Interactions and disorder in topological quantum matter

February 5th, 2013

Simon Trebst University of Cologne

Overview

Topological quantum matter Interactions

Disorder

Experiments

Topological quantum matter

Topological quantum matter

- 1867: Lord Kelvin atoms = knotted tubes of ether Knots might explain stability, variety, vibrations, ...
- Maxwell: "It satisfies more of the conditions than any atom hitherto imagined."
- This inspires the mathematician **Tait** to classify knots.

ඁ෮ඁ෯ඁ෯ඁ෯ඁ෯ඁ෯ඁ෯ඁ෯ඁ෯ ්හි හි හි හි හි හි හි හි හි <u>ି</u>ଷ୍ଟ କ୍ଷିଷ୍ଟ କ୍ଷିଷ୍ଟ କ୍ଷିଷ୍ଟ \$`\$`\$`\$`\$`\$`\$`\$`\$`\$`\$` 8 8 83 83 88 3 (8) **A B** ୖୄୄୄୄୄ<mark>ଢ଼ୄ</mark>ୖ (ପ୍ରୁ ' ପ୍ରୁ ' ବ୍ରୁ ' ିଦ୍ଧି 🧐 · 🎯 🛞 🛞 🛞 *୕*୲ଊ୕୲ଊ୕୲ଊ୕୲ଊ୕୲ୡ

Non-topological (quantum) matter

Bose-Einstein condensate

All these states can be described by a local order parameter.

Topological quantum matter

- Xiao-Gang Wen: A ground state of a many-body system that *cannot* be fully characterized by a *local* order parameter.

A

B

 Often characterized by a variety of non-local "topological propertie"

• A top _____ase can be positively identified by its *entanglement properties*.

Knots & edge states

- Bringing a topological and a conventional state into spatial proximity will result in a *gapless edge state* – literally a *knot* in the wavefunction.
- We know this: "Counterintuitive states"

Knots & edge states

Flipper bridge

Topological matter / classification (rough)

Topological order

inherent

Gapped phases that cannot be transformed – without closing the bulk gap – to "simple phases" via any "paths"

> quantum Hall states spin liquids

symmetry protected

Gapped phases that cannot be transformed – without closing the bulk gap – to "simple phases" via any **symmetry preserving** "paths".

topological band insulators

Quantum Hall effect

Quantization of Hall conductivity

for a two-dimensional electron gas at very low temperatures in a high magnetic field.

$$\sigma = \nu \frac{e^2}{h}$$

Semiconductor heterostructure confines electron gas to two spatial dimensions.

Quantum Hall states

Landau levels

$$E_n = h \frac{eB}{m} \left(n + \frac{1}{2} \right)$$

Landau level degeneracy

 $2\Phi/\Phi_0$

orbital states

integer quantum Hall

incompressible liquid

fractional quantum Hall

partially filled level

Coulomb repulsion incompressible liquid

Fractional quantum Hall states

p_x+ip_y superconductors

Vortices carry characteristic "zero mode", the so-called Majorana fermion.

2N vortices give **degeneracy** of 2^{N} .

Topological insulators

Spin-orbit driven band inversion of a conventional band insulator.

Bi₂Se₃

Proximity effects / heterostructures

Proximity effect

Proximity effect between an s-wave superconductor and the surface states of a (strong) topological insulator induces exotic vortex statistics in the superconductor.

Spinless p_x+ip_y superconductor where vortices bind a **zero mode**.

Vortices, quasiholes, anyons, ...

Interactions

Vortices

Abelian vs. non-Abelian vortices

Consider a set of 'pinned' vortices at fixed positions.

Abelian

single state

Example: Laughlin-wavefunction + quasiholes

non-Abelian

(degenerate) manifold of states

Manifold of states grows **exponentially** with the number of vortices.

 $\underset{\text{(Majorana fermions)}}{\text{Ising anyons}} \sqrt{2}^N$

Fibonacci ϕ^N anyons

Abelian vs. non-Abelian vortices

Consider a set of 'pinned' vortices at fixed positions.

Abelian

single state

$$\psi(x_2, x_1) = e^{i\pi\theta} \cdot \psi(x_1, x_2)$$

fractional phase

non-Abelian

(degenerate) manifold of states

 $\begin{array}{c} \text{matrix} \\ \psi(x_1 \leftrightarrow x_3) = \mathbf{M} \cdot \psi(x_1, \dots, x_n) \\ \psi(x_2 \leftrightarrow x_3) = \mathbf{N} \cdot \psi(x_1, \dots, x_n) \end{array}$

In general *M* and *N* do not commute!

