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Introduction

- Spontaneous symmetry breaking
- ground state has less symmetry than Hamiltonian
- Landau-Ginzburg-Wilson theory

- local order parameter

- Topological order
- ground state has more symmetry more than Hamiltonian
- degenerate ground states

- non-local order parameter




Topological quantum liquids

+ Gapped spectrum
+ No broken symmetry

+ Degenerate ground state on torus

- Fractional statistics of excitations

- Hilbert space split into topological sectors - I
No local matrix element mixes the sectors




Fault-tolerant quantum computing

A. Kitaev, Ann. Phys. 303, 2 (2003).

Idea: Use degenerate Topological order makes it robust
groundstates as qubits with respect to local perturbations
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States are locally indistinguishable — no phase errors

States do not couple — no bit flip errors

Energy gap A\
protects from

thermal excitations couples to broken symmetries

Liquid 1s required since environment




Example systems

- Experimental realization of topological quantum liquid

- Fractional quantum Hall effect (FQHE)
but gapless edge states are a problem

- First implementation proposal in Josephson junction arrays

- Other candidate systems

- Frustrated magnets
* Quantum dimer models

- Ultra-cold atoms




Stability of the topological phase

- Topological phases have not been directly observed
in experiment (beyond FQHE), because

- they are unstable?
- exist only 1n small regions of phase space?

-+ we miss the appropriate tools?

- We will look at the simplest model of an
(abelian) topological phase: the quantum loop gas




Quantum loop gases

- are the “Ising models” of topological phases

NN

- are hidden also 1n the quantum dimer model

reference dimer loop
configuration configuration confguration




The toric code: the simplest loop gas

A. Kitaev, Ann. Phys. 303, 2 (2003).

similar to ring exchange
introduces frustration

04

Hamiltonian has only local terms.

All terms commute — exact solution!




The vertex term

A. Kitaev, Ann. Phys. 303, 2 (2003).

Hre=-A) I -8B 1l

v jevertex(v) p jeEplaquette(p)

* 1s minimized by an even number of down-spins around a vertex.

- Replacing down-spins by loop segments maps ground state to closed loops.

+ Open ends are (charge) excitations costing energy 2A4.




The plaquette term

A. Kitaev, Ann. Phys. 303, 2 (2003).
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v jéEvertex(v)
- flips all spins on a plaquette.

- favors equal amplitude superposition of all loop configurations.

- Sign changes upon flip (vortices) cost energy 2B.

fugacity = 1
free loop creation
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The toric code

A. Kitaev, Ann. Phys. 303, 2 (2003).

Ground-state manifold 1s a quantum loop gas.

{;Zj i,

o
o

C

i

?

C

L]

o

Ground-state wavefunction is equal superposition of loop configurations.




The toric code

A. Kitaev, Ann. Phys. 303, 2 (2003).

Ground-state manifold 1s a quantum loop gas.




The toric code

A. Kitaev, Ann. Phys. 303, 2 (2003).

Ground-state manifold 1s a quantum loop gas.

L <
Q
Topological sectors defined by winding number parity P/, = H o;
i€easy




Perturbing the toric code

/ N\

magnetic field Ising interaction

local perturbations

chemical potential ——
for loops

small loops {Z:i:z}
are favored m

Magnetic field / Ising interaction introduce bare loop tension.




Mapping to plaquette variables

Express bond spins by product of two plaquette spins.

plaquette spin [, plaquette Spin [l

Choice of local signs is gauge-invariant
up to fixing the topological sector.




Mapping of interaction terms

plaquette spin f4,, plaquette Spin [l

Both magnetic field and Ising interaction give
Ising coupling between plaquette spins.




Mapping to 3D Ising model

HCI ) —- _-

1

1
K, = 5 In [tanh(AT - B)] K = §AT - h

plaquette flips

A
B
B

magnetic field

K. = 0.2216595(26)

A. M. Ferrenberg and D. P. Landau,
Phys. Rev. B 44, 5081 (1991).

1 | Ar 0.761403
Kk =V 0.58224

— numerical simulation




Lattice gauge theories

J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

Without dynamical electric charges (A — o),
the toric code becomes equivalent to the “even” Ising gauge theory.

Imaginary time real space

In the context of QCD, the finite-temperature physics
of such gauge theories has been studied extensively.

We are interested 1n the zero-temperature physics of this gauge theory.




Magnetic phase transition

susceptibility
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Continuous quantum phase transition between topological phase
and classically ordered phase (3D Ising universality class).




Magnetic vortices

dual lattice

N
=

Magnetic vortices are plaquettes with
[T - -
J
Massive in topological phase.

Correlation function for two vortices is
given by product of bond spins along path

H o7) = ()

which is equlvalent to spin-spin correlation
function of plaquette spins.




Vortex condensation

topological phase
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Gap estimated from imaginary time correlation function A o 1/&..




Degeneracy splitting

topological phase
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Back to the Ising model

- Where are the topological sectors in the Ising model?

@ ;vin

plaquette spin f4,, plaquette Spin [4

spin flip changes
sign of Ising interaction
along cut

l

change of boundary condition

“Topological sectors” correspond to
variations of the boundary conditions.




Degeneracy splitting

topological phase
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Strong tension limit well understood.




Degeneracy splitting

topological

— L =8
— L=12
— L=16
— [ =24

L=32
e L =120 *
— [, =48
i oF o L .
—8 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 —8

0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62
loop tension &

—~
3
S
2®)
0
=
o p—
s -
:
o
|92]
>
TV
-
Q
=
)

Transition from exponential suppression to power-law growth.




Finite-size scaling
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Transition from power-law to exponential scaling.




Charge confinement

Charge excitations are open loop ends.

i::: Deconfined 1n topological phase

We can define a confinement length & :
distance between loop ends.

:z} ? {Z:iz{i At soluble point:

L/2 L/2 )
1 L?+2
(&) = 73 > > (A + A7) = s

Ax=—L/2 Ay=—L/2

What happens for finite loop tension?




Charge confinement

crossing point
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Magnetic and confinement transitions occur simultaneously.
There is only one length scale £ = &..




Dissipation

Coupling the environment to the classical state of the system

plaquette spin flips coupling to heat bath
(toric code) environment

Integrate out bath degrees of freedom (Ohmic dissipation)

Ha = _KTZSP(T)SP(T+AT) _ @ Z ( 7T )2 Sp(7)5p(7')

2 N,

= sinQ(NiJT —7'|)




Dissipation

spins couple along imaginary time only

no real space coupling

l

system decouples into 1-dimensional chains
(with long-range interactions)

1s just the Caldeira-Legget model




Dissipation

L L linear

»L topological
phase

|||||||||||||| T
0.3 0.4 . 0.6

dissipation strength o Thouless-type

phase transition

Topological phase 1s stable for small dissipation strength o < a.




Summary and Outlook

- The topological phase 1n the toric code exists for
an extended range around the soluble point.

Local perturbations can drive a continuous quantum
phase transition to a classically ordered phase.

- No need to fine-tune system to have topological order.

- Paucity of experimental observations not due to
intrinsic delicateness of such phases.

- Does this picture hold for non-abelian phases?

S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C. Nayak  cond-mat/0609048




Non-abelian topological quantum computing

Topological phases with
non-abelian braiding statistics

of the excitations.

- Universal quantum computation

can be done by
braiding quasi-particles.

« No need for fine control
of quantum gates.
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