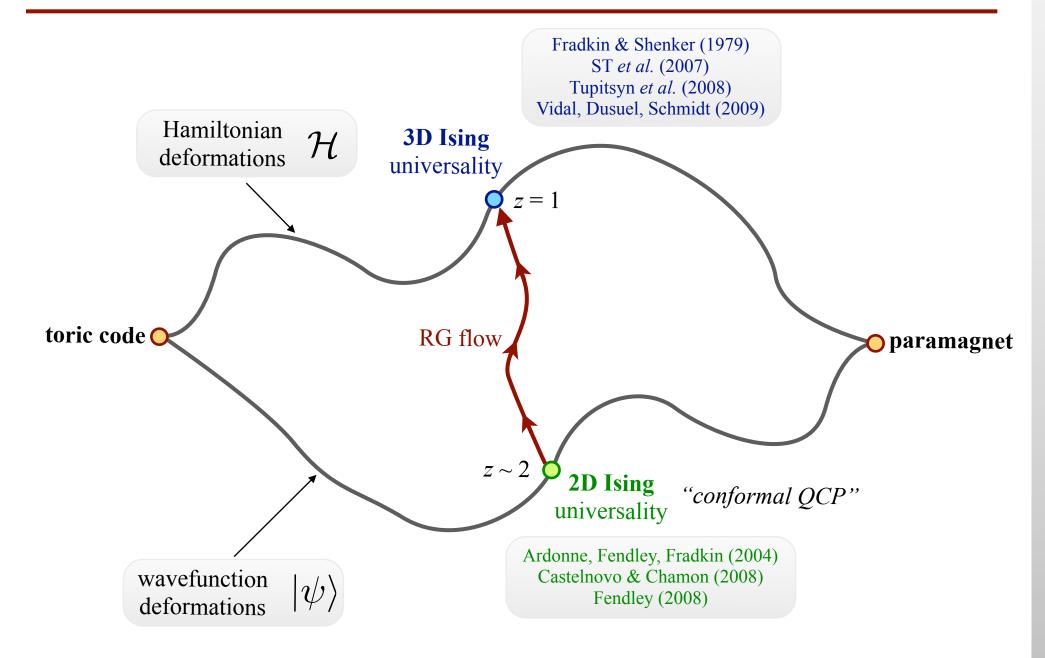


Phase diagram

I.S. Tupitsyn et al., arXiv:0804.3175

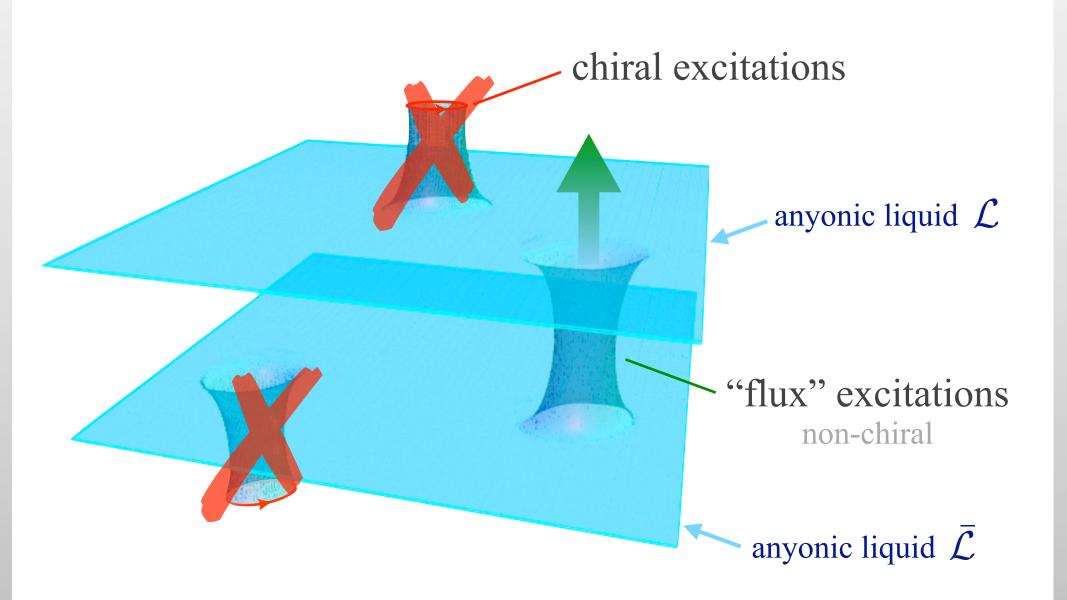


Toric code: phase transitions

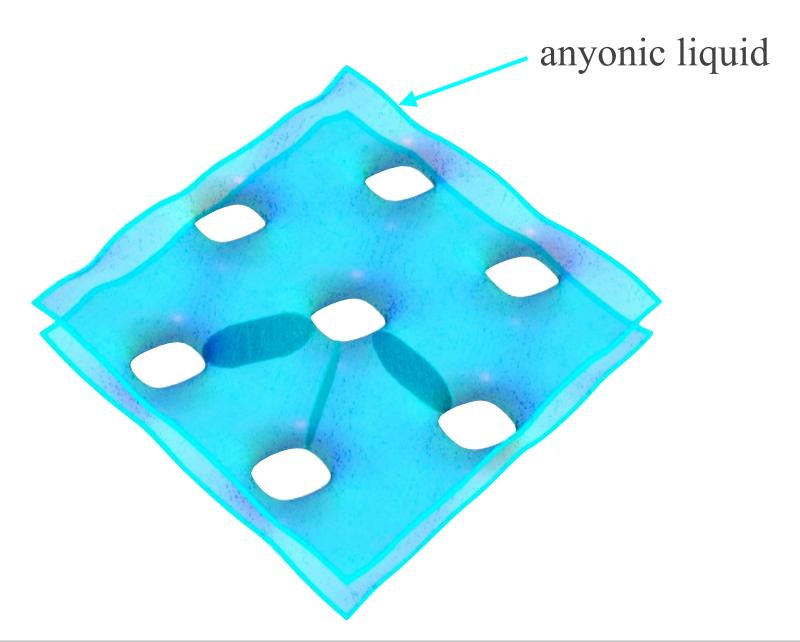


Quantum double models for time-reversal invariant systems

