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off-diagonal term

diagonal term

Path integral representation

Z = Tr

(
e−βH0

[
1 −

∫ β

0
dτV (τ) +

∫ β

0
dτ1V (τ)

∫ β

τ1

dτ2V (τ2)V (τ1) + . . .

])

Advantage: diagonal terms are treated exactly.

H = H0 + V

Interaction representation

Z = Tr
(
e−βH

)
= Tr

(
e−βH0Te

−
∫ β

0
dτV (τ)

)
Partition function



Path integral representation

Z = Tr

(
e−βH0

[
1 −

∫ β

0
dτV (τ) +

∫ β

0
dτ1V (τ)

∫ β

τ1

dτ2V (τ2)V (τ1) + . . .

])

Each term represented by a world line configuration

τ τ1

τ2

Disadvantage: keeping track of times can be computational expensive.
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kink time

new state

Continuous time representation

What data structures are used to represent 
a world line configuration in continuous time?

Answer: kinks and kink lists.

τ1

τ2

τ3

τ4
τ5

τ60 : (τ4, 1) (τ6, 0)

2 : (τ1, 1) (τ3, 0)

3 : (τ2, 1) (τ5, 0)

4 : (τ2, 0) (τ5, 1)

1 : (τ1, 0) (τ3, 1) (τ4, 0) (τ6, 1)
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Local updates in continuous time
Shift kink

Insert / remove two kinks

Vanishing acceptance rate P→ = min
[
1, (∆τJ/2)2

]
→ 0

P = 1 P = (∆τJ/2)2 → 0

Solution: Integrate over al possible insertions in a time window

P→ =
∫ Λ

0

∫ Λ

τ1

(J/2)2dτ2dτ1 → Λ2J2

8
"= 0



Path integral vs. SSE representation

Advantage
 diagonal terms treated exactly

Disadvantage
 continuous imaginary time

Disadvantage
 perturbation also in diagonal 
 terms

Advantage
 integer index instead of time

World lines in path integral
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Local updates

Local changes using Metropolis updates

Problems
Restricted to canonical ensemble
No change of magnetization, particle number, winding number
Critical slowing down
Autocorrelation times grow fast

Solutions
Classical problem: cluster updates
Quantum problem: worm algorithm
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Exact, complete, and universal continuous-time worldline Monte Carlo approach
to the statistics of discrete quantum systems

N. V. Prokof’ev,*) B. V. Svistunov, and I. S. Tupitsyn

Kurchatov Institute, 123182 Moscow, Russia

!Submitted 20 November 1997"
Zh. Éksp. Teor. Fiz. 114, 570–590 !August 1998"

We show how the worldline quantum Monte Carlo procedure, which usually relies on an

artificial time discretization, can be formulated directly in continuous time, rendering the scheme

exact. For an arbitrary system with discrete Hilbert space, none of the configuration update

procedures contain small parameters. We find that the most effective update strategy involves the

motion of worldline discontinuities !both in space and time", i.e., the evaluation of the
Green’s function. Being based on local updates only, our method nevertheless allows one to

work with the grand canonical ensemble and nonzero winding numbers, and to calculate any

dynamical correlation function as easily as expectation values of, e.g., total energy. The

principles found for the update in continuous time generalize to any continuous variables in the

space of discrete virtual transitions, and in principle also make it possible to simulate

continuous systems exactly. © 1998 American Institute of Physics. #S1063-7761!98"01508-X$

1. INTRODUCTION

Quantum Monte Carlo !MC" simulation is the most pow-
erful available method, if not the only one, of obtaining ac-

curate results for complex systems, where analytic solutions

are not possible and exact diagonalization methods do not

work because of the enormous Hilbert space. However, most

MC schemes are far from ideal, and suffer from significant

shortcomings. These include !see, e.g., the most recent re-
view article Ref. 1"

a" systematic errors due to artificial time discretization,
which in most schemes scales as (%&)2, where %& is the time
slice width;

b" restriction of the simulation to the zero winding num-
ber sector M!0 !a configuration in which world lines con-
nect the initial state !'1 ,'2 ,. . . ,'L( at &!0 to the final state
!)1 ,)2 ,. . . ,)L( at &!* , with the set +) i, being obtained by
cyclically permuting +' i, M times !and all topologically
equivalent configurations", is said to have a winding number
M". Such a restriction results in systematic errors too, which
however vanish with increasing system size. Also, one loses

the ability to study topological excitations in the system, e.g.,

vortices or supercurrent states;

c" working with a fixed number of particles N!const
!canonical ensemble";

d" the critical slowing-down problem, which arises close
to a second-order phase transition. This problem is closely

related to constraints !b" and !c", and is indicative of ineffi-
cient procedures used to update configurations with large

length scales;

e" slow accumulation of statistics when calculating cor-
relation functions of operators not present in the initial

Hamiltonian, e.g., the Green’s function;

f" small acceptance rates in update procedures. These
may be due to small parameters present in the formulation of

the MC scheme, or systems described by Hamiltonians with

different energy scales !e.g., when the hopping matrix ele-
ment t is much smaller than the typical potential energy

change U"t), or the necessity of global Metropolis updates,

which arise in certain cluster-update algorithms;

g" anomalous dependence of the computation time on
system size !due to self-averaging effects in the thermody-
namic limit, the computation time required to achieve given

accuracy is expected to be system-size independent";
h" a notorious sign problem, which emerges when the

configuration weight is not positive definite. Since we do not

see any reasonable solution of the sign problem in the gen-

eral case, in what follows we exclude it from the discussion.

