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Abstract. A set of localized, non-Abelian anyons—such as vortices in a
px + ipy superconductor or quasiholes in certain quantum Hall states—gives
rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of
interactions between the anyons. Here, we show that in two spatial dimensions
this splitting selects a unique collective state as ground state of the interacting
many-body system. This collective state can be a novel gapped quantum liquid
nucleated inside the original parent liquid (of which the anyons are excitations).
This physics is of relevance for any quantum Hall plateau realizing a non-Abelian
quantum Hall state when moving off the center of the plateau.
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1. Introduction

While many conventional phases of matter appear as a consequence of spontaneous symmetry
breaking, quantum systems may form more unusual ground states, so-called quantum liquids,
which do not break any symmetry (see e.g. [1]). One particularly captivating case is given by
two-dimensional (2D) topological quantum liquids, which exhibit a bulk gap and harbor exotic
quasiparticle excitations, so-called anyons, that obey fractional statistics [2]. Time-reversal
symmetry-breaking topological liquids with non-Abelian anyons have attracted considerable
recent interest in the context of fractional quantum Hall states ([3]–[5] and references therein),
heterostructures involving a novel class of materials, so-called topological insulators [6],
rotating Bose–Einstein condensates [7] and unconventional px + ipy superconductors [8]. When
populating such a topological quantum liquid with a set of anyons, their non-Abelian nature
manifests itself in a degenerate manifold of states that grows exponentially with the number of
anyons—even in the case of fixed particle positions. It is this degenerate space of states that is
key to proposals for topological quantum computation [9].

However, this degeneracy will be split by interactions between the anyons. If the anyons
are spaced far from each other, e.g. their distance is much larger than the coherence length,
this interaction will be exponentially small and so will the splitting. In this paper, we address
the question of how this degeneracy will be lifted and a new collective ground state is formed
when interactions cannot be ignored. In particular, we determine the nature of this collective
state for a 2D arrangement of non-Abelian anyons. Note the conceptual similarity of this
question with the one asked in the context of fractional quantum Hall states, where the Coulomb
interaction splits the degenerate manifold of electronic states of a partially filled Landau
level and leads to the formation of a new collective ground state—the fractional quantum
Hall state [10].

One example of where this physics is of relevance is given by non-Abelian quantum Hall
states off the center of the quantum Hall plateau. The quantum Hall state at filling fraction
ν = 5/2 is considered the best candidate to date, with an intense experimental effort [11]–[13]
aimed at demonstrating its non-Abelian nature [3]. By tuning the magnetic field away from the
center of the plateau, a finite density of quasiholes or quasiparticles will populate the quantum
Hall liquid, depending on whether the magnetic field is increased or decreased. It is natural
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su(2)k parent liquid

nucleated liquid non-Abelian
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Figure 1. The collective state of a set of interacting, localized, non-Abelian
anyons is a gapped quantum liquid, which is nucleated within the original parent
liquid. The two liquids are separated by a neutral, chiral edge state.

that these quasiholes (or quasiparticles) would form a Wigner crystal [14], which renders them
immobile. Remarkably, as we show in this paper, interactions between these anyons can then
lead to the formation of a novel gapped quantum Hall liquid6, which is separated from the
original parent liquid by a neutral, chiral edge state, as illustrated in figure 1. These gapless
edge modes contribute to heat transport, leading to a distinct experimental signature.

2. Degeneracy splitting for su(2)k anyons

To be specific, we consider here a setting where su(2)k anyons are pinned to static positions.
These non-Abelian anyons are described by generalized angular momentum quantum numbers
of so-called su(2)k Chern–Simons theories [15], which correspond to certain quantum
deformations of SU(2) (see e.g. [16]). The case of k = 2 describes the non-Abelian statistics of
anyonic excitations in the Moore–Read state, as well as the Majorana modes of half-vortices in
px + ipy superconductors or vortex excitations in the gapped ‘B-phase’ of Kitaev’s honeycomb
model in a magnetic field. We note that the latter cases also possess an additional Abelian
phase contributing to the overall statistics of the anyons, which however does not modify their
non-Abelian properties. For instance, the Moore–Read state is a fermionic quantum Hall state,
which is described by a more general Z2 × U(1) theory, where the non-Abelian aspects are
now incorporated in the Zk factor7, and the U(1) factor stands for an ordinary Abelian U(1)
Chern–Simons theory8 (familiar of the Laughlin states [10]).