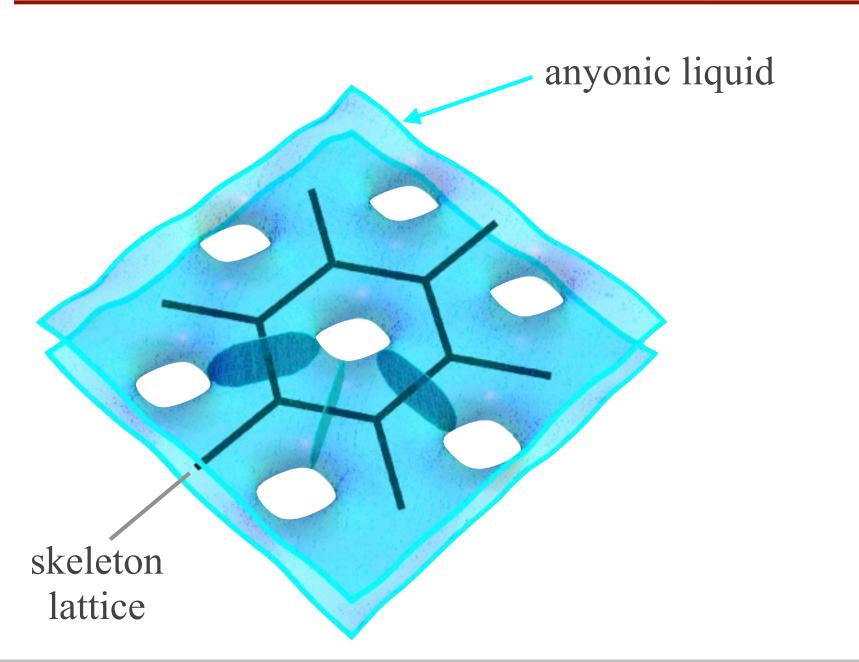
Time-reversal invariant liquids



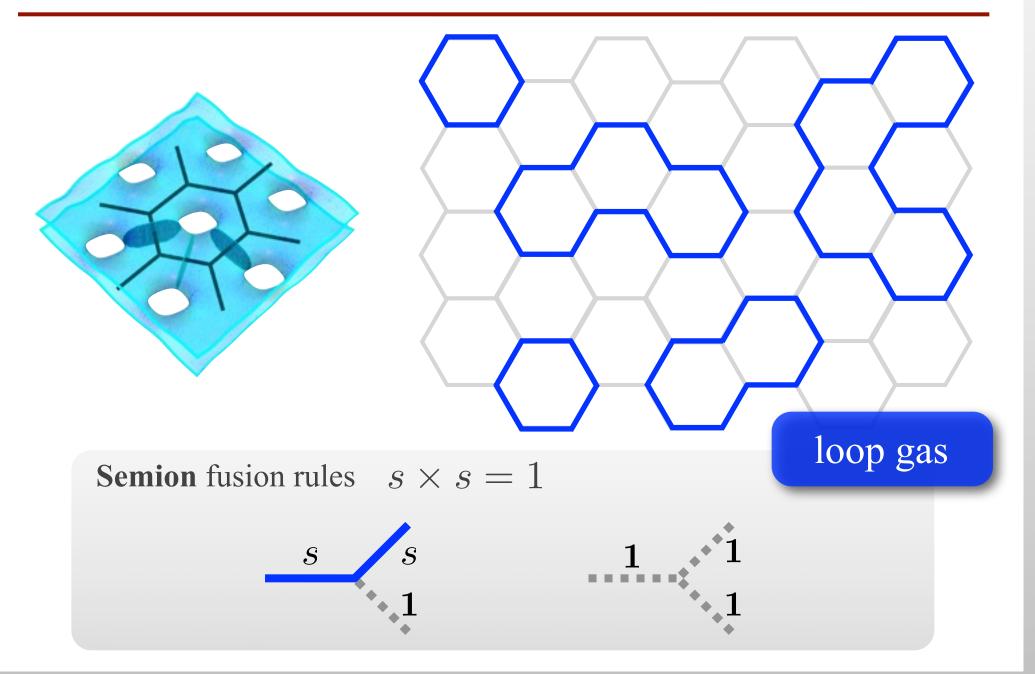
The skeleton lattice



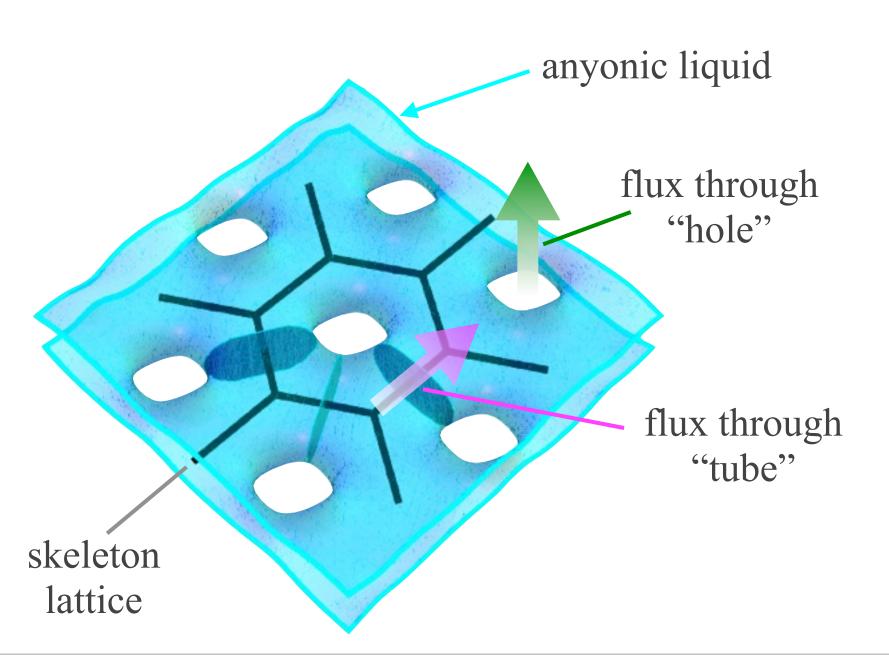
The skeleton lattice



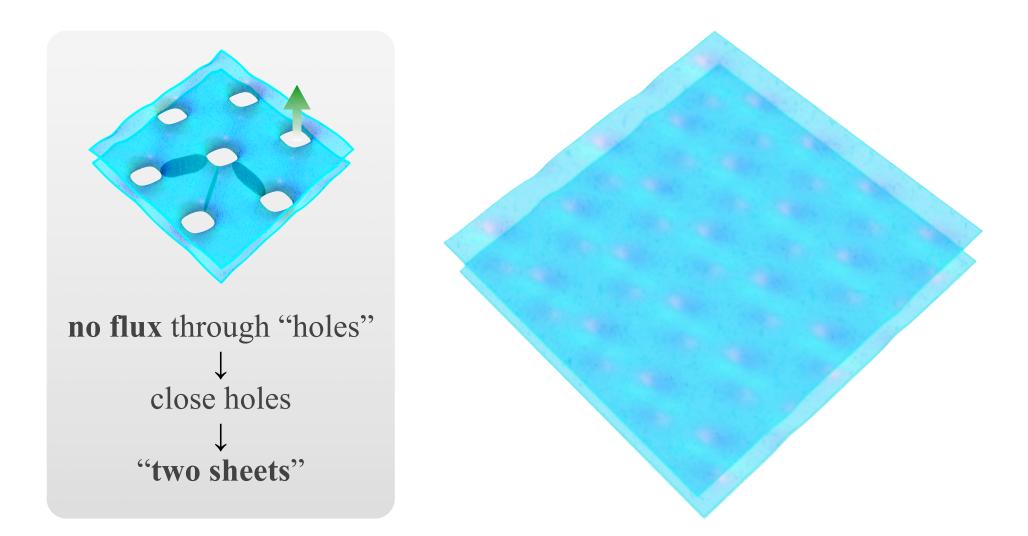
Abelian liquids \rightarrow loop gas / toric code



Flux excitations

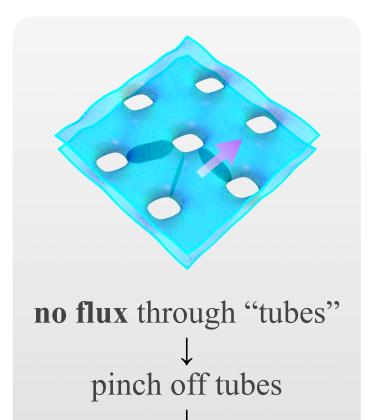


Extreme limits



The "two sheets" ground state exhibits **topological order**. In the toric code model this is the flux-free, loop gas ground state

