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Motivation

interacting 
many-body system

E

‘accidental’ 
degeneracy

residual effects
select ground state

Some of the most intriguing phenomena in condensed matter physics 
arise from the splitting of ‘accidental’ degeneracies.

But they are also notoriously difficult to handle analytically, due to

•  multiple energy scales

•  complex energy landscapes / slow equilibration

•  strong coupling
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Examples – quantum Hall liquids

interacting 
many-body system

E

‘accidental’ 
degeneracy

residual effects
select ground state

Landau level degeneracy integer quantum Hall fractional quantum Hall

incompressible liquid incompressible liquid

filled level partially filled level2�/�0 Coulomb repulsion

orbital states
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Examples – frustrated magnets
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Overview

Vortices, quasiholes, anyons, ...

Interactions

Disorder
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Vortices
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Abelian vs. non-Abelian vortices

Abelian

single state

Consider a set of ‘pinned’ vortices at fixed positions.

Example:

Laughlin-wavefunction + quasiholes

non-Abelian

(degenerate) manifold of states

Manifold of states grows exponentially
with the number of vortices.

Ising anyons
(Majorana fermions)

p
2
N Fibonacci 

anyons
�N
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Abelian vs. non-Abelian vortices

Abelian non-Abelian

�(x2, x1) = ei⇥� · �(x1, x2)

fractional phase
In general M and N do not commute!

�(x2 ⇥ x3) = N · �(x1, . . . , xn)

�(x1 ⇥ x3) = M · �(x1, . . . , xn)
matrix

single state (degenerate) manifold of states

Consider a set of ‘pinned’ vortices at fixed positions.
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Topological quantum computing

Employ braiding of non-Abelian
vortices to perform computing

(unitary transformations).

Degenerate manifold = qubit

Topological quantum computing

Topological Quantum Computation
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Matrix depends only on the topology of the braid swept out by 

quasiparticle world lines!

Robust quantum computation? 

(Kitaev ‘97; Freedman, Larsen and Wang ‘01)

tim
e

non-Abelian

In general M and N do not commute!

�(x2 ⇥ x3) = N · �(x1, . . . , xn)

�(x1 ⇥ x3) = M · �(x1, . . . , xn)
matrix

(degenerate) manifold of states
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Vortex-vortex interactions

E

a� �m

E

a ⇡ ⇠m

vortex separation

�E

exponential decay / exp(�a/⇠m)

RKKY-like oscillation / kF
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Vortex-vortex interactions

E

a� �m

E

a ⇡ ⇠m

vortex separation

�E

exponential decay / exp(�a/⇠m)

RKKY-like oscillation / kF
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Vortex-vortex interactions

Vortex quantum numbers

SU(2)k = ‘deformation’ of SU(2)

with finite set of representations

Energetics for many vortices

H = J
�

�ij⇥

⇥

ij

0

“Heisenberg Hamiltonian”
for vortices

Vortex pair

1/2⇥ 1/2 = 0 + 1

0

1

1/2

1/2

0,
1
2
, 1,

3
2
, 2, . . . ,

k

2

j1 ⇥ j2 =
|j1 � j2| + (|j1 � j2| + 1) + . . . +
min(j1 + j2, k � j1 � j2)

fusion rules

example   k = 2

1/2⇥ 1/2 = 0 + 1
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Vortex-vortex interactions

Microscopics

Energetics for many vortices

H = J
�

�ij⇥

⇥

ij

0

“Heisenberg Hamiltonian”
for vortices

Vortex pair

1/2⇥ 1/2 = 0 + 1

0

1

1/2

1/2

J

vortex separation

1/2⇥ 1/2! 0

1/2⇥ 1/2! 1

Which channel is favored is 
not universal, but microscopic detail.

p-wave SC, Kitaev model

Moore-Read state
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The many-vortex problem

quantum liquid

a

a� �m

E

macroscopic degeneracy

vortex-vortex
interactions ?
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The many-vortex problem

quantum liquid

a

a� �m

E

macroscopic degeneracy

vortex-vortex
interactions

unique ground state

a ⇡ ⇠m

�

quantum liquid

new quantum liquid
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The collective state

quantum liquid

bulk gap

quantum liquid

� � � �� �

Hilbert space

|x1, x2, x3, . . .�

� � � � �

� . . .x1 x2 x3

Anyonic Heisenberg chains

Hamiltonian

H =
�

i

Fi �0
i Fi

fusion path

(� = 1/2)