6 Note that this quantum liquid forms ‘on top’ of the Wigner crystal of localized anyons, i.e. the liquid forms only
in the topological degrees of freedom without affecting the underlying crystalline positional order. For the charged
anyons of the quantum Hall state, this implies that this novel (nucleated) liquid has the same Hall conductivity σxy .
(For an Abelian quantum Hall liquid, on the other hand, the state describing a set of anyons at fixed positions is
unique and non-degenerate, and formation of a new quantum liquid ‘on top’ of the Wigner crystal cannot occur.
The familiar Haldane hierarchy state arises from a liquid positional order of anyons, yielding a change of the Hall
conductance σxy .)
7 All non-Abelian aspects are incorporated in the Zk factor. This factor also appears when we represent [17] su(2)k
as Zk × U(1).
8 That is an ordinary Laughlin-type state, see e.g. [18].
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su(2)2
↓
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Figure 2. Table of collective ground states of interacting Majorana zero modes
(k = 2) for various anyonic theories.

The most elementary example of the lifting of a degeneracy occurs for a pair of non-
Abelian anyons. An interaction mediated by topological charge tunneling [19, 20] results in
a splitting of the energies of the possible pair states—similar to the singlet–triplet splitting
of two ordinary spin-1/2s. We consider the most relevant case, where the anyonic degree of
freedom corresponds to a generalized angular momentum j = 1/2 of these su(2)k theories. They
obey the fusion rule 1/2 ⊗ 1/2 = 0 ⊕ 1 reminiscent of two ordinary spin-1/2s coupling into a
singlet or triplet. We therefore denote a coupling favoring the generalized j = 0 (singlet) state
as antiferromagnetic (AFM) coupling, while ferromagnetic (FM) coupling then corresponds to
favoring the generalized j = 1 (triplet) state. The magnitude and sign of this splitting are not
universal and in general depend on microscopic details such as the spatial separation between
the anyons and the nature of the topological liquid. Explicit calculations of this pair splitting
have recently been performed for two quasiholes in a Moore–Read quantum Hall state [21], a
pair of vortices in a px + ipy superconductor [22], and a pair of vortex excitations in the gapped
‘B-phase’ of Kitaev’s honeycomb model in a magnetic field [23].

For more than two anyons this elementary pair interaction will result in a splitting of
their manifold of macroscopically degenerate states and the formation of non-trivial collective
quantum many-body states. As a generic model for the many-anyon problem, we consider a
Hamiltonian that is a sum of local, pairwise projectors on every bond of the underlying lattice
onto one of the two fusion channels, e.g. H= J

∑
i j5

0
i j , where the operator 50

i j projects onto
the singlet channel and J is an overall coupling constant. The main result of this paper is that
the ground state of a 2D array of interacting non-Abelian anyons is a gapped topological liquid,
whose precise character depends on the sign of the interactions and the nature of the parent
liquid of which the anyons are excitations. In the absence of any additional Abelian phases,
i.e. a bosonic quantum Hall state described by su(2)k , our result is that AFM couplings yield a
non-Abelian su(2)k−1 × su(2)1 liquid, while FM couplings lead to a gapped Abelian Laughlin-
type U(1) liquid [18]9. In figure 2, we rephrase our results in the language of interacting
Majorana zero modes (corresponding to k = 2) and apply them in the context of the fermionic

9 The original and the two nucleated liquids are described by su(2)k , su(2)k−1 × U(1) and U(1)k Chern–Simons
field theories [15], respectively.
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Figure 3. A linear array of interacting su(2)k anyons nucleates a sliver of a
gapped liquid separated from the original parent liquid by a chiral edge state.

