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Topological quantum matter

The interplay between physics and topology 
takes its first roots in the 1860s.

The mathematician Peter Tait sets out to 
perform experimental studies.
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Topological quantum matter

• 1867: Lord Kelvin
atoms = knotted tubes of ether
Knots might explain stability, variety, vibrations, ...

• Maxwell: “It satisfies more of the
conditions than any atom hitherto
imagined.”

• This inspires the mathematician
Tait to classify knots.
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Non-topological (quantum) matter

All these states can be described by a local order parameter.

water ice

superconductor

Bose-Einstein condensate

http://www.kitp.ucsb.edu/~trebst/
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• Xiao-Gang Wen: A ground state of a 
many-body system that cannot be fully 
characterized by a local order parameter.

• Often characterized by a variety of 
non-local “topological properties”.

• A topological phase can be positively 
identified by its entanglement properties.

Topological quantum matter
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news & views

leads to a band structure that describes 
the relationship between the energy and 
momentum of the electrons (or holes). 
!is band structure typically consists of 
a conduction band composed of bonding 
orbitals (which have symmetric wave 
functions), and a valence band composed of 
antibonding orbitals (antisymmetric wave 
functions). In an insulator the Fermi energy 
lies in the bandgap between the minimum 
of the conduction band and the maximum 
of the valence band. !e situation changes 
at the surface of a 3D host (or the edge of 
a 2D host) and new electron states appear 
at these boundaries. Depending on doping 
and crystal structure, the Fermi level may 
intersect either the conduction or valence 
band at the boundary, which will lead to 
conducting behaviour. However, if the Fermi 
level does not intersect either band, the 
boundary will remain insulating (Fig. 2a).

!e situation becomes very interesting 
if spin–orbit coupling (Fig. 3) is added to 

the picture. In a semiconductor, spin–orbit 
coupling typically leads to various e"ects, 
such as warping of the valence band and 
the splitting of spin degeneracies. (!e 
spin-up and spin-down electrons in a 
conventional semiconductor tend to have 
the same energy.) However, if the spin–
orbit coupling is su#ciently large, it can 
actually lead to antisymmetric states having 
higher energies than symmetric states 
in certain regions of momentum space 
(whereas antisymmetric states normally 
have lower energies). !is inversion leads 
to topological ‘twists’ in the band structure 
(Fig. 2b,c).

!e changes caused by spin–orbit 
coupling can be even more dramatic at 
the boundary, with the conduction and 
valence bands actually crossing over. If the 
host is 3D and the valence and conduction 
bands cross over twice (or an even number 
of times), the 2D surface states form a 
pair of Dirac cones (Fig. 2c) — this is 

similar in some ways to what is found in 
graphene. However, if the host is 3D and 
the valence and conduction bands cross 
over once (or an odd number of times), 
the 2D surface states are completely 
di"erent: indeed, theorists have shown that 
these even and odd boundary states are 
topologically distinct.

A distinguishing characteristic of the 
odd states (which are known as strong 
topological insulators) is that backscattering 
is forbidden: this means that electrons can, 
in principle, propagate with little or no 
resistance along the edge or surface of the 
system — even if the host is an insulator. 
!is is a property that could prove to be 
very useful for applications. To see why 
backscattering is forbidden, consider Fig. 2b: 
if an electron is backscattered so that its 
momentum (k) is changed from +k to –k, 
then its spin must also be $ipped from up to 
down, or vice versa. However, something is 
needed to $ip the spin, such as a magnetic 
impurity or a magnetic %eld. If nothing 
is available to $ip the spin, the electrons 
cannot be backscattered, so they can travel 
along the boundary unimpeded. If we look 
at Fig. 2c, we can see that it is possible to 
backscatter an electron without $ipping 
its spin in a system where there is an even 
number of twists.

!e %rst topological insulators were 
2D hosts with a spin structure on a 
1D edge (known as the quantum spin 
Hall e"ect). !ey were %rst elaborated 
theoretically1–3, then predicted in a 
speci%c HgTe heterostructure system4, and 
experimentally veri%ed in a carefully tuned 
nanostructure5. !e speed of the theoretical 
and experimental cycle was remarkable and 
a testament to the skill of the investigators 
involved, as well as to the mature state 
of nanofabrication technologies such as 
molecular beam epitaxy. !en, the 3D 
version of topological insulators was 
proposed6, predicted in a BiSb alloy7, and 
experimentally detected by angle-resolved 
photoemission spectroscopy (ARPES)8. 
Again it was a stunning sequence of 
developments that launched a new %eld.