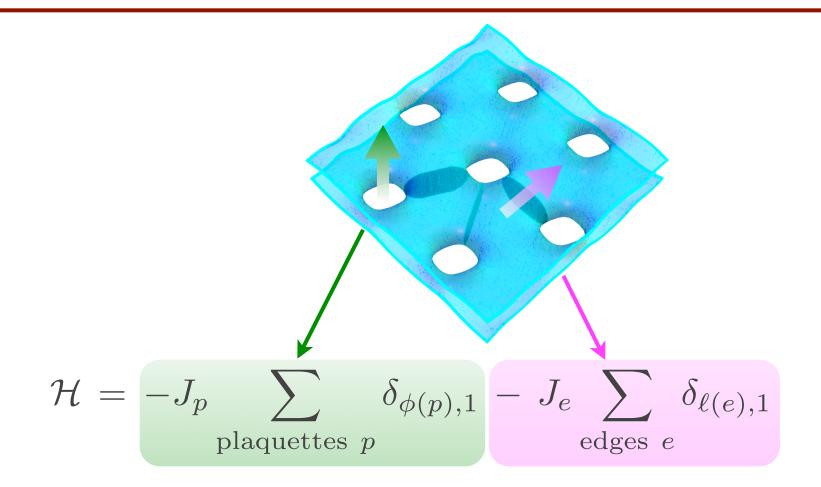
Extreme limits



"decoupled spheres"

The "decoupled spheres" ground state exhibits **no topological order**. In the toric code model this is the paramagnetic state.

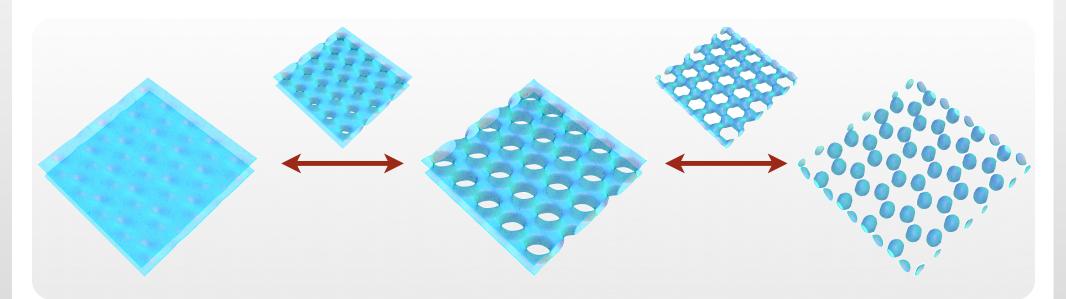
Connecting the limits: a microscopic model



Varying the couplings J_e/J_p we can connect the two extreme limits.

Semions (Abelian): Toric code in a magnetic field / loop gas with loop tension J_e/J_p .

The quantum phase transition

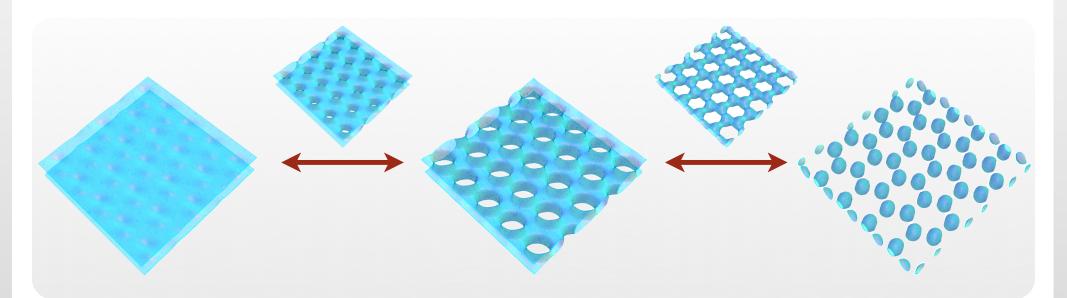


"two sheets" **topological order**

"decoupled spheres" **no topological order**

vary **loop tension** J_e/J_p

The quantum phase transition



"two sheets" **topological order**

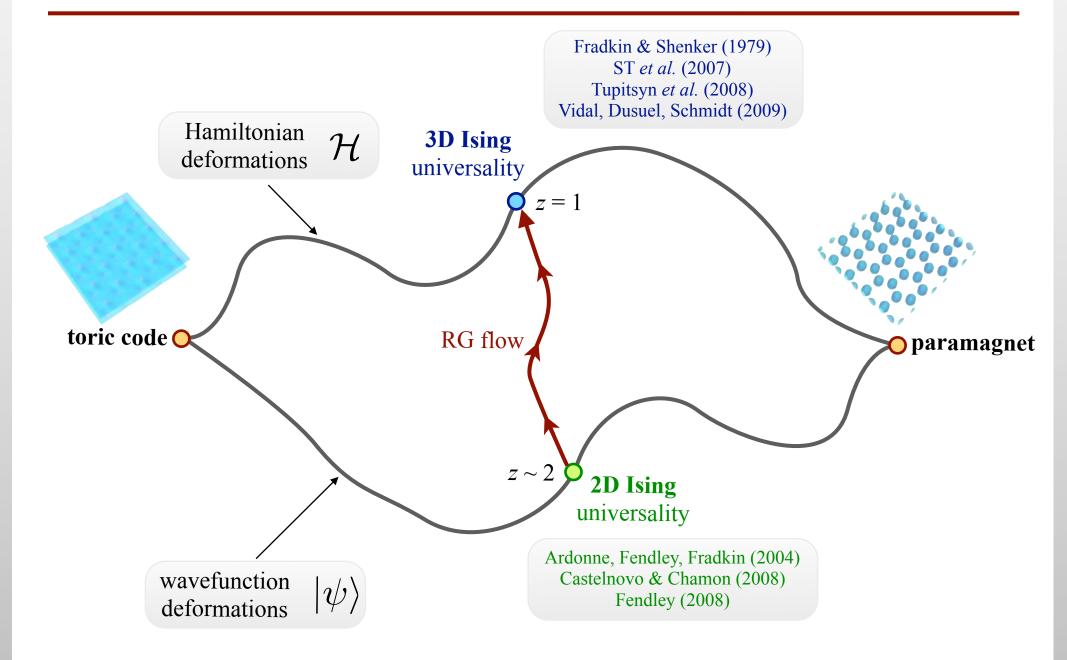
"decoupled spheres" **no topological order**