Topological quantum computing

Topological quantum computing

Degenerate manifold = qubit

Employ **braiding** of non-Abelian vortices to perform computing (unitary transformations).

non-Abelian

(degenerate) manifold of states

 $\begin{array}{c} \text{matrix} \\ \psi(x_1 \leftrightarrow x_3) = \mathbf{M} \cdot \psi(x_1, \dots, x_n) \\ \psi(x_2 \leftrightarrow x_3) = \mathbf{N} \cdot \psi(x_1, \dots, x_n) \end{array}$

In general *M* and *N* do not commute!

Vortex quantum numbers

 $SU(2)_k$ = 'deformation' of SU(2)

with finite set of representations

$$0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots, \frac{k}{2}$$

fusion rules $j_1 \times j_2 =$ $|j_1 - j_2| + (|j_1 - j_2| + 1) + \dots +$ $\min(j_1 + j_2, k - j_1 - j_2)$

> example k = 2 $1/2 \times 1/2 = 0 + 1$

Vortex pair $1/2 \times 1/2 = 0 + 1$

Energetics for many vortices

$$H = J \sum_{\langle ij \rangle} \prod_{ij} {}^{0}$$

"Heisenberg Hamiltonian" for vortices

Microscopics

Which channel is favored is not universal, but microscopic detail.

Vortex pair $1/2 \times 1/2 = 0 + 1$

Energetics for many vortices

$$H = J \sum_{\langle ij \rangle} \prod_{ij} {}^{0}$$

"Heisenberg Hamiltonian" for vortices

The many-vortex problem

macroscopic degeneracy

A conceptual question in good company

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

Examples – frustrated magnets

Examples – quantum Hall liquids

Landau level degeneracy

 $2\Phi/\Phi_0$

orbital states

integer quantum Hall

fractional quantum Hall

partially filled level Coulomb repulsion incompressible liquid

The many-vortex problem

macroscopic degeneracy

unique ground state

The collective state

Edge states

Gapless theories

level k	$1/2 \times 1/2 \rightarrow 0$	$1/2 \times 1/2 \rightarrow 1$
2	$\frac{\mathbf{Ising}}{\mathbf{c}=1/2}$	$\frac{\mathbf{Ising}}{\mathbf{c}=1/2}$
3	tricritical Ising c = 7/10	3-state Potts $c = 4/5$
4	$\boxed{SU(2)_{k-1} \times SU(2)_1}$	$SU(2)_k$
5	$SU(2)_k$	<i>U</i> (1)
k	k-critical Ising c = 1-6/(k+1)(k+2)	Z_k -parafermions c = 2(k-1)/(k+2)
$\mathbf{O}\mathbf{O}$	Heisenberg AFM c = 1	Heisenberg FM c = 2

Interactions + disorder

Disorder induced phase transition

macroscopic degeneracy

degeneracy is split

Interactions and disorder

sign disorder + strong amplitude modulation

Natural analytical tool: strong-randomness RG

Unfortunately, this does not work. The system flows *away* from strong disorder under the RG. No infinite randomness fixed point.

From Ising anyons to Majorana fermions

$$H = \sum_{\langle jk \rangle} J_{jk} \Pi_{jk} \longrightarrow \mathcal{H} = -\sum_{\langle jk \rangle} i \mathcal{J}_{jk} \gamma_j \gamma_k$$

interacting Ising anyons "anyonic Heisenberg model" free Majorana fermion hopping model

From Ising anyons to Majorana fermions

$$\mathcal{H} = -\sum_{\langle jk \rangle} i \mathcal{J}_{jk} \gamma_j \gamma_k$$

free Majorana fermion hopping model Majorana operators

$$\{\gamma_i, \gamma_j\} = \delta_{ij}$$
$$\gamma_i^{\dagger} = \gamma_i$$
$$\gamma_{i1} = (c_i^{\dagger} + c_i)/2$$
$$\gamma_{i2} = (c_i^{\dagger} - c_i)/2i$$

particle-hole symmetry
symmetry
local s

A disorder-driven metal-insulator transition

© Simon Trebst

Disorder induced phase transition

macroscopic degeneracy

degeneracy is split

What does this tell us?

Heat transport

Caltech thermopower experiment

Bulk heat transport diverges logarithmically as $T \rightarrow 0$.

 $\kappa_{xx}/T \propto \log T$

Heat transport along the sample edges changes quantitatively

Collective states – a good thing?

The interaction induced splitting of the degenerate manifold = qubit states is yet another obstacle to overcome.

The formation of collective states renders all ideas of manipulating individual anyons inapplicable.

Probably, a topological quantum computer works best at **finite** temperatures. **Topological quantum computing**

Degenerate manifold = qubit

Employ **braiding** of non-Abelian vortices to perform computing (unitary transformations).

Summary

- Lord Kelvin was way ahead of his time.
- Topology has re-entered physics in many ways.
- Topological excitations + interactions + disorder can give rise to a plethora of collective phenomena.
 - Topological liquid nucleation
 - Thermal metal
 - Distinct experimental bulk observable (heat transport) in search for Majorana fermions.