As the 3D topological insulators have 
surface states with chiral patterns of spins 
in momentum space (Fig. 3), surface-
sensitive techniques such as ARPES and 
scanning tunnelling microscopy (STM) 
have been unleashed in full force on 
these materials. !e Fermi ‘surface’ of 
the 2D boundary state is a circle and can 
be represented by a closed strip (Fig. 2, 
bottom panels). As the spin–orbit coupling 
increases, and the band structure changes 
shape, twists are introduced into the strip 
that represents the Fermi surface. Again 
the properties of the system depend on 
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Figure 2 | Topological insulators and band structures. a, The conduction and valence bands of a 
typical 3D solid (middle section). The shaded regions are the bands in the bulk of the solid, and the 
thick black lines are the bands at the surface. (Similar behaviour is observed in a 2D system with a 
1D boundary.) In general, the conduction band is symmetric (red), the valence band is antisymmetric 
(blue), and spin-up and spin-down electrons (black arrows) have the same energy. En, E0 and Ep are 
the Fermi energies of a negatively doped, neutral and positively doped solid, respectively. If the Fermi 
energy lies in the energy gap between the conduction and valence bands, the solid is an insulator; if it 
intersects either band, the material will conduct electric charge. The top image shows the conduction 
and valence bands as strings, and the closed strip in the bottom section represents the Fermi surface. 
b, Spin–orbit coupling lifts the degeneracy of the electron spins and leads to other changes: in the 
bulk, for example, the conduction band becomes antisymmetric (–) and the valence band becomes 
symmetric (+) for positive momenta. At the boundary the bands (the red and blue lines) actually 
cross over each other, and the Fermi energy is forced to intersect both bands, which results in the 
conduction of electric charge along the boundary. The flow of charge is not impeded by obstacles in 
this example because, as explained in the text, it is not possible for electrons to be backscattered. 
The electron current in a particular direction is spin-polarized and robust against perturbations such 
as disorder and interactions. c, Increasing the spin–orbit coupling further leads to more changes. 
Electrons can be backscattered in this system.
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Knots & edge states

• Bringing a topological and a conventional state into 
spatial proximity will result in a gapless edge state – 
literally a knot in the wavefunction.

• We know this: “Counterintuitive states”

UK Ireland Australia Japan Hong Kong

China
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Knots & edge states

Hong Kong

China

Flipper bridge
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Topological matter / classification  (rough)

Topological order

inherent
Gapped phases that cannot be transformed

– without closing the bulk gap –
to “simple phases”

via any “paths”

quantum Hall states
spin liquids

symmetry protected
Gapped phases that cannot be transformed

– without closing the bulk gap –
to “simple phases”

via any symmetry preserving “paths”.

topological band insulators

http://www.kitp.ucsb.edu/~trebst/
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Quantum Hall effect

Semiconductor heterostructure confines 
electron gas to two spatial dimensions.

Quantization of Hall conductivity 
for a two-dimensional electron gas 

at very low temperatures 
in a high magnetic field.

AlGaAs

AlGaAs
GaAselectron gas

� = ⌫
e2

h

B
electron gas

I

V

http://www.kitp.ucsb.edu/~trebst/
http://www.kitp.ucsb.edu/~trebst/


© Simon Trebst

Quantum Hall states

B
Landau levels

En = h
eB

m

✓
n +

1
2

◆

Landau level degeneracy integer quantum Hall fractional quantum Hall

incompressible liquid incompressible liquid

edge states

filled level partially filled level2�/�0 Coulomb repulsion

orbital states
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Fractional quantum Hall states

J.S. Xia et al., PRL (2004)

Charge e/4 quasiparticles
Ising anyons

Moore & Read (1994)

Nayak & Wilzcek (1996)

SU(2)2

“Pfaffian” state

Charge e/5 quasiparticles
Fibonacci anyons

Read & Rezayi (1999)

Slingerland & Bais (2001)

SU(2)3

“Parafermion” state

http://www.kitp.ucsb.edu/~trebst/
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px+ipy superconductors

px+ipy superconductor

�

�
�

�

�
�

�
possible realizations

Sr2RuO4

p-wave superfluid of cold atoms
A1 phase of 3He films

�

�

�

vortex

fermion

Vortices carry characteristic “zero mode”,
the so-called Majorana fermion.

2N vortices give degeneracy of 2N.

