Moments and Multiplets in Moiré materials

SU(N) physics in condensed matter and cold atoms virtual, May 2022

Simon Trebst **University of Cologne**

When do interesting things happen?

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

E

interacting many-body system

phase diagram of cuprate superconductors

When do interesting things happen?

from the splitting of 'accidental' degeneracies.

many-body system

But they are also **notoriously difficult** to handle, due to

- multiple energy scales
- strong coupling
- macroscopic entanglement

Some of the most intriguing phenomena in condensed matter physics arise

'accidental' degeneracy

residual effects select ground state

• complex energy landscapes / slow equilibration

Example – frustrated magnetism

interacting many-body system

Example – quantum Hall liquids

interacting many-body system

Landau level **degeneracy**

integer quantum Hall

 $2\Phi/\Phi_0$

orbital states

© Simon Trebst

filled level

incompressible liquid

fractional quantum Hall

partially filled level

Coulomb repulsion

incompressible liquid

Example – twisted bilayer graphene

electronic band structure with a **flat band** in twisted bilayer graphene

Jarillo-Herrero group, Nature **556**, 43 (April 2018)

Lasse Gresista

Dominik Kiese

arXiv:2202.05029

© Simon Trebst

meet the team

Michael Scherer

Phys. Rev. Research 2, 013370 (2020).

moments & multiplets

IOP Publishing

hexagonal moiré superlattice

Universal principles of moiré band structures J. Attig *et al.*, 2D Materials **8**, 044007 (2021)

hexagonal moiré superlattice

Example: Trilayer graphene on hexagonal boron nitride (TG/h-BN)

 $= \frac{J_1}{8} \sum_{\langle ij \rangle} (1 + \boldsymbol{\sigma}_i \boldsymbol{\sigma}_j) (1 + \boldsymbol{\tau}_i \boldsymbol{\tau}_j)$ HSU(4) symmetric $+\frac{J_2}{8}\sum_{i}(1+\boldsymbol{\sigma}_i\boldsymbol{\sigma}_j)(1+\boldsymbol{\tau}_i\boldsymbol{\tau}_j)$ Phys. Rev. Research 2, 013370 (2020).

SU(2) symmetric Heisenberg model

SU(4) symmetric Heisenberg model

SU(4) spin-valley model

$$H = \frac{J}{8} \sum_{\langle ij \rangle} (1 + \sigma_i \sigma_j) (1 + \tau_i)$$

General spin-valley Hamiltonian with symmetry-breaking terms (e.g. Hund's coupling, ...)

$$H = \frac{1}{8} \sum_{ij} \left(\sigma_i^{\mu} J_{s,ij}^{\mu\nu} \sigma_j^{\nu} \right) \left(\tau_i^{\kappa} J_{\nu,ij}^{\kappa\lambda} \tau_j^{\lambda} \right) = \frac{1}{8} \sum_{ij} \left(\sigma_i^{\mu} \otimes \tau_i^{\kappa} \right) \left(J_{s,ij}^{\mu\nu} \otimes J_{\nu,ij}^{\kappa\lambda} \right) \left(\sigma_j^{\nu} \otimes \tau_j^{\lambda} \right)$$

arXiv:2202.05029

- $[S_i^a, S_j^b] = i\epsilon^{abc}S^c$ $\mathbf{S} = (S^x, S^y, S^z)$ $\mathfrak{su}(2)$ Lie algebra
- $\mathbf{T} = (T^1, \dots T^{15}) \qquad [T^a_i, T^b_j] = i f^{abc} T^c$ $\mathfrak{su}(4)$ Lie algebra

Represent $\mathfrak{Su}(4)$ by "coupled $\mathfrak{su}(2)$ degrees of freedom"

General spin-valley Hamiltonian with symmetry-breaking terms (e.g. Hund's coupling, ...)

$$H = \frac{1}{8} \sum_{ij} \left(\sigma_i^{\mu} J_{s,ij}^{\mu\nu} \sigma_j^{\nu} \right) (\tau_i^{\kappa})$$

$$\begin{split} \sigma_{i}^{\mu} \tau_{i}^{\kappa} &\equiv \sigma_{i}^{\mu} \otimes \tau_{i}^{\kappa} = f_{isl}^{\dagger} \theta_{ss'}^{\mu} \theta_{ll'}^{\kappa} f_{is'l'} \\ \sigma_{i}^{\mu} &\equiv \sigma_{i}^{\mu} \otimes \tau_{i}^{0} = f_{isl}^{\dagger} \theta_{ss'}^{\mu} f_{is'l} \\ \tau_{i}^{\kappa} &\equiv \sigma_{i}^{0} \otimes \tau_{i}^{\kappa} = f_{isl}^{\dagger} \theta_{ll'}^{\kappa} f_{isl'} \end{split}$$

arXiv:2202.05029

Group Period	→ 1	2		3	4	5	6	7	8
♦ 1	1 H								
2	3 Li	4 Be							
3	11 Na	12 Mg							
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os
7	87 Fr	88 Ra	*	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs
			*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm
d			* *	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu

Spin-orbit entangled Mott insulators 4d and 5d transition metals (Ir, Ru, Zr) "spin-orbital models" "Kugel Khomskii model"

© Simon Trebst

- additional degrees of freedom \rightarrow enhanced quantum fluctuations
- geometric and/or exchange **frustration**

suppression of magnetic order

quantum spin-valley liquids

- no magnetic order even at T=0
- long-range entanglement
- fractional excitations (e.g. Majorana fermions in the Kitaev model)

Goal: Determine ground state spin-valley order (FM/AFM/...) or its absence.

candidates for quantum spin-valley liquid (QSVL) ground states

Reuther & Wölfle (2010)

general concept

partition function

$$Z = \int \mathscr{D}(\bar{\psi}, \psi) e^{-S}$$

introduce infrared cutoff Λ

exact rewriting

building blocks of the full correlation functions (tree expansion)

Katanin or multiloop

general concept

$$Z = \int \mathscr{D}(\bar{\psi}, \psi) e^{-S}$$

Katanin or multiloop

PFFRGSolver.jl official Julia package

> Dominik Kiese, Tobias Müller

arXiv:2011.01269

- adaptive Runge-Kutta algorithm (ODE solver)
- adaptive frequency grids and integration
- multilinear frequency interpolation
- asymptotic frequency parametrization

arXiv:2202.05029

JUWELS HPC cluster (Forschungszentrum Jülich)

spin-spin and valley-valley correlations and structure factors

$$\chi_{ij}^{\Lambda\mu\nu\kappa\lambda}(i\omega) = \int_0^\infty d\tau e^{i\omega\tau} \left\langle T_\tau \; (\sigma_i^\mu \otimes \tau_i^\kappa)(\tau) \; (\sigma_j^\nu \otimes \tau_j^\lambda)(0) \right\rangle^\Lambda$$

spin-valley quantum liquids

 $SU(2)_{spin} \otimes SU(2)_{valley}$

spin-valley coupling in presence of Hund's coupling gives $SU(2)_{spin} \otimes SU(2)_{valley}$ model

Heisenberg coupling

$$\mathcal{H} = \sum_{\langle ij \rangle} J(\hat{\sigma}_i^a \otimes \hat{\tau}_i^b) (\hat{\sigma}_j^a \otimes \hat{\tau}_j^b) (\hat{\sigma}_j^b \otimes \hat{\tau}_j^b) ($$

SU(4) symmetric

Anna's talk

Phys. Rev. Research 2, 013370 (2020).

Hund's coupling

 $(\hat{\tau}_i^b) + J_s \hat{\sigma}_i^a \hat{\sigma}_i^a + J_v \hat{\tau}_i^b \hat{\tau}_j^b$

 $SU(2)_{spin} \otimes SU(2)_{valley}$ symmetric

spin-valley model / Hund's coupling

triangular lattice

Phys. Rev. Research 2, 013370 (2020).

honeycomb lattice

spin-valley model / longer-range couplings

Phys. Rev. Research 2, 013370 (2020).

trilayer graphene / h-BN

 $SU(2)_{spin} \otimes U(1)_{valley}$

spin-valley model for TLG/h-BN

X. Zhang et al., PRL **127**, 166802 (2021)

displacement field D

spin-valley model for

 $SU(2)_{spin} \otimes U(1)_{valley}$ spin-valley model

SU(4) symmetric

$$H = \frac{J_1}{8} \sum_{\langle ij \rangle} (1 + \sigma_i \sigma_j)(1 + \tau_i \tau_j) + \frac{J_2}{8} \sum_{\langle \langle ij \rangle \rangle} (1 + \sigma_i \sigma_j)(1 + \tau_i \tau_j) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^1(1 + \sigma_i \sigma_j)(\tau_i^x \tau_j^x + \tau_i^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_i^x \tau_j^x + \tau_i^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_i^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^x \tau_j^x + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y + \tau_j^y + \tau_j^y \tau_j^y) + \frac{1}{8} \sum_{\langle ij \rangle} J_{p;ij}^2(1 + \sigma_i \sigma_j)(\tau_j^y + \tau_j^y + \tau_j^$$

Translated into matrix form

valley symmetric

parameters **tunable** by displacement **field** $D \rightarrow$ potential difference Δ_V

Where to go from here?

Take-away messages

- Moiré materials are a new platform for SU(N) physics
- Interplay of spin and valley degrees of freedom gives rise to rich phase diagrams
- In proximity of SU(4) symmetry we find spin-valley quantum spin liquid states

Outlook

• Like for their SU(2) counterparts the intermediate coupling regime between weakly coupled Hubbard physics and strongly coupled spin-valley SU(4) models might be most interesting.

summary

arXiv:2202.05029 Phys. Rev. Research 2, 013370 (2020).

Bottom hBN

