
Revealing Quadrupolar Excitations with Nonlinear Spectroscopy

Yoshito Watanabe ,1 Simon Trebst ,1 and Ciarán Hickey 2,3

1Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
2School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

3Centre for Quantum Engineering, Science, and Technology, University College Dublin, Dublin 4, Ireland

(Received 6 June 2024; revised 20 December 2024; accepted 24 February 2025; published 14 March 2025)

Local moments with a spin S > 1=2 can exhibit a rich variety of elementary quasiparticle excitations,
such as quadrupolar excitations, that go beyond the dipolar magnons of conventional spin-1=2 systems.
However, the experimental observation of such quadrupolar excitations is often challenging due to the
dipolar selection rules of many linear response probes, rendering them invisible. Here we show that
nonlinear spectroscopy, in the form of two-dimensional coherent spectroscopy (2DCS), can be used to
reveal quadrupolar excitations. Considering a family of spin-1 Heisenberg ferromagnets with single-ion
easy-axis anisotropy as an example, we explicitly calculate their 2DCS signature by combining exact
diagonalization and generalized spin wave theory. We further demonstrate that 2DCS can provide access to
the quadrupolar weight of an excitation, analogous to how linear response provides access to the dipolar
weight. Our work highlights the potential of nonlinear spectroscopy as a powerful tool to diagnose
multipolar excitations in quantum magnets.
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Quantum magnets admit a veritable zoo of distinct
quasiparticle excitations, offering a versatile playground
for the investigation of a diverse array of physics and
phenomena. Alongside conventional dipolar excitations,
such as the well-known magnons of spin-1=2 magnets,
there is growing interest in the study of elementary
excitations with multipolar character [1–3]. Such excita-
tions arise in higher-spin magnets, or those with a more
complex doublet structure, and greatly enrich the landscape
of quasiparticle physics. As an example, in spin-1 systems,
a purely on-site quadrupolar jΔMzj ¼ 2 excitation is
possible as an elementary excitation, usually referred to
as a single-ion bound state (SIBS) [4], whereas in spin-1=2
systems, a jΔMzj ¼ 2 excitation will necessarily only
appear as a composite excitation, consisting of two dipolar
excitations. Understanding the interplay of such excitations
can provide deeper insights into fundamental phenomena
like quasiparticle decay and renormalization [5].
Experimentally, studying multipolar excitations is ham-

pered by the fact that they cannot be straightforwardly
probed via linear response, which typically exhibits dipolar
selection rules. However, there has been some recent
progress [6,7] in revealing quadrupolar excitations under
certain conditions: Although purely quadrupolar excita-
tions cannot be created by a dipole operator, weakly
breaking spin-rotational symmetry can hybridize quadru-
polar and dipolar excitations, allowing both to appear even
in conventional probes that follow dipolar selection rules.
An alternative approach, which does not rely on such
hybridization, involves using a probe that can couple with
quadrupolar operators via local higher-order processes.

This latter approach has been demonstrated with RIXS
spectroscopy [8].
Here, we show that one can straightforwardly access

multipolar excitations via nonlinear response, encoded in a
system’s nonlinear susceptibilities and expressed in terms of
higher-order dynamical correlation functions. As an exam-
ple, for a spin-1 magnet with local moment at site i in the
jþ 1i state, the third-order response can naturally encode
elementary quadrupolar excitations via the matrix element
hþ1jSþi j0ih0jSþi j − 1ih−1jS−i j0ih0jS−i j þ 1i. In general, the
nth order response involves nþ 1 spin operators, enabling
the observation of ΔMz ¼ ðnþ 1Þ=2 excitations for n odd.
An ideal technique for probing the nonlinear response of

quantum magnets is two-dimensional coherent spectros-
copy (2DCS). Using two THz field pulses separated by a
time delay τ, one measures the magnetization a measure-
ment time t after the second pulse. The technique can
extract the second-order susceptibility χð2Þðωt;ωτÞ, as well
as two types of third-order susceptibilities: χð3;1Þðωt;ωτÞ
and χð3;2Þðωt;ωτÞ. There is a significant amount of ongoing
research, from both experiment and theory, in trying to
better understand THz 2DCS in magnetic materials [9–27].
In particular, we establish how 2DCS can reveal

quadrupolar excitations, using a spin-1 ferromagnetic
Heisenberg model with single-ion anisotropy as an exam-
ple case study. Using a combination of exact diagonaliza-
tion (ED) and linear generalized spin-wave theory
(GSWT), we show that the energy of the SIBS can be
measured by the third-order nonlinear susceptibility,