F-matrix = 6j-symbol
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conformal field theory 
description

Edge states

Finite-size gap

�(L) � (1/L) z=1

Entanglement entropy

central charge
c = 7/10

S(L) / c

3

log L
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level k
2
3
4
5
k
∞

Ising
c = 1/2

tricritical Ising
c = 7/10

tetracritical Ising
c = 4/5

pentacritical Ising
c = 6/7

k-critical Ising
c = 1-6/(k+1)(k+2)

Heisenberg AFM
c = 1

Ising
c = 1/2

3-state Potts
c = 4/5

Heisenberg FM
c = 2

c = 1

c = 8/7

Zk-parafermions
c = 2(k-1)/(k+2)

Gapless theories

SU(2)k�1 � SU(2)1
SU(2)k

SU(2)k

U(1)

1/2� 1/2⇥ 11/2� 1/2⇥ 0
‘antiferromagnetic’ ‘ferromagnetic’
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Gapless modes & edge states

SU(2)k liquid

critical theory SU(2)k�1 � SU(2)1
SU(2)k

SU(2)k liquid
gapless modes = edge states

nucleated liquid

interactions

SU(2)k�1 � SU(2)1
SU(2)k

SU(2)k�1 � SU(2)1

1/2� 1/2⇥ 0
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Interactions + disorder



© Simon Trebst

Disorder induced phase transition

quantum liquid

a

a� �m

E

macroscopic degeneracy

disorder +
vortex-vortex
interactions

degeneracy is split

a ⇡ ⇠m

thermal metal
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Interactions and disorder

quantum liquid

a

J

separation a

1/2⇥ 1/2! 0

1/2⇥ 1/2! 1

H =
X

hjki

Jjk⇧jk

sign disorder
+ strong amplitude modulation

Natural analytical tool:
strong-randomness RG

Unfortunately, this does not work.
The system flows away from strong 

disorder under the RG. 
No infinite randomness fixed point.
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From Ising anyons to Majorana fermions

H =
X

hjki

Jjk⇧jk

interacting Ising anyons
“anyonic Heisenberg model”

Ising anyon

SU(2)2

quantum number

free Majorana fermion
hopping model

Majorana fermion
zero mode

Majorana operator �i

H = �
X

hjki

iJjk�j�k
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From Ising anyons to Majorana fermions

Majorana operators

{�i, �j} = �ij

�†
i = �i

�i1 = (c†i + ci )/2

�i2 = (c†i � ci )/2i

⇡/2

⇡/2

free Majorana fermion
hopping model

Majorana fermion
zero mode

Majorana operator �i

H = �
X

hjki

iJjk�j�k

particle-hole symmetry
time-reversal symmetry

✓
✘ } symmetry

class D
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A disorder-driven metal-insulator transition

Density of states indicates phase transition.

0 1/2 1

psign disorder
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Chern insulator ν = -1
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The thermal metal
Density of states diverges logarithmically at zero energy.
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Taking a closer look

Oscillations in the DOS fit the prediction 
from random matrix theory for symmetry class D

⇢(E) = ↵+ sin(2⇡↵EL2)
2⇡EL2
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The thermal metal
Inverse participation ratios (moments of the GS wavefunction)
indicate multifractal structure characteristic of a metallic state.

Iq =

Z
d2r | (r)|2q ⇠ 1

L⌧q
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Disorder induced phase transition

quantum liquid

a

a� �m

E

macroscopic degeneracy

disorder +
vortex-vortex
interactions

degeneracy is split

a ⇡ ⇠m

thermal metal
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Heat transport

Caltech thermopower experiment

middle of plateau

electrical transport remains unchanged

quantum liquid

new quantum liquid
Heat transport

along the sample edges
changes quantitatively

thermal metalBulk heat transport
diverges logarithmically

as T → 0.


xx

/T / log T
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Other places to look for
Majorana metals ...
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Spin-orbit assisted Mott physics in Iridates

⇥CW ⇡ �125 K

⇥CW ⇡ �33 K

TN ⇡ 15 K

Y. Singh, P. Gegenwart, ST,  et al., PRL 108, 127203 (2012)

(Na,Li)2IrO3

a

b

c
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Spin-orbit assisted Mott physics in Iridates
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Rare combination of a model of 
fundamental conceptual importance

(harboring topological phases) 
and an exact analytical solution.