Read & Green (2000)
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Topological insulators

Bi2Se3

NEWS & VIEWS

CONDENSED MATTER

An insulator with a twist

Charles L. Kane
is in the Department of Physics and Astronomy, 
University of Pennsylvania, 209 South 33rd Street, 
Philadelphia, Pennsylvania 19104-6396, USA.

e-mail: kane@physics.upenn.edu

T he insulating state is the most basic 
electronic phase of matter. It is 
characterized by an energy gap for 

electronic excitations, which makes it 
electrically inert at low energies. As they 
report in Nature, Hsieh et al.1 have now 
observed a new kind of insulator — dubbed 
a ‘topological insulator’ — that has unique 
conducting states bound to its surface. !ese 
surface states are unlike any other known 
two-dimensional electron system, and 
could be used to test proposed schemes for 
topological quantum computation.

One of the triumphs of quantum 
mechanics in the twentieth century was the 
development of the band theory of solids. 
An insulator has a band structure in which 
occupied and empty bands are separated by 
an energy gap. !e existence of an energy gap, 
however, does not guarantee that a material 
is a simple insulator. A counterexample 
is the two-dimensional integer quantum 
Hall state, which has an energy gap due 
to the quantization of electronic states 
in a magnetic "eld. Despite the gap, this 
state is not a conventional insulator, but 
rather has a quantized Hall conductivity. 
!e classi"cation of distinct insulating 
band structures was pioneered in 1982 by 
!ouless and colleagues2, who showed that 
the quantized Hall conductivity de"nes an 
integer topological invariant. !is invariant 
is insensitive to small changes in the band 
structure, and can only change at a phase 
transition where the energy gap vanishes.

Quantum Hall states require the 
presence of a magnetic "eld, which leads 
to a violation of time-reversal symmetry. 
In the past few years, a new class of time-
reversal-invariant topological insulators, 
which are distinguished by a di#erent 
topological invariant, has been predicted for 
two-dimensional3 and three-dimensional4–6 
crystals. !e two-dimensional state, "rst 
predicted in graphene7, is known as a 
quantum spin Hall insulator. !is state was 

subsequently predicted8 to exist, and was 
then observed9, in HgxCd1−xTe quantum 
wells. In 2007, Liang Fu and I predicted 
that the semiconducting alloy Bi1−xSbx is a 
three-dimensional topological insulator10. 
In their experiment, Hsieh et al.1 probed 
the surface of Bi1−xSbx using angle-resolved 
photoemission spectroscopy, and found the 
signature of the topological insulator state in 
the observed surface states.

A distinctive property of topological 
insulators is the existence of gapless states 
on the sample boundary. Such states always 
occur at the spatial interface between regions 
that are in di#erent topological classes. !is 
is easiest to see by imagining a smooth limit 
where the band structure slowly interpolates 
as a function of position between the two 

sides. Somewhere along the way the energy 
gap has to vanish; otherwise the two sides 
would be in the same class. Gapless states 
are thus bound to the interface. !e surface 
of a crystal can be viewed as an interface 
with the vacuum, which, like a conventional 
insulator, is in the trivial topological class. 
!is guarantees the existence of gapless states 
on the surface (or edge) of a non-trivial 
insulator. !ese states are well known in the 
quantum Hall e#ect, which has gapless one-
dimensional edge states that are unique in 
that they propagate in one direction only. It is 
impossible to have such states in an isolated 
one-dimensional system.

Unlike the quantum Hall e#ect in 
which the topological invariant is an integer, 
the invariant distinguishing a topological 

Experiment has now proved the existence of the predicted three-dimensional ‘topological 
insulator’ in the semiconducting alloy Bi1−xSbx.

Figure 1 The surface of a topological insulator. a,b, The surface in real space (a) and in reciprocal space (b), where 
momentum vectors k in the surface Brillouin zone define Kramers degenerate points, Γ1–4. c,d, Surface state dispersion 
between two Kramers degenerate points: in c, the number of surface states crossing the Fermi energy EF is even, 
whereas in d it is odd. An odd number of crossings leads to topologically protected metallic surface states.
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Spin-orbit driven band inversion of a conventional band insulator.

conventional band insulator topological band insulator
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Proximity effects / heterostructures

Proximity effect

Proximity effect between an s-wave
superconductor and the surface states

of a (strong) topological insulator
induces exotic vortex statistics

in the superconductor.

Spinless px+ipy superconductor
where vortices bind a zero mode.

topological
insulator

s-wave
superconductor

http://www.kitp.ucsb.edu/~trebst/
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Vortices, quasiholes, anyons, ...

Interactions
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Vortices

http://www.kitp.ucsb.edu/~trebst/
http://www.kitp.ucsb.edu/~trebst/


© Simon Trebst

Abelian vs. non-Abelian vortices

Abelian

single state

Consider a set of ‘pinned’ vortices at fixed positions.