χð3;1Þxxxxðωt;ωτÞ. Furthermore, we show that the other
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third-order nonlinear susceptibility, χð3;2Þxxxxðωt;ωτÞ, can pro-
vide a measure of the quadrupolar weight of an excitation,
even in cases with finite hybridization between dipolar and
quadrupolar excitations, information not discernible from
linear response alone.
Model and its excitations—As a paradigmatic example,

we study the spin-1 ferromagnetic Heisenberg model with
single-ion anisotropy on a regular d-dimensional lattice,

H ¼ −J
X

hi;ji
Si · Sj −D

X

i

ðSzi Þ2; ð1Þ

where J > 0 is the ferromagnetic Heisenberg coupling
and D > 0 the single-ion anisotropy [4,28]. The model
has a Uð1Þ × Z2 symmetry and the ground state, for
D=J > 0, is a fully polarized ferromagnet along the z axis,
jΨ�

0 i ¼ j � 1i⊗N , spontaneously breaking the discrete Z2

symmetry.
TheUð1Þ symmetry allows us to divide the Hilbert space

into sectors with fixed Mz ¼ P
i S

z
i . Since the application

ofMx ≡P
i S

x
i can only changeM

z by �1, focusing solely
on the Mz ¼ N;N − 1; N − 2 sectors is sufficient when
considering zero-temperature 2DCS. Combined with trans-
lational symmetry, the dimension of the Hilbert space to be
considered is thus OðNÞ, enabling us to evaluate nonlinear
response using ED up to relatively large system sizes of
Oð100Þ sites (see Ref. [29] for details on the ED approach
to 2DCS).
The energy spectrum at zero momentum, and its various

excitations, calculated from ED for such a spin-1 ferro-
magnet is shown in Fig. 1. The simplest elementary
excitation is a single magnon, a dipolar jΔMzj ¼ 1 exci-
tation created by applyingMx to the fully polarized ground
state. It has an energy ω1m ¼ D relative to the ground state.
Above this, there is a continuum of 2-magnon states,
spanning an energy range 2D ≤ ω2m ≤ 2Dþ 4zJ, with z
the coordination number of the lattice. These are jΔMzj¼2
composite excitations which consist of pairs of dipolar
single magnon excitations. Schematically, for, say, the jΨþ

0 i
ground state, the 1-magnon and 2-magnon excitations can
be understood as flipping j þ 1ii → j0ii on a single site and
flipping j þ 1iij þ 1ij → j0iij0ij on two different sites,
respectively.
Crucially, for the S ¼ 1 model, there is an additional

elementary excitation with an intrinsic multipolar character.
This is the SIBS [4], which, in the limit D=J → ∞, can be
understood as a full jΔMzj ¼ 2 spin flip on a single site,
e.g., j þ 1ii → j − 1ii. In this limit, the energy of the SIBS
ωSIBS → 2zJ. Note that such an on-site quadrupolar exci-
tation cannot occur in a purely spin-1=2 system, and is
furthermore completely absent in linear response, which
is only sensitive to dipolar excitations. At finite D=J it is
important to realize that the nature of the SIBS is no longer
as simple as the schematic j þ 1ii → j − 1ii full spin flip
presented in Fig. 1(b) (such a simple excited state is not

even an eigenstate of the Hamiltonian due to the XY
exchange terms contained within the Heisenberg inter-
actions). We can dissect its true character by expanding
ðMxÞ2 as

ðMxÞ2 ¼ 1

2

X

i

Qx2−y2
i þ 1

2

X

i

ðSþi Sþiþ1 þ S−i S
−
iþ1Þ

þ 1

4

X

i≠j;jþ1

ðSþi Sþj þ S−i S
−
j Þ þ…; ð2Þ

where the first term represents a purely on-site quadrupolar
excitation (unique to spin-1 systems), the second represents
a 2-magnon bound state (two magnons bound on neighbor-
ing sites), the third a regular 2-magnon state, and the
ellipses jΔMzj ¼ 0 terms which do not play a role for the
SIBS at the moment. TakingD=J ¼ 5 in the 1-d chain as an
example, the largest contribution for the SIBS comes from
the first term, ∼65% of the total weight, while the second
and third terms contribute∼30% and ∼5% respectively (see
Supplemental Material [30] for D=J dependence). On the
other hand, the lowest energy state in the 2-magnon
continuum is fully dominated by the third term, ∼99%,
which creates two magnons on two different sites. Thus,
though the SIBS and 2-magnon states are both quadrupolar
excitations, they have a fundamentally distinct underlying
nature. The SIBS is a single, sharp elementary excitation