(Na,Li)2IrO3

Ir4+ (5d5)

d-orbitals

octahedral
crystal field

IrO6 cage

t2g

eg

~ 3eV

spin-orbit
coupling

j = 3/2

j = 1/2

~L · ~�
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The Kitaev model

Jz

J
x

Jy

gapped spin liquid
Z2 topological order

gapless spin liquid
w/ Majorana fermion excitations

2 Dirac cones

J
x

+ J
y

+ J
z

= const.

A. Kitaev, Ann. Phys. 321, 2 (2006)
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fundamental conceptual importance

(harboring topological phases) 
and an exact analytical solution.
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The Kitaev model + field

HKitaev+h =
X

��links

J��
�
i �

�
j

�
X

i

~h · ~�i Jy

J
x

Jz

gapped spin liquid
Z2 topological order

gapped spin liquid
non-Abelian topological order

J
x

+ J
y

+ J
z

= const.

vortices are Ising anyons with 
Majorana fermion zero modes

~h = h (1, 1, 1)
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Kitaev model + field + disorder
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FIG. 14: The e↵ect of coupling disorder on the vortex-vortex
interactions. (a) The spectrum as the function of vortex sep-
aration d in the presence of disorder of magnitude �J . (b)
and (c) show quantitatively how the mean energy splitting
h✏

d

i decreases with increasing disorder, while the mean fluc-
tuation around it, hF

d

i = hh✏
d

i � ✏
d

i, increase, respectively.
The data has been obtained using for an L = 40 system for
K = 0.05 and averaged over 103 disorder samples.

tic logarithmic divergence as well as the characteristic
oscillations (12) that confirm that the gapless state in
the presence of a disordered vortex lattice is indeed the
thermal metal.

VI. CONCLUSIONS

We have studied the stability of nucleated topologi-
cal phases in the context of Kitaev’s honeycomb model
under three realistic perturbations: anisotropic interac-
tions, dimerization of the underlying anyon lattice and
local random disorder. While the system remains stable
with respect to moderate disorder of every type, some-
thing on expects from a gapped topological phase, our
main result is to show that in the limit of strong disorder
very di↵erent physics is obtained. Anisotropy is found
to stabilize the strong pairing phases and to explain how
the the phase diagram of the honeycomb model is mod-
ified in the presence of vortex lattices. Dimerization of
the vortex lattice, on the other hand, was found to able
to recover the underlying non-Abelian phase. Maximal
tolerated dimerization was found to depend on the wave-
length of the interactions which in turn is given by the
Fermi momentum. Finally, we showed that local random
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FIG. 15: The disorder averaged energy gaps h�
V

i for some of
the nucleated phases as functions of �J . For all cases the nu-
cleated gaps decrease monotonously and close at some critical
value �Jc < 1, i.e. for smaller disorder than what is required
to drive the non-Abelian phase gapless.
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FIG. 16: (a) The gap closures of the nucleated phases al-
ways correlate with the disorder being strong enough to give
rise to a finite probability p & 0.1 for the interactions to flip
signs. (b) The low energy density of states in the presence
of strength �J = 0.8 disorder. The oscillations and the log-
arithmic divergence agree with the prediction of the random
matrix theory with the first bump occurring at the mean level
spacing of hE

i+1 �E
i

i ⇡ 8 · 10�4. The data is for D = 1 vor-
tex lattice with K = 0.05 and has been averaged over 2 · 104
disorder samples for an L = 60 system.

disorder drives all the nucleated phases into a thermal
metal state and traced back the transition to the pre-
dicted microscopic onset of sign disorder in Majorana
tunneling amplitudes17.
The upshot of our results is that nucleated phases are

predicted to be stable with respect to disorder and that
the simple picture provided by the e↵ective Majorana
tight-binding model applies also in the presence of disor-
der. However, one should keep in mind that the degree
of stability is given only with respect to the interaction
induced gap which decays exponentially with the vortex
lattice spacing. Thus in the light of potential experi-
ments, high vortex densities (of the order where the vor-
tex lattice spacing is within few coherence lengths) are
likely to be required for the nucleated phases to survive
disorder or finite temperature. As the energy gaps of nu-
cleated phases are always smaller than those protecting
the parent non-Abelian phases, something that is already