"quantum foam" topology fluctuations on all length scales

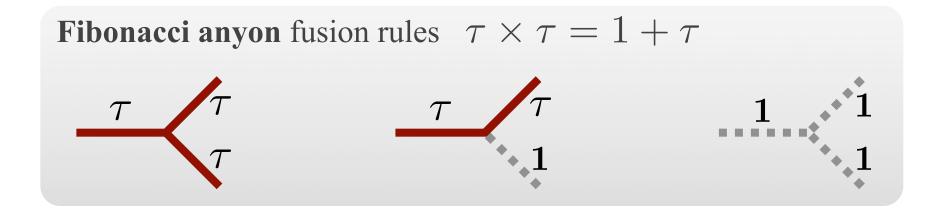
continuous transition

© Simon Trebst

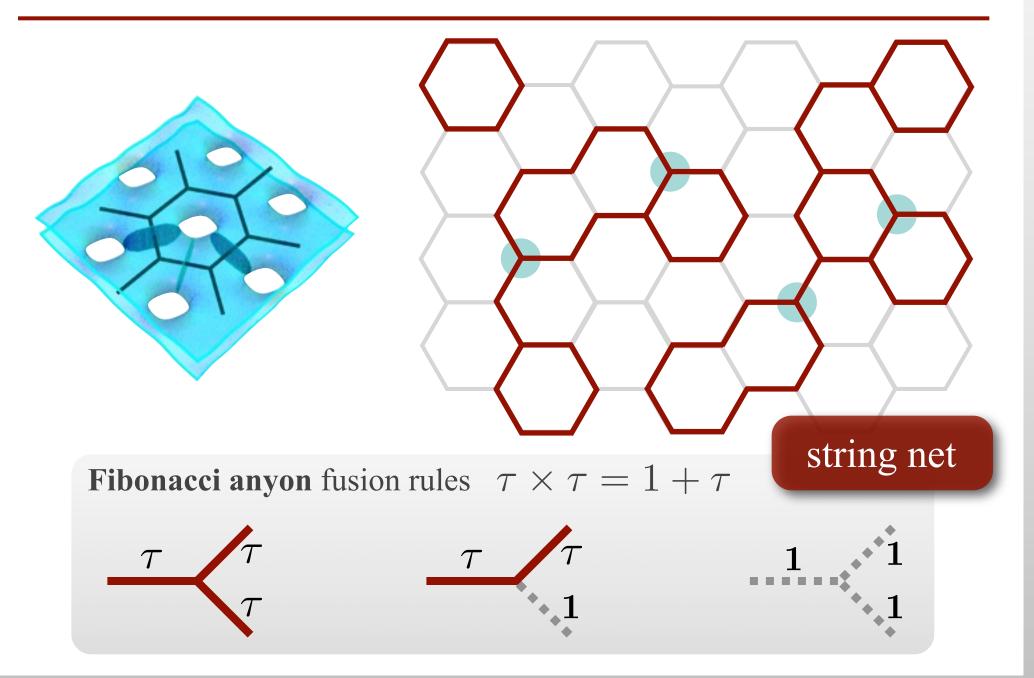
Universality classes (semions)