D = 5.0

(a) (b)

(c)

D

1-magnon

1-magnon

2-magnon

2-magnon

SIBS
SIBS

2D

single-ion anisotropy D/J

FIG. 1. Invisibility of quadrupolar excitation in linear response.
(a) The energy spectrum, at zero momentum, of the spin-1 FM
Heisenberg model with single-ion anisotropy D exhibits a 1-
magnon excitation, a continuum of 2-magnon excitations, and a
sharp single-ion bound state (SIBS). The size of the circles is
proportional to the transition amplitudes jhnjMxj0ij2 (red) and
jhnjðMxÞ2j0ij2 (blue), with n ¼ 0; 1;… corresponding to the
ground and excited states. Blue circles in the inset indicate
jhnjQx2−y2 j0ij2. As a representative example, the spectrum shown
here is for a 1D L ¼ 100 site chain. (b) Illustration of the
schematic form of the various excitations. (c) Linear response at
large D ¼ 5.0 reveals only the 1-magnon excitation, while the
quadrupolar SIBS is completely invisible.
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while the 2-magnon states form a continuum, and the SIBS
has primarily on-site quadrupolar character while the
2-magnon states are composed of pairs of 1-magnon
excitations. At small enough D=J, the SIBS merges with
the 2-magnon continuum and loses its distinct nature.
2DCS quadrupolar signatures—Having understood

the structure of the excitation spectrum, we now turn to
how 2DCS can be used to reveal the presence of the
SIBS. We focus on the third-order diagonal susceptibility

χð3Þxxxxðt3; t2; t1Þ (the second-order diagonal susceptibility
vanishes). In the two-pulse setup used for 2DCS,

there are two distinct contributions, χð3;1Þxxxxðt; τ; 0Þ and

χð3;2Þxxxxðt; 0; τÞ. For now, we focus on the Fourier transformed

χð3;1Þxxxxðωt;ωτÞ, which corresponds to two field interactions
at time t0 ¼ 0 and one at t0 ¼ τ.
As a useful comparison, we first consider a spin-1=2

XXZ model with longitudinal field, with Hamiltonian
H ¼ −J

P
hi;ji½γðSxi Sxj þ Syi S

y
jÞ þ SziS

z
j� − hz

P
i S

z
i , and

γ=J ¼ 1.1; hz=J ¼ 5.0. The ground state is also a fully
polarized ferromagnet along the z axis, with a 1-magnon
excitation with energy ω1m ≈ hz and a 2-magnon con-
tinuum for ω2m ≥ 2ω1m [Fig. 2(a)]. As shown in Fig. 2(c),
in the 2DCS spectrum, there is a pump-probe (PP) peak at
ðωt;ωτÞ ¼ ðω1m; 0Þ due to the 1-magnon excitation [9]. In
addition, the lower edge of the 2-magnon continuum is
visible as a 2Q peak at ðω1m; 2ω1mÞ [9].

Now we consider our S ¼ 1 model with D=J ≫ 1.
In this limit, the SIBS is well separated from both the
1-magnon excitation and the 2-magnon continuum
[Fig. 2(b)]. In the 2DCS spectrum, we again observe the
same PP and 2Q peaks from the 1-magnon excitation
and 2-magnon continuum, respectively, just as in the spin-

1=2 model. However, χð3;1Þxxxx now also contains three
additional peaks, roughly located at ðω1m;ωSIBSÞ,
ðω1m − ωSIBS;ωSIBSÞ, and ðω1m − ωSIBS; 0Þ. These addi-
tional peaks reveal quadrupolar excitation processes as can
be intuitively understood, for instance, for the first of these
peaks as follows: at time t0 ¼ 0, the two field interactions
generate a SIBS excitation with energy ωSIBS via
Mxð0ÞMxð0Þ. The system then evolves for a time τ,
generating a peak at ωτ ¼ ωSIBS. At time t0 ¼ τ, the single
field interaction demotes the SIBS to a single magnon
excitation via MxðτÞ, which, after the system evolves for a
time t, generates a peak at ωt ¼ ω1m. Finally, at time
t0 ¼ tþ τ, the system returns to the ground state via
Mxðtþ τÞ.
A more intuitive understanding of the 2DCS spectra can

be obtained by comparing the numerical ED calculations
with the linear GSWT approach [2], which treats magnon
and quadrupolar excitations on equal footing. In GSWT,
the Hamiltonian can be re-expressed using an SU(3)
Schwinger boson ðβi;þ1; βi;0; βi;−1Þ representation. In the
FM case, the exact ground state, which we take here to be
the fully polarized state jΨþ