�E

vortex separation
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FIG. 12: The disorder averaged energy gap h�0i of the non-
Abelian phase, the participation ratio of the lowest lying state
hPR1i and the vortex density h⇢

V

i as functions of the disor-
der strength �J . The maximum of hPR1i around �J ⇡ 1.1 at
low vortex density implies the emergence of localized states
bound to vortex pairs. As disorder is further increased, vortex
density increases implying an emergence of a random vortex
lattice. The low-energy states re-delocalize as the bound Ma-
jorana modes can now tunnel across the whole system. The
data is for J = 1, K = 0.1 and it has been averaged over 200
disorder realizations.

linear size 10 < L < 100, we find � = 2.6 and 2.2 for the
�J = 1.5 amplitude and pure sign disorders, respectively.
Scaling faster than with the system size (� > 2) implies
at least logarithmic divergence of the density of states18.

We note that our method of averaging over increasing
disorder is qualitatively similar to averaging over ther-
mal fluctuations, which has been used to study the p-
wave superconductor in a finite temperature34. There
increasing temperature also lead first to confined vortex
pairs, which after some critical temperature deconfined
to create a random vortex lattice and the thermal metal
state was found. Thus had we sampled the couplings J

ij

from a thermal distribution instead of a uniform distri-
bution, we expect to have discovered a di↵erent critical
temperature, but otherwise similar results.

2. Disordered vortex lattices

In the absence of a vortex lattice the thermal metal
state was obtained when the disorder was strong enough
to create a random vortex lattice. When a vortex lat-
tice is already present, we expect this to occur already
for some �J

c

< 1 that coincides with the interactions be-
tween the already present vortices becoming su�ciently
disordered. We will show below that this is indeed the
case by explicitly studying how the local random disorder
modifies the vortex-vortex interactions.

Fig. 14 shows that in the presence of random local dis-
order the energy splitting ✏

d

acquires fluctutations. Aver-
aging over many disorder realizations, we find two general
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FIG. 13: The low-energy density of states ⇢(E) in the presence
of (a) �J = 1.5 amplitude disorder and (b) pure sign disorder
(|J

ij

| = 1 for all links, but the signs are completely random).
Both show the random matrix theory predicted oscillation at
the mean level spacings hE

i+1 �E
i

i = 3 · 10�4 and 1.3 · 10�3,
respectively. The amplitude disorder dampens the oscillations
in (a), whereas for pure sign disorder they are clearly visible
for several periods. The data is for a 60⇥60 plaquette system
for K = 0.05 and averaged over 104 disorder samples.

ways the interactions are modified: The mean value h✏
d

i
decreases monotonously with with increasing disorder,
while the fluctuations around the mean, F

d

= hh✏
d

i� ✏
d

i,
increase with it. The mean value remains finite all the
way up to �J ⇡ 1.2, where we found disorder averaged
gap h�0i of the non-Abelian phase to close. Thus while
the interactions are strongly influenced by disorder, they
remain well-defined throughout the non-Abelian phase.
Moreover, the wavelength of the oscillating interaction
energy is relatively una↵ected by the disorder. This in-
sensitivity derives from the random couplings randomly
shifting the two Fermi points15. As the interaction oscil-
lation wavelength in (5) depends only on their di↵erence,
this e↵ect cancels out preserving the wavelength.
The e↵ect of local random disorder on the nucleated

phases themselves is shown in Fig. 15. As expected we
find all of them being driven gapless (the disorder aver-
aged gap h�

V

i closes) for some critical disorder �J
c

< 1
that depends on the vortex lattice spacing D. In general
those nucleated phases whose spacing coincides with the
oscillation nodes have smaller gaps and are driven gap-
less for weaker disorder, while the phase whose spacing
coincide with the oscillations minima/maxima are more
stable. When the e↵ective Majorana tunneling ampli-
tudes tl

ij

are picked from the distribution ✏
lD

(�J), the
transition to the thermal metal phase should correlate
with an onset of finite probability p for the tunneling
amplitudes to have random signs.17 This is verified in
Fig.16(a), which shows how the closure of h�

V

i corre-
sponds to a finite probability of p ⇡ 0.1. Further data
for other vortex lattices can be found in Appendix B.