Example:

Laughlin-wavefunction + quasiholes

non-Abelian

(degenerate) manifold of states

Manifold of states grows exponentially
with the number of vortices.

Ising anyons
(Majorana fermions)

p
2
N Fibonacci 

anyons
�N

http://www.kitp.ucsb.edu/~trebst/
http://www.kitp.ucsb.edu/~trebst/
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Abelian vs. non-Abelian vortices

Abelian non-Abelian

�(x2, x1) = ei⇥� · �(x1, x2)

fractional phase
In general M and N do not commute!

�(x2 ⇥ x3) = N · �(x1, . . . , xn)

�(x1 ⇥ x3) = M · �(x1, . . . , xn)
matrix

single state (degenerate) manifold of states

Consider a set of ‘pinned’ vortices at fixed positions.

http://www.kitp.ucsb.edu/~trebst/
http://www.kitp.ucsb.edu/~trebst/
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Topological quantum computing

Employ braiding of non-Abelian
vortices to perform computing

(unitary transformations).

Degenerate manifold = qubit

Topological quantum computing

Topological Quantum Computation
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Matrix depends only on the topology of the braid swept out by 

quasiparticle world lines!

Robust quantum computation? 

(Kitaev ‘97; Freedman, Larsen and Wang ‘01)

tim
e

non-Abelian

In general M and N do not commute!

�(x2 ⇥ x3) = N · �(x1, . . . , xn)

�(x1 ⇥ x3) = M · �(x1, . . . , xn)
matrix

(degenerate) manifold of states
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Vortex-vortex interactions

E

a� �m

E

a ⇡ ⇠m

vortex separation

�E

exponential decay / exp(�a/⇠m)

RKKY-like oscillation / kF
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Vortex-vortex interactions

E

a� �m

E

a ⇡ ⇠m

vortex separation

�E

exponential decay / exp(�a/⇠m)

RKKY-like oscillation / kF
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Vortex-vortex interactions

Vortex quantum numbers

SU(2)k = ‘deformation’ of SU(2)

with finite set of representations

Energetics for many vortices

H = J
�

�ij⇥

⇥

ij

0

“Heisenberg Hamiltonian”
for vortices

Vortex pair

1/2⇥ 1/2 = 0 + 1

0

1

1/2

1/2

0,
1
2
, 1,

3
2
, 2, . . . ,

k

2

j1 ⇥ j2 =
|j1 � j2| + (|j1 � j2| + 1) + . . . +
min(j1 + j2, k � j1 � j2)

fusion rules

example   k = 2

1/2⇥ 1/2 = 0 + 1
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Vortex-vortex interactions

Microscopics

Energetics for many vortices

H = J
�

�ij⇥

⇥

ij

0

“Heisenberg Hamiltonian”
for vortices

Vortex pair

1/2⇥ 1/2 = 0 + 1

0

1

1/2

1/2

J

vortex separation

1/2⇥ 1/2! 0

1/2⇥ 1/2! 1

Which channel is favored is 
not universal, but microscopic detail.

p-wave SC, Kitaev model

Moore-Read state

http://www.kitp.ucsb.edu/~trebst/
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The many-vortex problem

quantum liquid

a

a� �m

E

macroscopic degeneracy

vortex-vortex
interactions ?

http://www.kitp.ucsb.edu/~trebst/
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A conceptual question in good company

interacting 
many-body system

E

‘accidental’ 
degeneracy

residual effects
select ground state

Some of the most intriguing phenomena in condensed matter physics 
arise from the splitting of ‘accidental’ degeneracies.

T

hole doping
SC AF 

Fermi
liquid 

non Fermi
liquid 

pseudo
gap

phase diagram of
cuprate superconductors

http://www.kitp.ucsb.edu/~trebst/
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Examples – frustrated magnets

long-range
order

cooperative
paramagnet

high temperature
paramagnet

�CW
T0

1/�

E

� ⇠ 1
T �⇥CW

Tc

T=0 residual entropy long-range order

interacting 
many-body system

E

‘accidental’ 
degeneracy

residual effects
select ground state
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Examples – quantum Hall liquids

interacting 
many-body system

E

‘accidental’ 
degeneracy

residual effects
select ground state

Landau level degeneracy integer quantum Hall fractional quantum Hall

incompressible liquid incompressible liquid

filled level partially filled level2�/�0 Coulomb repulsion

orbital states

http://www.kitp.ucsb.edu/~trebst/
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The many-vortex problem

quantum liquid

a

a� �m

E

macroscopic degeneracy

vortex-vortex
interactions

unique ground state

a ⇡ ⇠m

�

quantum liquid

new quantum liquid

http://www.kitp.ucsb.edu/~trebst/
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The collective state

quantum liquid

bulk gap

quantum liquid

1/2� 1/2⇥ 0

1/2� 1/2⇥ 1
SU(2)k

SU(2)k-1

U(1)

http://www.kitp.ucsb.edu/~trebst/
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conformal field theory 
description