To eliminate some of these shortcomings, a number of

different MC schemes were developed. Unfortunately, none

of the existing schemes succeeded in solving all of them

!leaving the sign problem aside" in the general case: there are
extremely efficient algorithms which are far from universal,

while the efficiency of existing universal algorithms is far

from high for a large number of problems.

The standard worldline algorithm is based on imaginary

time discretization and utilizes the small parameter t%&#1
in an approximate treatment of noncommuting operators in

the Hamiltonian, known as Trotter break-up.2,3 Physical in-

tuitiveness and easy programming probably make this

method the one most widely used. On the other hand, its

weak points range over the whole list from !a" to !f", the
most severe ones being !e" and !f".

In the worldline algorithm, one describes the configura-

tion by specifying the system state !'k( at all time slices &k
!k%& , where k!0,1,...,K* and &K*

!1/T-* . The system
state is then conventionally defined in the basis set in which

the potential energy of the system is diagonal, i.e., in the site

representation. Let us consider, as a typical example, the

Hamiltonian of interacting particles on a lattice
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Hworm = H − η
∑

i

(
S+

i + S−
i

)

Extend world line configuration space of closed world 
lines by an open world line fragment, the “worm”.

Additional world lines are seeded 
at any point in space-time.

worm

S+

S−



random number

Worm updates
Time shift

integrated weight =
∫ ∆τ

0
dτeλτ =

1
λ

(
eλ∆τ − 1

)

S+

S+

∆τ = τ2 − τ1

τ1

τ2 τ2

τ3

∆τ ′ = τ3 − τ1

p =
partial weight

integrated weight
0 ≤ p ≤ 1

λ = −β∆E < 0

partial weight =
∫ ∆τ

∆τ ′
dτeλτ =

1
λ

(
eλ∆τ − eλ∆τ ′

)

shifted time τ3 = τ1 +
1
λ

ln
[
eλ∆τ + p ·

(
1 − eλ∆τ

)]



random number

Worm updates
Jump of worm head

S+ S+

τ1

τ2

∆τ = τ2 − τ1 ∆τ ′ = τ3 − τ1

τ3
λ = −β (∆E1 + ∆E2) < 0

p =
partial weight

integrated weight
=

eλ∆τ − eλ∆τ ′

eλ∆τ − 1

jump time τ3 = τ1 +
1
λ

ln
[
eλ∆τ + p ·

(
1 − eλ∆τ

)]



Worm updates
Creation of a worm

S+

S-

λ = −β∆E < 0

creation probability =
∫ τ2

τ1

dτ4

∫ τ4

τ1

dτ3 eλ(τ3−τ4)

=
1
λ2

(
λ∆τ + e−λ∆τ − 1

)

creation probability ∝ ∆τ 2

τ1

τ2

∆τ = τ2 − τ1 τ3, τ4

3) accept / reject move

1) randomly choose τ3 ∈ [0,β]
2) calculate creation probability for respective time interval [τ1, τ2]

4) randomly choose                      and then shift τ4τ4 ∈ [τ3, τ2]



Example of update sequence

S+

S−

worm
creation

S−

S+

worm
annihilation

closed 
world lines

closed 
world lines

S+

S−

shift / jump 
worm heads



Ergodicity

The worm algorithm can simulate a  grand-canonical 
ensemble.

Non-local updates in temporal and spatial directions.

We can study winding-number fluctuations, e.g. the stiffness.

Example:

Nx = +1



Non-local interactions

Can we include diagonal site-site interactions?

τ1

τ2

τ3

τ4
τ5

τ6
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H ′ = H + V
∑

〈ij〉

ninj

Example
:

Answer: Yes, but ...

- tedious calculation of 
  statistical weights for
  local worm updates
  ➡ implemented in ALPS 

- high computational cost



An application of the worm code



  

BEC in ultracold atomic gases

• Ultracold 87Rb atoms form a Bose-
Einstein condensate (BEC)

– first observed in 1995

• Standing laser waves form          
an optical lattice 

T. Esslinger, ETH Zürich



  

traprepulsionkinetic term

Realization of Bose-Hubbard model

Mott-isolator
incoherent

suprafluid
coherent BEC

increasing depth of optical lattice
 

increasing repulsion U / t 

S. Wessel, F. Alet, M. Troyer

local density

H = −t
∑

〈ij〉

(
b†i bj + h.c.

)
+ U

∑

i

ni(ni − 1)/2 − µ
∑

i

ni + V
∑

i

r2
i ni

M. Greiner et al. Nature (2001)



  

Simulations of trapped bosons

We are interested in the limit t/U ! 1

Comparison: worms & SSE t/U = 0.03
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Summary

The worm algorithm
Path integral representation in continuous time     
➡ no error from time discretization.

off − diagonal terms
diagonal terms

" 1

Perturbation in off-diagonal terms only
➡ high acceptance rate for updates, also when

Ergodicity in temporal and spatial directions
➡ grand-canonical ensembles, non-zero winding numbers

Non-local interactions
➡ high-computational cost
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