Moore–Read quantum Hall state and the px + ipy superconductors, i.e. also taking into account
the corresponding additional Abelian phases. We note that some of these special cases have
been analyzed before and are indeed captured by our more general result, thereby further
corroborating it. The first column gives results for AFM anyon interactions, whereas the second
column gives results for FM interactions. Let us first focus on the first row ‘bosonic quantum
Hall’, which describes the non-Abelian physics of certain proposed rotating Bose–Einstein
condensates [7] and literally corresponds to the k = 2 case of our result. In this case we
find that for AFM interactions an Abelian topological liquid, described by su(2)1 × su(2)1
Chern–Simons theory, is nucleated. This state is identical to the (bosonic) ‘220 Halperin bilayer
state’ [24]. For FM interactions, an Abelian U(1) liquid is nucleated and all non-Abelian aspects
of the original su(2)2 state disappear. The second row ‘fermionic quantum Hall’ generalizes
the above result to the fermionic version [25] of the su(2)k state, which can also be described
by Zk × U (1) non-Abelian Chern–Simons theory (see footnote 7). For k = 2 this state occurs
e.g. in the Moore–Read quantum Hall state [3]. For AFM interactions between the anyons,
the nucleated liquid is an Abelian U(1)× U(1) liquid, which corresponds precisely to the ‘331
Halperin bilayer state’ [24]. For FM interactions the Z2 degree of freedom simply disappears
upon nucleating an Abelian U(1) liquid. This was first discovered using Majorana fermions in
the context of random FM anyon interactions [26]. Both cases were recently also discussed
using different techniques in [27]. The third row describes the case of px + ipy superconductors.
The non-Abelian nature of vortices in such superconductors is captured by a non-Abelian Z2

theory (see footnote 7). For AFM pairwise interactions between vortices, an Abelian U(1) liquid
is nucleated. This was observed for a triangular vortex lattice using free fermion calculations
[28, 29] and the observation of a non-trivial Chern number [29]. For FM vortex pair interactions,
the topological order of the px + ipy superconductor is entirely destroyed.

The above case of k = 2 turns out to be rather special, since this problem can be mapped
to non-interacting Majorana fermions, which are more tractable than the general su(2)k theories
for k > 2. A first step towards understanding the collective states of interacting su(2)k anyons
has been taken by analyzing 1D arrangements of localized anyons [19, 30, 31]. In this case, the
gapless collective modes found for a chain of interacting anyons have been interpreted as edge
states [31] between the original topological liquid and a sliver of a novel, gapped nucleated
liquid, as illustrated in figure 3.
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Figure 4. Interactions between the anyons in two slivers can (a) gap out the inner
edges and merge the two liquids into one droplet or (b) gap out inner and outer
edges, thereby destroying the nucleated liquid in the sliver.

3. Two-dimensional (2D) arrangements of interacting anyons

To approach the case of 2D arrangements of interacting anyons, we generalize this ‘liquids
picture’ and consider a system with several such 1D slivers. We find that this picture allows us
to precisely describe (i) the subtleties in the spectrum of collective edge states for a system
of (multiple) decoupled slivers, and (ii) the effect of coupling the individual slivers, which
originates from interactions between anyons in the different slivers. In particular, we find that
the central charge of two decoupled chains (slivers) changes from 2c to c upon introducing
inter-chain couplings Jrung or Jdiag, as indicated in figure 5. The spectrum then changes to that
of a single sliver, which indicates that interactions between the slivers can gap out the inner
edges and merge the two slivers into one big droplet of nucleated liquid of identical character;
see figure 4(a). We numerically find that such droplet nucleation occurs for a wide range of
couplings indicated by the shaded wedges in the phase diagrams of figure 5 for different lattice
geometries. Having established the merging of two slivers into a big droplet, this process can be
iterated to yield macroscopically large droplets.

We first consider the case of two decoupled slivers, which gives rise to a sequence of five
liquids and four intervening edges, as illustrated at the center of figure 4. It turns out that in
this case the combined spectrum of gapless edge states is not that of the free tensor product
of the edge modes of the individual slivers, but rather a subset of the latter. This subset can
be understood when considering all possible tunneling processes between the various liquids,
which give rise to certain constraints. For example, for AFM interactions Jleg > 0, the spectrum
of these four edges takes the form

