Breakdown of a topological phase Quantum phase transition(s) in a loop gas with tension

Simon Trebst

Microsoft Research University of California, Santa Barbara

http://StationQ.ucsb.edu

Outline

Topological phases

- Fault-tolerant quantum computing
- A simple, soluble spin model the toric code
- Breakdown of topological order
 - Perturbing the toric code around soluble point
 - Numerical simulations
- Outlook

Introduction

Spontaneous symmetry breaking

- ground state has **less** symmetry than Hamiltonian
- Landau-Ginzburg-Wilson theory
- local order parameter
- Topological order
 - ground state has **more** symmetry more than Hamiltonian
 - degenerate ground states
 - **non-local** order parameter

Topological quantum liquids

• Gapped spectrum • No broken symmetry • Degenerate ground state on torus $e^{i\theta}$ Fractional statistics of excitations • Hilbert space split into topological sectors ${\mathcal H}$ No local matrix element mixes the sectors

Fault-tolerant quantum computing

A. Kitaev, Ann. Phys. 303, 2 (2003).

Idea: Use degenerate groundstates as qubits

Topological order makes it **robust** with respect to local perturbations

States are locally indistinguishable \rightarrow no phase errors States do not couple \rightarrow no bit flip errors

Liquid is required since environment couples to broken symmetries

Example systems

- Experimental realization of topological quantum liquid
 - Fractional quantum Hall effect (FQHE) but gapless edge states are a problem
- First implementation proposal in Josephson junction arrays
- Other candidate systems
 - Frustrated magnets
 - Quantum dimer models
 - Ultra-cold atoms

Stability of the topological phase

- Topological phases have **not** been **directly observed** in experiment (beyond FQHE), because
 - they are unstable?
 - exist only in small regions of phase space?
 - we miss the appropriate tools?

• We will look at the simplest model of an (abelian) topological phase: **the quantum loop gas**

Quantum loop gases

• are the "Ising models" of topological phases

• are hidden also in the quantum dimer model

The toric code: the simplest loop gas

A. Kitaev, Ann. Phys. 303, 2 (2003).

Hamiltonian has only local terms. All terms commute \rightarrow **exact solution!**

The vertex term

A. Kitaev, Ann. Phys. 303, 2 (2003).

$$H_{\rm TC} = -A \sum_{v} \prod_{j \in \text{vertex}(v)} \sigma_j^z - B \sum_{p} \prod_{j \in \text{plaquette}(p)} \sigma_j^x$$

- is minimized by an even number of down-spins around a vertex.
- Replacing down-spins by loop segments maps ground state to closed loops.
- Open ends are (charge) excitations costing energy 2*A*.

The plaquette term

A. Kitaev, Ann. Phys. 303, 2 (2003).

$$H_{\rm TC} = -A \sum_{v} \prod_{j \in \text{vertex}(v)} \sigma_j^z - B \sum_{p} \prod_{j \in \text{plaquette}(p)} \sigma_j^x$$

- flips all spins on a plaquette.
- favors equal amplitude superposition of all loop configurations.
- Sign changes upon flip (vortices) cost energy 2B.

The toric code

A. Kitaev, Ann. Phys. 303, 2 (2003).

Ground-state manifold is a quantum loop gas.

Ground-state wavefunction is equal superposition of loop configurations.

The toric code

A. Kitaev, Ann. Phys. 303, 2 (2003).

Ground-state manifold is a quantum loop gas.

Topological sectors defined by winding number parity $P_{y/x} = \prod_{i \in c_{x/y}} \sigma_i^z$

The toric code

A. Kitaev, Ann. Phys. 303, 2 (2003).

Ground-state manifold is a quantum loop gas.

Topological sectors defined by winding number parity $P_{y/x} = \prod_{i \in c_{x/y}} \sigma_i^z$

Perturbing the toric code

Magnetic field / Ising interaction introduce bare loop tension.

Mapping to plaquette variables

Express bond spins by product of two plaquette spins.

 $\sigma_i^z = \pm \frac{1}{2} \, \mu_p^z \, \mu_q^z$

Choice of local signs is gauge-invariant up to fixing the topological sector.

Mapping of interaction terms

Both magnetic field and Ising interaction give **Ising coupling** between **plaquette spins**.