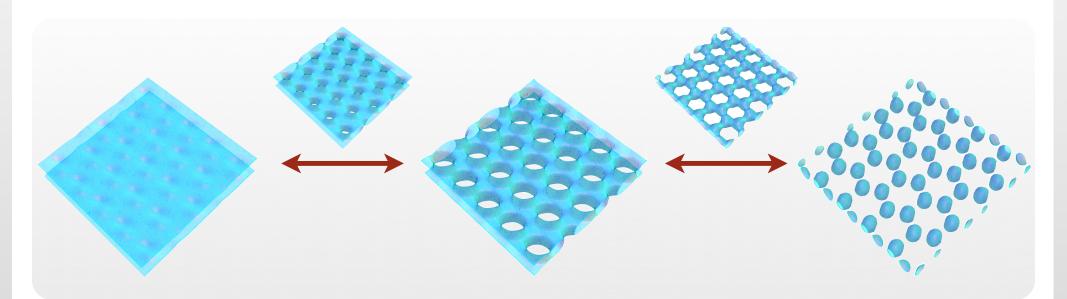
The non-Abelian case



Non-abelian liquids \rightarrow string net



The quantum phase transition

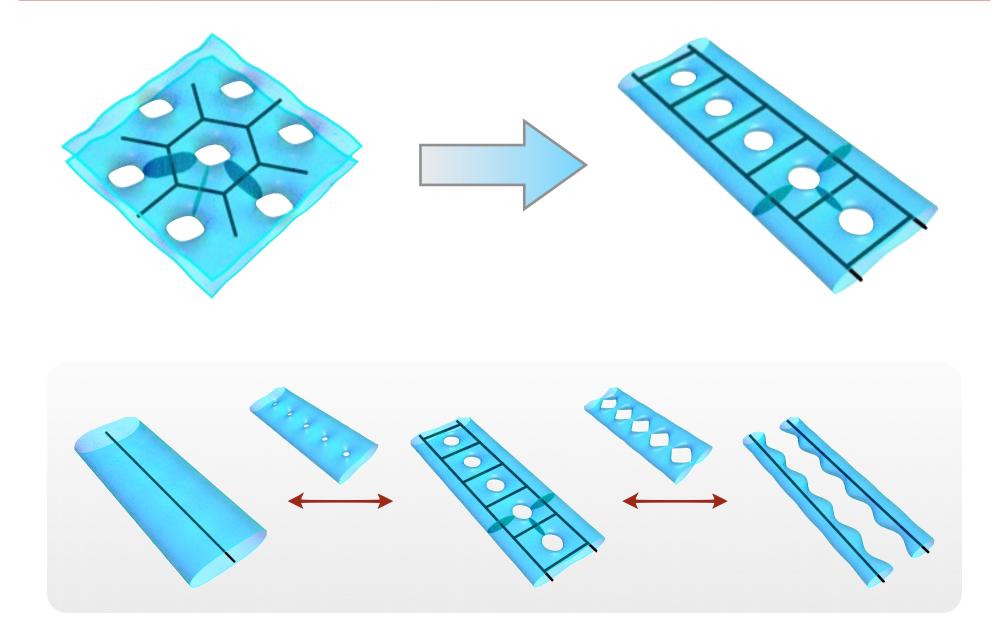


"two sheets" **topological order**

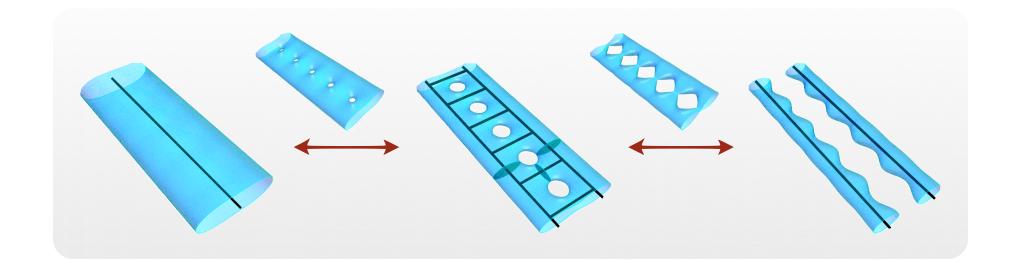
"decoupled spheres" **no topological order**

vary string tension J_e/J_p

One-dimensional analog

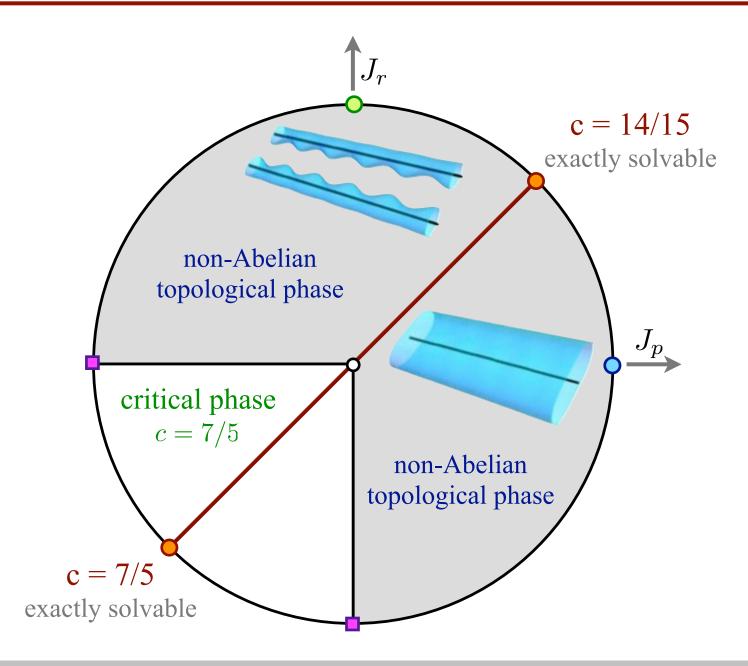


A continuous transition

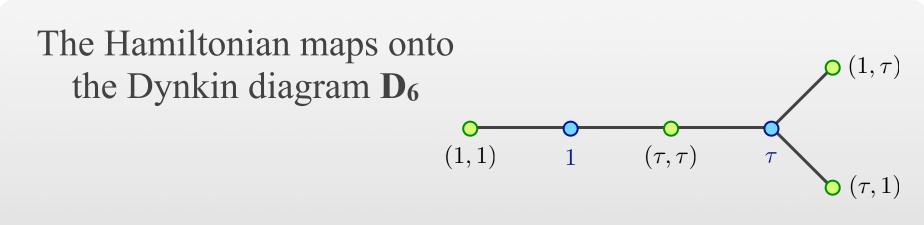


- A **continuous** quantum phase transition connects the two extremal topological states.
- The transition is driven by **topology fluctuations** on all length scales.
- The gapless theory is **exactly sovable**.