Edge states

Finite-size gap

�(L) � (1/L) z=1

Entanglement entropy

central charge
c = 7/10

S(L) / c

3

log L

20 40 60 80 120 160 240
system size   L

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

en
tro

py
   
S(
L)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
inverse system size   1/L

0

0.1

0.2

0.3

0.4

0.5

0.6

fin
ite

-s
iz

e 
ga

p 
  Δ
(L
)

Lanczos

DMRG

http://www.kitp.ucsb.edu/~trebst/
http://www.kitp.ucsb.edu/~trebst/


© Simon Trebst

level k
2
3
4
5
k
∞

Ising
c = 1/2

tricritical Ising
c = 7/10

tetracritical Ising
c = 4/5

pentacritical Ising
c = 6/7

k-critical Ising
c = 1-6/(k+1)(k+2)

Heisenberg AFM
c = 1

Ising
c = 1/2

3-state Potts
c = 4/5

Heisenberg FM
c = 2

c = 1

c = 8/7

Zk-parafermions
c = 2(k-1)/(k+2)

Gapless theories

SU(2)k�1 � SU(2)1
SU(2)k

SU(2)k

U(1)

1/2� 1/2⇥ 11/2� 1/2⇥ 0
‘antiferromagnetic’ ‘ferromagnetic’
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Interactions + disorder
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Disorder induced phase transition

quantum liquid

a

a� �m

E

macroscopic degeneracy

disorder +
vortex-vortex
interactions

degeneracy is split

a ⇡ ⇠m

thermal metal
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Interactions and disorder

quantum liquid

a

J

separation a

1/2⇥ 1/2! 0

1/2⇥ 1/2! 1

H =
X

hjki

Jjk⇧jk

sign disorder
+ strong amplitude modulation

Natural analytical tool:
strong-randomness RG

Unfortunately, this does not work.
The system flows away from strong 

disorder under the RG. 
No infinite randomness fixed point.
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From Ising anyons to Majorana fermions

H =
X

hjki

Jjk⇧jk

interacting Ising anyons
“anyonic Heisenberg model”

Ising anyon

SU(2)2

quantum number

free Majorana fermion
hopping model

Majorana fermion
zero mode

Majorana operator �i

H = �
X

hjki

iJjk�j�k

http://www.kitp.ucsb.edu/~trebst/
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From Ising anyons to Majorana fermions

Majorana operators

{�i, �j} = �ij

�†
i = �i

�i1 = (c†i + ci )/2

�i2 = (c†i � ci )/2i

⇡/2

⇡/2

free Majorana fermion
hopping model

Majorana fermion
zero mode

Majorana operator �i

H = �
X

hjki

iJjk�j�k

particle-hole symmetry
time-reversal symmetry

�
� } symmetry

class D
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A disorder-driven metal-insulator transition

Density of states indicates phase transition.
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psign disorder
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Disorder induced phase transition
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What does this tell us?
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Heat transport

Caltech thermopower experiment

middle of plateau

electrical transport remains unchanged

quantum liquid

new quantum liquid
Heat transport

along the sample edges
changes quantitatively

thermal metalBulk heat transport
diverges logarithmically

as T → 0.
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Collective states – a good thing?
Topological quantum computing

Employ braiding of non-Abelian
vortices to perform computing

(unitary transformations).

Degenerate manifold = qubit

Topological Quantum Computation
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Matrix depends only on the topology of the braid swept out by 

quasiparticle world lines!

Robust quantum computation? 

(Kitaev ‘97; Freedman, Larsen and Wang ‘01)

tim
e

The interaction induced splitting 
of the degenerate manifold = qubit states

is yet another obstacle to overcome.

Probably, a topological quantum computer 
works best at finite temperatures.

The formation of collective states renders
all ideas of manipulating individual anyons

inapplicable.
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Summary

• Lord Kelvin was way ahead of his time.

• Topology has re-entered physics in many ways.

• Topological excitations + interactions + disorder 
can give rise to a plethora of collective phenomena.
• Topological liquid nucleation

• Thermal metal

• Distinct experimental bulk observable (heat transport) 
in search for Majorana fermions.
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