

Correlated Quantum Materials + beyond ISSP Tokyo, November 2024

Monitored Kitaev Models

Quantum circuits, entanglement dynamics, and synthetic fractionalization

Simon Trebst University of Cologne

QUANTUM COMPUTING

Kitaev physics

fractionalization long-range etanglement

quantum **spin liquids**

quantum measurements

quantum measurements

"About your cat, Mr. Schrödinger — I have good news and bad news."

Quantum measurements can

extract information

from a system

shape entanglement

of a quantum system

double-faced Janus

joint measurements

joint measurements

new toolbox for quantum many-body physics

Hamiltonian vs. monitored dynamics

Hamiltonian dynamics

- equilibrium dynamics of isolated systems
- unitary evolution
- energy conserved
- quantum ground states
- area-law entanglement structures
- macroscopic entanglement (spin liquids)

measurement dynamics

- out-of-equilibrium dynamics of open systems
- non-unitary evolution
- energy not conserved
- long-time steady states
- plethora of entanglement structures
- macroscopic entanglement (spin liquids)

Nishimori physics warm-up

commuting vs non-commuting measurements

Nishimori's cat

- commuting
- parallelized
- no dynamics

Guo-Yi Zhu

Kitaev spin liquid

- non-commuting
- sequential
- dynamics

Nishimori's cat

Nishimori's cat

Bell pair

© Simon Trebst

interpret as classical stat mech model

random bond Ising model

Nishimori's cat

Nishimori's cat

Bell pair

thermal fluctuations and disorder are **locked**

© Simon Trebst

commuting vs non-commuting measurements

Nishimori's cat

- commuting
- parallelized
- no dynamics

Kitaev spin liquid

- non-commuting
- sequential
- dynamics

Kitaev circuits Quantum Magnetism meets Quantum Computing

imaginary time vs. measurement-only dynamics

random weak/strong measurement

- **stochastic** circuit
- Born disorder

random projective Kitaev measurements

Majorana interaction \rightarrow Majorana surface code

Clifford circuit

even **interacting** problem can be simulated in polynomial time (in Heisenberg picture)

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2023; Sriram, Rakovszky, Khemani, Ippoliti 2023; Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

entanglement phase diagram

Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

© Simon Trebst

entanglement & circuit geometry

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2023; Sriram, Rakovszky, Khemani, Ippoliti 2023 Klocke, Simm, Zhu, ST, Buchhold 2024: non-bipartite geometries

© Simon Trebst

analytical connections to loop models and NLoM models numerical simulations for 100,000,000 = **10⁸ qubits**

Majorana loop models

lattice /circuit geometry	bipartite (e.g. honeycomb)	non-bipartite (e.g. Yao-Kivelson)
symmetry class	BDI	D
loop symmetry field theory	orientable \mathbb{CP}^{n-1}	non-orientable \mathbb{RP}^{n-1}
entanglement scaling	$\sqrt{\mathcal{D}} \cdot L \log(L)$	
dynamics	$P(\ell) \sim \text{const.}$	$P(\ell) \sim (\mathcal{L} - \ell)^{-1}$
entanglement scaling	$L + \log L$	$L-\gamma_{ m topo}$
Maj. spectrum	gapless Dirac	gapped Cherr

© Simon Trebst

entanglement phase transitions

entanglement phase transitions

critical exponent	ν	η
orientable loops (symmetry class BDI)	0.9987(7)	-0.084(4)
non-orientable loops	0.9403(6)	-0.066(7)
(Symmetry class D)		numerical simulation
orientable loops (symmetry class BDI)	0.999(2)	-0.068(18)
non-orientable loops	0.918(5)	-0.091(9)
(symmetry class D)		numerical simu M. Ortuño, A. M. Son P. Serna, arXiv:2107. ⁻

imaginary time vs. measurement-only dynamics

Hastings-Haah Floquet code

round 1

- quantum error correcting code
- two logical qubits

What happens when you turn stabilizers from projective measurements into weak measurements?

Hastings & Haah, Quantum **5**, 564 (2021)

dynamically generated logical qubits

round 3

• Floquet dynamics

round 2

• two-qubit Pauli operators

round 5

round 4

measurement-induced Majorana dimer crystals & RVB states

synthetic fractionalization – double-peaks

Joji Nasu,¹ Masafumi Udagawa,² and Yukitoshi Motome² ¹Department of Physics, Tokyo Institute of Technology, Ookayama, 2-12-1, Meguro, Tokyo 152-8551, Japan ²Department of Applied Physics, University of Tokyo, Hongo, 7-3-1, Bunkyo, Tokyo 113-8656, Japan (Received 24 July 2014; revised manuscript received 9 October 2014; published 7 November 2014)

summary

Hamiltonian dynamics

- equilibrium dynamics of isolated systems
- quantum ground states
- area-law entanglement structures
- macroscopic entanglement (spin liquids)
- finite-temperature **fractionalization**