(ψL)
i1
j1(ψR)

i2
j1(ψL)

i2
j2(ψR)

i1
j2,

where (ψL)
i
j is a primary field in the coset [32] su(2)k−1 × su(2)1/su(2)k and describes the

tunneling in and out of the respective edge between the two topological liquids appearing in the
coset10. Here i is a quantum number in su(2)k and j in su(2)k−1. Consider for simplicity odd
k, in which case we can choose i to run over integer values 0, 1, . . . , (k − 1)/2 and j to run
over values 0, 1/2, 1, .., (k − 1)/2. No topological charges can be ejected into the surrounding
su(2)k liquid in a physical tunneling process, which enforces i1 = 0. With these constraints
we can then derive the complete conformal spectrum of the four edges, including conformal
weights, degeneracies and topological charge [19] assignments. Checking these results against
numerical calculations of the spectra, we find perfect agreement. Analogous results apply to FM
interactions Jleg < 0.

10 The sequence (i1, j1, i2, j2, i1) is associated with the consecutive five liquids in the center of figure 4.
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Jleg

Jdiag

c = 4/5

c = 7/10

U(1)

su(2)2 × su(2)1
Jrung

Jleg
c = 4/5 c = 7/10

gapped

su(2)3

su(2)2 × su(2)1U(1)

b) triangulara) square

Figure 5. Phase diagrams for anyonic su(2)3 ladder systems with (a) square
lattice geometry (of width W = 2 or W = 4) and (b) triangular geometry (of
width W = 2) versus their respective couplings. The shaded wedges indicate
gapless phases, which are described by conformal field theories with central
charges c = 4/5 or c = 7/10. These gapless theories correspond to edge modes
between the original su(2)3 anyonic liquid and a nucleated U(1) or su(2)2 ×

su(2)1 liquid, respectively.

4. A microscopic model

We now turn to a microscopic lattice model of interacting anyons, which allows for a precise
numerical characterization of the collective ground states. As a concrete realization we consider
interacting su(2)3 (Fibonacci) anyons arranged in a square lattice geometry, which we build
up by coupling W chains of anyons into W -leg ladders11. We denote the strength of the
anyon–anyon interaction as Jleg and Jrung for the coupling along and perpendicular to the chains,
respectively, with positive (negative) coupling referring to AFM (FM) interactions favoring the
generalized j = 0 ( j = 1) state. We parametrize these couplings as tan θ = Jrung/Jleg.

4.1. Numerical approach

We have performed a numerical analysis of these ladder systems based on Lanczos exact
diagonalization. This provides us with the low-energy spectra of finite W × l systems, where W
is the width of the ladder and l the extent of the legs. We have been able to analyze systems of
size 2 × l (from l = 8 to l = 21), 3 × l (from l = 6 to l = 12) and 4 × l (l = 4, 6, 8), which allow
for an accurate finite-size scaling analysis. We have typically used periodic boundary conditions
along the leg direction, which then allows us to block-diagonalize the Hamiltonian into l blocks
labeled by the total momentum K = 2π p

l of the eigenstates due to the translational symmetry
of the system along the legs. It should be noted that the Hilbert space (in each symmetry

11 For a detailed discussion of the microscopic model, see [33].
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sector) grows approximately as φN/ l (φ is the Fibonacci number and N = lW ), which is one
of the limiting factors of our simulations. A CFT structure (if any) can then be unambiguously
identified from a precise structure of the (gapless) low-energy spectrum. In such a case, we find
that the lowest energies (per rung) en scale as

en(l)' e∞ +πv
(
−

c

12
+ hL ,n + h R,n

) 1

l2
, (1)

where v is a zero-mode velocity, c is the central charge of the underlying CFT, and hL ,n, h R,n

are the (holomorphic and anti-holomorphic) conformal weights of the CFT.

4.2. The strong rung-coupling limit

Following, at first, a similar route to that in the discussion of SU(2) quantum spin ladders (for
a review, see [34] and references therein) we consider the anyonic ladders in their strong rung-
coupling limit |Jrung| � |Jleg|. For an isolated rung the total spin of the ground state is 0 or 1/2,12