Phase diagram

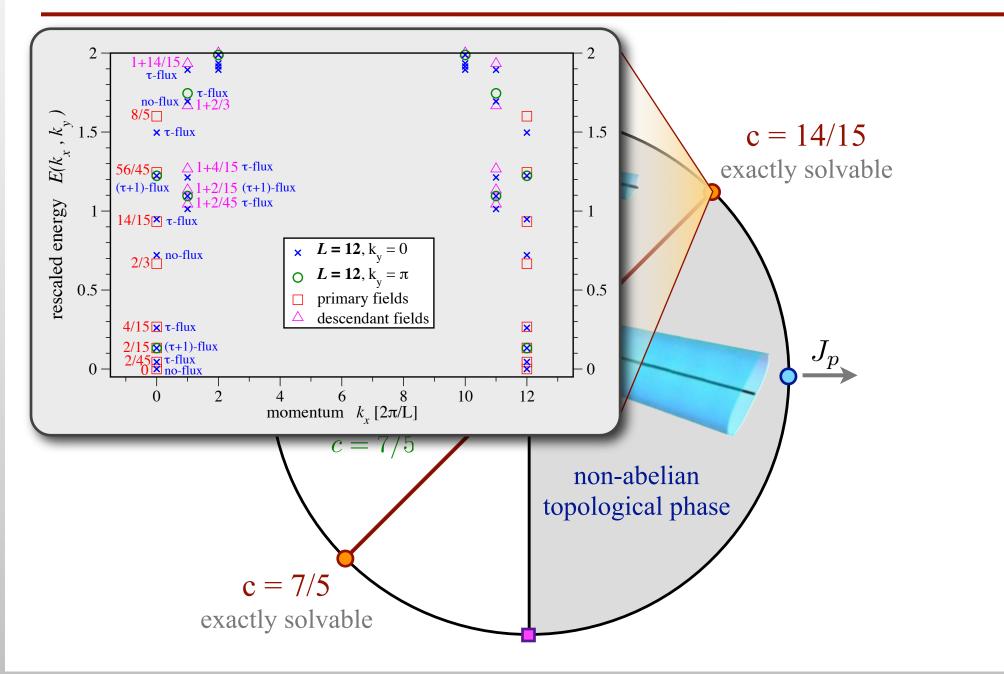


The operators in the Hamiltonian form a **Temperley-Lieb algebra**

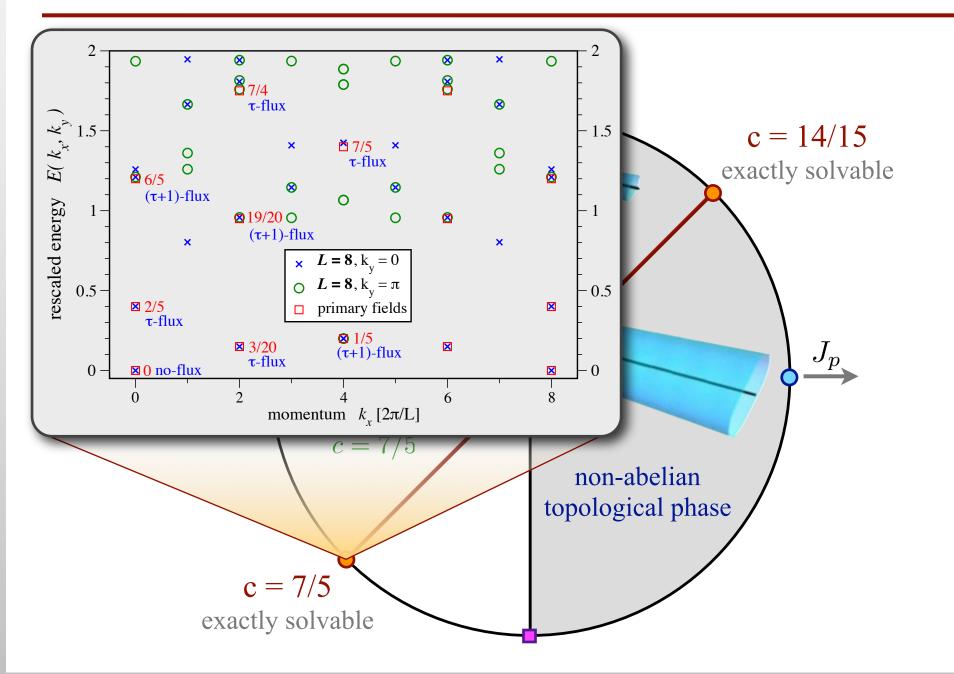


The gapless theory is a CFT with c = 14/15.