0 i ¼ j þ 1i⊗N , can be consid-
ered as a condensation of the βi;þ1 bosons. The remaining
two flavors of bosons, βi;0 and βi;−1 correspond to j0ii
and j − 1ii on-site excitations, which can then be used
to represent the βi;þ1 operator as β†i;þ1 ¼ βi;þ1 ¼
ð1 − β†i;0βi;0 − β†i;−1βi;−1Þ1=2. Expanding the square root to
quadratic order in βi;0; βi;−1, and inserting these into
Eq. (1), we obtain the linear GSWT Hamiltonian in
momentum space, for a lattice with a single-site unit
cell, as

HGSWT ¼
X

k

ωkβ
†
k;0βk;0 þ 4J

X

k

β†k;1βk;1; ð3Þ

where ωk ¼ zJ þD − Jγk, with γk ¼ P
δ e

ik·eδ and eδ the
z nearest-neighbor vectors. At k ¼ 0, the energies of the 1-
magnon and 2-magnon states are identical to the numerical
ED results. On the other hand, the energy of the SIBS ωSIBS
is given as exactly 4J, which agrees with the ED only in the
limit D=J ≫ 1. The inclusion of higher-order terms in the
expansion of the square root is thus necessary to obtain the
correct energy of the SIBS at smaller D=J. Indeed, the XY
exchange part of the Hamiltonian produces a quartic term
proportional to M0 which, following a mean-field decom-
position, will result in a correction to the SIBS dispersion.
Using the GSWTapproach, we can calculate the third-order

susceptibility χð3Þxxxxðt; τ; 0Þ in the time domain using

FIG. 2. 2DCS signatures of quadrupolar excitations. Sche-
matics of excitation energies for (a) spin-1=2 FM XXZ model
with longitudinal field and (b) spin-1 FM Heisenberg model with
single-ion anisotropy in the large-D limit. Third-order suscep-

tibility, χð3;1Þxxxx , for L ¼ 100 chain, calculated using ED for (c) spin-
1=2model and (d) spin-1 model atD=J ¼ 5.0, with linear GSWT
results in (e).
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χð3Þxxxxðt; τ; 0Þ ¼ −
1

N

X

PQR

APQR½2 sin ðΔEPRτ þ ΔEPQtÞ

þ sinð−EQτ þ ΔEPQtÞ
þ sin ðEQτ þ ERtÞ�; ð4Þ

where we have defined ΔEnm ¼ En − Em (for simplicity
we have set E0 ¼ 0), and APQR ¼ h0jMxjPihPjMxjQi
hQjMxjRihRjMxj0i is the transition amplitude. The result,
shown in Fig. 2(d), demonstrates that, apart from the 2Q
peak, the GSWT calculations successfully reproduce all of
the qualitative features of the ED results. Indeed, all three
peaks unique to the spin-1 model are confirmed to originate
from processes in which the intermediate state jQi is the
SIBS β†k¼0;−1jvaci. Not only does the GSWT approach
provide insights into the origins of the various peaks, but
much more importantly it can also be straightforwardly
applied to other magnetically ordered states.
Evolution of excitations—So far, we have focused on the

limit D=J ≫ 1. Let us now consider what happens to the
2DCS spectrum as we lower the value of D=J. As D=J
decreases, both ω1m and ωSIBS decrease, with their relative
difference ω1m − ωSIBS changing sign at, e.g., for the 1D
chain, D ≈ 3 (see Supplemental Material [30] for 2D and
3D cases). Consequently, the 2DCS peaks move within the
2D frequency plane, as indicated by the arrows in Figs. 3(b)
and 3(c). Further decreasing D=J brings ωSIBS close to the
lower edge of the 2-magnon continuum, and mixing

between the states results in the SIBS acquiring dominant
2-magnon character. In this limit, the 2DCS spectrum now
resembles that of the spin-1=2model, in which only PP and
2Q peaks are visible [Fig. 3(d)]. However, as the PP peak
consists of contributions from both the SIBS and the
1-magnon, an ωτ ¼ 0 line cut reveals a sign change at
approximately ωt ≈ ω1m ≈ ωSIBS − ω1m (insets of Fig. 3).
Note that the small D=J regime is of direct relevance to

