Nishimori's Cat Stable long-range entanglement from finite-depth unitaries & weak measurements

Simon Trebst University of Cologne

A Quantum Many-Body Handshake: Theory and Simulation meet Experiment Weizmann Institute of Science, December 2022

A Quantum Many-Body Handshake: Theory and Simulation meet Experiment

A Quantum Many-Body Handshake: Theory and Simulation meet Experiment

monitored quantum circuits

measurement-induced phase transitions

monitored quantum circuit

© Simon Trebst

- symmetry protected topological orders

Non-deterministic, deep circuits.

Fisher, Khemani, Nahum, Vijay, review 2022

measurement-based state preparation

circuit imperfections

conceptual question

Does the formation of long-range entanglement in these engineered states entail a similar notion of stability as known fromquantum ground states?

circuit imperfections

weak measurements

SRE

conceptual answer

gate imperfections

 $CZ \sim e^{-i\frac{\pi}{4}ZZ}$

incomplete rotation

weaken measurement

University of Cologne

© Simon Trebst

meet the team

arXiv:2208.11136

Harvard

shallow quantum circuit

post-measurement state

unitary evolution times lock temperature & coupling

$$|+\rangle \bigotimes N \qquad \qquad \tanh \frac{\beta}{2} J_{+} = \tan t_{A} \tan t_{B}$$
$$\tanh \frac{\beta}{2} J_{-} = -\tan t_{A} \cot t_{B}$$

$$e^{-\beta \sum_{ij} (J_{s_{ij}}\sigma_i\sigma_j + hs_{ij})}$$

random bond Ising model

thermal fluctuations and disorder are **locked**

© Simon Trebst

"low temperature"

Nishimori physics

random bond Ising model

thermal fluctuations and disorder are **locked**

Nishimori (1981)

disorder "temperature" = thermal "temperature"

uncorrelated disorder gauge symmetry

- internal energy is analytic
- correlation (in-)equalities
- free energy = frustration entropy
- RG scaling axis
- unstable multi-critical point
- separate FM / PM / SG phases
- reentrant phase boundary

Ising vortex disorder

tensor network calculations

hybrid tensor network & Monte Carlo $p_{\{s\}} \propto Z_{\{s\}}$

two degrees of freedom

{s} traced by Monte Carlo{sigma} traced by tensor network

© Simon Trebst

Nishimori line

 $\beta = \ln |\tan(t_A + \pi/4)|$ $[\langle s \rangle] = 0$ $[\langle ssss \rangle] = \sin^4(2t_A)$ $[\langle \sigma S \sigma \rangle] = \sin(2t_A)^{2L}$

gauge invariant quantities

finite-size scaling

established RBIM numerics $p_c \approx 0.109$ $t_A^c \approx 0.143\pi$ $1/\nu \approx 3/4$

> Adler '97 Fisher '97 Harris '88 Pujol '01 Chalker '02 Hartmann '04

. . .

$[\langle \sigma \rangle^2] \equiv \sum p_{\{s\}} \langle \sigma \rangle^2_{\{s\}}$ $\{S\}$

experiment

IBM quantum cloud

NISQ devices built on transmon qubits

noisy intermediate scale quantum

heavy-hexagon geometry

Lieb lattice

+**Ising evolution gates**

© Simon Trebst

depth-3 quantum circuit

ongoing collaboration with Havard & IBM teams

Nishimori's cat decoded

ongoing collaboration with Havard & IBM teams

stabilizer codes

measuring stabilizers

unitaries + measurements

post-measurement states

 $\langle \{s\} | \psi$

non-unitaries + randomness =

$$\Psi \rangle = e^{-\frac{1}{2}\beta \sum_{j} s_{j} \mathcal{O}_{j}} |+\rangle^{\otimes N}$$

measuring stabilizers

frustration monopole disorder

$$p_{\{s\}} \propto Z_{\{s\}} = \sum_{\{\sigma\}} e^{-\beta \sum_{p} s_{p} B_{p}}$$

static magnetic flux loop defects

uncorrelated RPGM

 $p_c \approx 0.033$

Dennis, Kitaev, Landahl, Preskill 2002; Ohno, Arakawa, Ichinose, Matsui 2004

summary

summary

• **shallow** deterministic quantum circuits

stable long range entanglement and quantum criticality

analytical solution

Lieb lattice geometry

Nishimori cat

• experimental realization

go-to: IBM's heavy-hexagon transmon platform

- Outlook
 - **topological orders** (twisted, non-Abelian, fracton, chiral, ...)
 - universe of **conformal quantum critical points** unitary and non-unitary
 - Floquet codes

arXiv:2208.11136

Guo-Yi Zhu