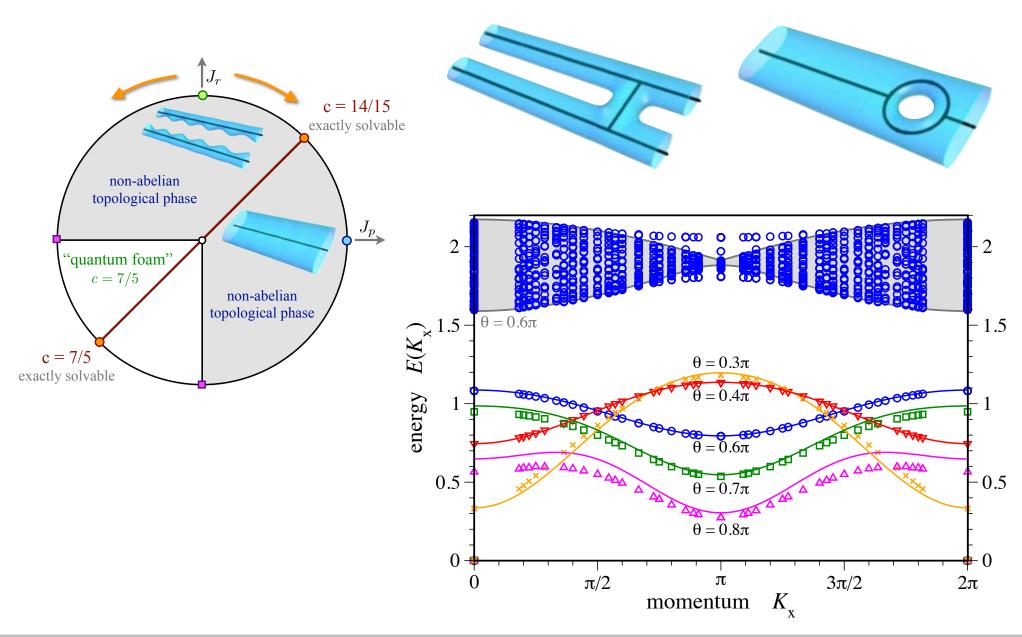
Gapless theory & exact solution



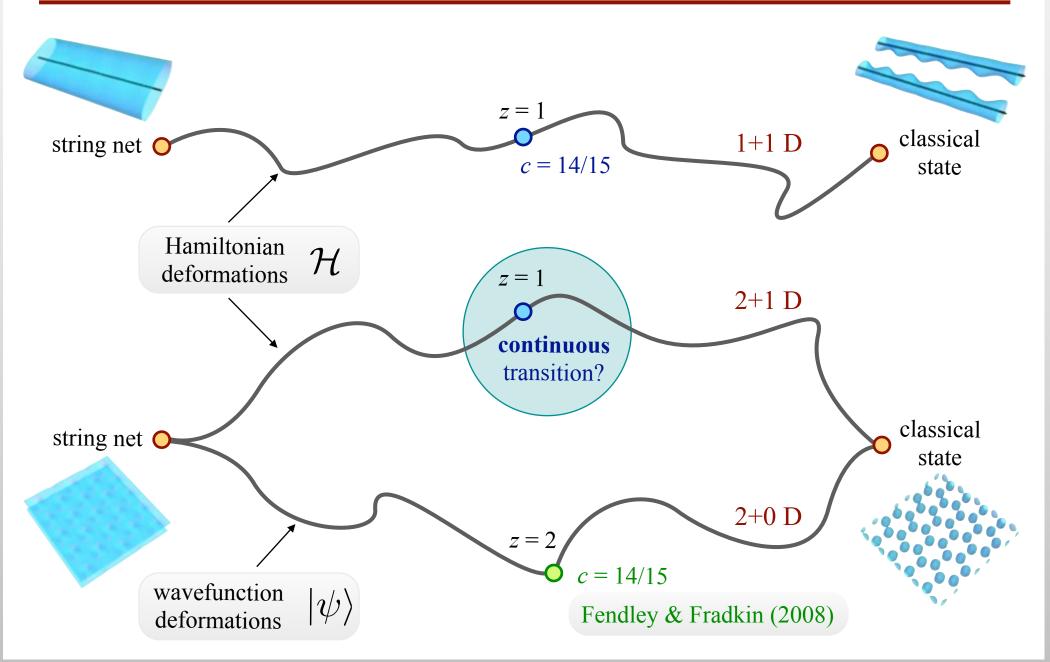
Gapless theory & exact solution



Dressed flux excitations



Back to two dimensions



Summary

- A "topological" framework for the description of topological phases and their phase transitions.
- Unifying description of loop gases and string nets.
- Quantum phase transition is driven by fluctuations of topology.
- Visualization of a more abstract mathematical description, namely doubled non-Abelian Chern-Simons theories.
- The 2D quantum phase transition out of a non-Abelian phase is still an open issue: A continuous transition in a novel universality class?

C. Gils, ST, A. Kitaev, A. Ludwig, M. Troyer, and Z. Wang arXiv:0906.1579 → Nature Physics 5, 834 (2009).