depending on the sign of the coupling and the width of the ladder: it is a spin 1/2 for odd width
ladders with Jrung > 0, and for ladders with Jrung < 0 whose width is not a multiple of 3. The
low-energy effective model for weakly coupled rungs is that of a single spin-1/2 anyonic chain.
Indeed, we find that the low-energy spectrum is gapless and can be described by a conformal
field theory identical to that of a single chain [19]. In the particular case of k = 3, the gapless
theories are those of the tricritical Ising model (c = 7/10), see also [35, 36], or three-state Potts
model (c = 4/5) for AFM and FM couplings along the chains, respectively. We numerically
find that these gapless phases extend all the way to the weak rung-coupling limit |Jrung| � |Jleg|,
as shown in the phase diagram of figure 5(a). Interpreting the gapless modes in these phases
as edge states, we conclude that AFM couplings along the chain result in the nucleation of an
su(2)2 × su(2)1 topological liquid, whereas for FM couplings we find that a U(1) topological
liquid is nucleated. We note that for a triangular arrangement of anyons, as is characteristic for
the positional ordering in a Wigner crystal, the nucleation of new liquids occurs for equal signs
of the couplings; see figure 5(b). This is in line with the results obtained for k = 2 on an infinite
triangular lattice [28]. Furthermore, the results obtained in [35] for the special case of the non-
Abelian spin singlet state, using techniques entirely different from ours and available only for
this state, can be seen to be in full agreement with our general result.

If, on the other hand, the total spin of the ground state of an isolated rung is 0, the
elementary excitation on a rung is gapped and carries spin 1. Its gap remains finite when turning
on a leg coupling Jleg and we find numerically that, as in ordinary SU(2) ladders, the gapped
phase extends all the way to the weak rung-coupling limit |Jrung| � |Jleg|. The absence of gapless
modes in this coupling regime indicates that the original su(2)k liquid survives. We summarize
the phase diagram for ladders of width W = 2 and W = 4 in figure 5(a).

5. Topology and ground-state degeneracies

A characteristic feature of a topological quantum liquid is that it is sensitive to the topology
of the underlying manifold [37], which is reflected in the ground-state degeneracy and the
occurrence of gapless edge modes for open boundaries. So far, we have considered ladder
systems with open boundary conditions along the rung direction (an annulus) and have

12 In the su(2)3 theory, spin 1 can be identified with 1/2 and spin 3/2 with 0.
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Figure 6. Gapped energy spectra of four-leg su(2)3 anyonic ladders in a toroidal
geometry versus the momentum along the legs.

understood the occurring gapless modes as edge states. Gluing the boundaries of this annulus
to form a torus by adding a coupling between the first and last leg removes the boundary and
is thus expected to also remove the edge states. Indeed, the spectrum of the four-leg ladder on
a torus is found to be gapped, as shown in figure 6. Most importantly, the topological nature
of the collective ground state is confirmed by the numerically observed degeneracy. For both
signs of leg coupling this degeneracy is found to be threefold, which precisely corresponds to
the expected number of different topological charges on the torus for the su(2)2 × su(2)1 theory
arising for Jleg > 0 and the U(1) theory arising for Jleg < 0.

6. Outlook

Our essential result is that anyon–anyon interactions split the degeneracy of a macroscopic
number of non-Abelian anyons, pinned at fixed spatial locations, and select a unique gapped
collective many-body ground state. For a wide range of anyon couplings, this collective state
is found to be again a topological liquid, distinct from the original liquid of which the anyons
are excitations. This physics should be of relevance for any quantum Hall plateau realizing
a non-Abelian quantum Hall state: away from the center of the plateau, a finite density of
quasiholes or quasiparticles is expected to be present. If these charged quasiparticles(-holes) are
pinned at fixed spatial positions (e.g. by the formation of a Wigner crystal), our results predict
the appearance of a different quantum Hall state with the same electrical but different thermal
transport properties. The latter arise solely from the splitting of the topological degeneracy due
to inter-anyon interactions. Furthermore, our results give a general many-body perspective of
how topological quantum computing schemes will fail at a temperature scale comparable to the
interactions between the anyons. While the pairwise interaction between the anyons has been
expected to be a cause of decoherence for a topological quantum computer [20, 22], our results
demonstrate that at temperatures below the gap scale of the nucleated liquid—which we find to
be of the same order as the bare two-anyon interaction—all anyonic quasiparticles effectively
disappear by forming a new collective state, thereby rendering computational schemes based on
the individual manipulation of anyons impracticable.
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