Mapping to 3D Ising model

$$\mathcal{H}_{cl} = -\frac{K_{\tau} \sum_{\tau, p} S_p(\tau) S_p(\tau + \Delta \tau)}{\tau, \langle p, q \rangle} - \frac{K \sum_{\tau, \langle p, q \rangle} S_p(\tau) S_q(\tau)}{1}$$

$$K_{\tau} = -\frac{1}{2}\ln\left[\tanh(\Delta\tau\cdot B)\right]$$

$$K = \frac{1}{2}\Delta \tau \cdot h$$

plaquette flips

magnetic field

A. M. Ferrenberg and D. P. Landau, Phys. Rev. B **44**, 5081 (1991).

$$B = 1$$

 $K_{\tau} = K$ gives $\Delta \tau = 0.761403$
 $h_c = 0.58224$

 \rightarrow numerical simulation

Lattice gauge theories

J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

Without dynamical electric charges $(A \rightarrow \infty)$,

the toric code becomes equivalent to the "even" Ising gauge theory.

$$S = -\beta_{\tau} \sum_{\{P_{\tau}\}} \sigma^{z} \sigma^{z} \sigma^{z} \sigma^{z} \sigma^{z} - \beta \sum_{\{P_{s}\}} \sigma^{z} \sigma$$

imaginary time

real space

In the context of QCD, the **finite-temperature** physics of such gauge theories has been studied extensively.

We are interested in the **zero-temperature** physics of this gauge theory.

Magnetic phase transition

Continuous quantum phase transition between topological phase and classically ordered phase (3D Ising universality class).

Magnetic vortices

Magnetic vortices are plaquettes with

$$\prod_{j} \sigma_{j}^{x} = -1$$

Massive in topological phase.

Correlation function for two vortices is given by product of bond spins along path

$$\langle \prod_i \sigma_i^z \rangle = \langle \mu_p^z \mu_q^z \rangle$$

which is equivalent to spin-spin correlation function of plaquette spins.

Vortex condensation

Gap estimated from imaginary time correlation function $\Delta \propto 1/\xi_{\tau}$.

Degeneracy splitting

Back to the Ising model

• Where are the topological sectors in the Ising model?

"Topological sectors" correspond to variations of the **boundary conditions**.

Degeneracy splitting

Strong tension limit well understood.

Degeneracy splitting

Transition from exponential suppression to power-law growth.

Finite-size scaling

Transition from power-law to exponential scaling.

Charge confinement

Charge excitations are open loop ends.Deconfined in topological phase

We can define a confinement length ξ_c : distance between loop ends.

At soluble point:

$$\langle \xi_c^2 \rangle = \frac{1}{L^2} \sum_{\Delta x = -L/2}^{L/2} \sum_{\Delta y = -L/2}^{L/2} \left(\Delta x^2 + \Delta y^2 \right) = \frac{L^2 + 2}{6}$$

What happens for finite loop tension?

Charge confinement

Magnetic and confinement transitions occur simultaneously. There is only one length scale $\xi = \xi_c$.

Dissipation

Coupling the environment to the classical state of the system

Integrate out bath degrees of freedom (Ohmic dissipation)

$$\mathcal{H}_{cl} = -K_{\tau} \sum_{\tau,p} S_p(\tau) S_p(\tau + \Delta \tau) - \frac{\alpha}{2} \sum_{\tau < \tau',p} \left(\frac{\pi}{N_{\tau}}\right)^2 \frac{S_p(\tau) S_p(\tau')}{\sin^2(\frac{\pi}{N_{\tau}}|\tau - \tau'|)}$$

Dissipation

$$\mathcal{H}_{\rm cl} = -K_{\tau} \sum_{\tau,p} S_p(\tau) S_p(\tau + \Delta \tau) - \frac{\alpha}{2} \sum_{\tau < \tau',p} \left(\frac{\pi}{N_{\tau}}\right)^2 \frac{S_p(\tau) S_p(\tau')}{\sin^2(\frac{\pi}{N_{\tau}}|\tau - \tau'|)}$$

spins couple along imaginary time only no real space coupling

system decouples into 1-dimensional chains (with long-range interactions)

is just the Caldeira-Legget model

Dissipation

Topological phase is stable for small dissipation strength $\alpha < \alpha_c$

Summary and Outlook

- The topological phase in the toric code exists for an **extended range** around the soluble point.
- Local perturbations can drive a **continuous** quantum phase transition to a classically ordered phase.
- No need to fine-tune system to have topological order.
- Paucity of experimental observations not due to intrinsic delicateness of such phases.
- Does this picture hold for **non-abelian** phases?

Non-abelian topological quantum computing

 Topological phases with non-abelian braiding statistics of the excitations.

- Universal quantum computation can be done by braiding quasi-particles.
- No need for fine control of quantum gates.