To verify that the gapless state in the presence of a
vortex lattice is indeed the thermal metal state, we plot
in Fig.16(b) the disorder averaged low energy density of
states for the D = 1 case for �J = 0.8. This disorder
strength is su�cient to drive the nucleated phase gap-
less, but not strong enough to destroy the underlying
non-Abelian phase. Like in the case fo the su�ciently
disordered non-Abelian phase, we find the characteris-
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FIG. 14: The e↵ect of coupling disorder on the vortex-vortex
interactions. (a) The spectrum as the function of vortex sep-
aration d in the presence of disorder of magnitude �J . (b)
and (c) show quantitatively how the mean energy splitting
h✏

d

i decreases with increasing disorder, while the mean fluc-
tuation around it, hF

d

i = hh✏
d

i � ✏
d

i, increase, respectively.
The data has been obtained using for an L = 40 system for
K = 0.05 and averaged over 103 disorder samples.

tic logarithmic divergence as well as the characteristic
oscillations (12) that confirm that the gapless state in
the presence of a disordered vortex lattice is indeed the
thermal metal.

VI. CONCLUSIONS

We have studied the stability of nucleated topologi-
cal phases in the context of Kitaev’s honeycomb model
under three realistic perturbations: anisotropic interac-
tions, dimerization of the underlying anyon lattice and
local random disorder. While the system remains stable
with respect to moderate disorder of every type, some-
thing on expects from a gapped topological phase, our
main result is to show that in the limit of strong disorder
very di↵erent physics is obtained. Anisotropy is found
to stabilize the strong pairing phases and to explain how
the the phase diagram of the honeycomb model is mod-
ified in the presence of vortex lattices. Dimerization of
the vortex lattice, on the other hand, was found to able
to recover the underlying non-Abelian phase. Maximal
tolerated dimerization was found to depend on the wave-
length of the interactions which in turn is given by the
Fermi momentum. Finally, we showed that local random
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FIG. 15: The disorder averaged energy gaps h�
V

i for some of
the nucleated phases as functions of �J . For all cases the nu-
cleated gaps decrease monotonously and close at some critical
value �Jc < 1, i.e. for smaller disorder than what is required
to drive the non-Abelian phase gapless.

0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

δ J

 

 

< ΔV >

p

D=1

10−5 10−4 10−3 10−2

0.01 

0.02 

E

ρ(
E)

 

 

ρ(E)
RMT

(a) (b)

FIG. 16: (a) The gap closures of the nucleated phases al-
ways correlate with the disorder being strong enough to give
rise to a finite probability p & 0.1 for the interactions to flip
signs. (b) The low energy density of states in the presence
of strength �J = 0.8 disorder. The oscillations and the log-
arithmic divergence agree with the prediction of the random
matrix theory with the first bump occurring at the mean level
spacing of hE

i+1 �E
i

i ⇡ 8 · 10�4. The data is for D = 1 vor-
tex lattice with K = 0.05 and has been averaged over 2 · 104
disorder samples for an L = 60 system.

disorder drives all the nucleated phases into a thermal
metal state and traced back the transition to the pre-
dicted microscopic onset of sign disorder in Majorana
tunneling amplitudes17.
The upshot of our results is that nucleated phases are

predicted to be stable with respect to disorder and that
the simple picture provided by the e↵ective Majorana
tight-binding model applies also in the presence of disor-
der. However, one should keep in mind that the degree
of stability is given only with respect to the interaction
induced gap which decays exponentially with the vortex
lattice spacing. Thus in the light of potential experi-
ments, high vortex densities (of the order where the vor-
tex lattice spacing is within few coherence lengths) are
likely to be required for the nucleated phases to survive
disorder or finite temperature. As the energy gaps of nu-
cleated phases are always smaller than those protecting
the parent non-Abelian phases, something that is already
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Summary

Topological excitations + interactions + disorder can 
give rise to a plethora of collective phenomena.

• Topological liquid nucleation

• Thermal metal

• Distinct experimental bulk observable (heat transport) 
in search for Majorana fermions.
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