the material NiNb2O6, considered to be an experimental
realization of a spin-1 chain with easy-axis single-ion
anisotropy [31]. There, the ratio D=J is estimated to be
around 0.3 [31], which would put the material into the
regime described above in which the SIBS has a strong
2-magnon character and the unique spin-1 peaks cannot be
easily discerned [Fig. 3(d)].
Quadrupolar weight—In low symmetry models, in

which the SIBS can hybridize with 1-magnon, the resulting
hybridized mode can already be observed with conven-
tional linear response probes such as neutron scattering
[2,6,7]. As an example, consider the effect of a tilted
magnetic field, −hz

P
i S

z
i − hy

P
i S

y
i , on our FM spin-1

Heisenberg model [30]. The transverse field hy breaks the
Uð1Þ symmetry of the model and thereby hybridizes the
SIBS and the 1-magnon excitation, generating two modes,
jψ1i and jψ2i, which are both visible within linear response
(the longitudinal field hz is simply added to prevent, for the
1-d chain, the creation of free propagating domain walls on
either side of the SIBS). The intensity of the linear response
peaks, given by the matrix element jhψnjMxj0ij2 and shown
in Fig. 4(a), is a measure of the dipolar weight of the
excitations. We fix D=J ¼ 6 such that, in the limit hy → 0,
the modes jψ1i and jψ2i smoothly connect to the SIBS and
1-magnon excitation, respectively.
We can now use 2DCS to obtain additional information

on the nature of the hybridized excitations, not accessible
within linear response. To do so, we utilize the other third-
order susceptibility χð3;2Þxxxxðωt;ωτÞ≡ FT½χð3Þxxxxðt; 0; τÞ�. As
shown in Fig. 4(b), the diagonal nonrephasing peaks of
jψ1i and jψ2i are clearly visible, and the appearance of
cross peaks points to the hybridized nature of the two
excitations [32]. In addition, four peaks at ðωt;ωτÞ ¼ ðω2 −
ω1;�ω1Þ and ðω2 − ω1;�ω2Þ are observed. One can show
that the intensities of these additional peaks are given by

Iðω2−ω1;�ω1Þ ∝ mx
01m

x
12m

x
21m

x
10 ≈

����hψ2jðMxÞ2j0i
����
2

;

Iðω2−ω1;�ω2Þ ∝ mx
02m

x
21m

x
12m

x
20 ≈

����hψ1jðMxÞ2j0i
����
2

; ð5Þ

where mx
nm ¼ hnjMxjmi, and the last approximation is

justified sincemx
nm for n > 2 is negligible andmx

nn ¼ 0. We
numerically confirm that the deviation between the inten-
sity IðE2−E1;�E1Þ and jhψ2jðMxÞ2j0ij2 is less than 10% for
hx < 0.5 (and similar for the other peak), with the deviation

FIG. 3. Evolution of excitations. (a) The relative positions of
the 1-magnon, SIBS, and 2-magnon continuum shift as D=J

decreases. (b)–(d) χð3;1Þxxxx ðωt;ωτÞ for different D=J values, ob-
tained by ED for an L ¼ 100 chain. Arrows near the three SIBS
peaks show the directions these peaks move towards the reference
points at ðω1m; 0Þ and ðω1m; 2ω1mÞ. All peaks highlighted with
solid/dotted circles eventually merge at small D=J. Insets display
the line cut at ωτ ¼ 0.

PHYSICAL REVIEW LETTERS 134, 106703 (2025)

106703-4



largely due to contributions from higher excited states.
Thus, the intensity of these 2DCS peaks can provide a
measure of the quadrupolar weight of the excitations,
jhψnjðMxÞ2j0ij2, analogous to how the intensity of the
linear response peaks provides a measure of their dipolar
weight, jhψnjMxj0ij2, allowing for a more sophisticated
characterization of the quasiparticle spectrum. See
Supplemental Material [30] for the comparison with the
trivial hibyridization between two 1-magnon modes.
Outlook—For various magnetic materials quadrupolar

excitations have remained a theoretically expected but
typically experimentally hidden feature, which 2DCS
should now be able to clearly uncover. One material of
much current interest is the easy-axis triangular magnet
FeI2—another effective spin-1 magnet where the observa-
tion of a hybridized SIBS in neutron scattering experiment
has been discussed in great detail [2,7]. Our work suggests
that nonlinear spectroscopy could be used to directly probe
the putative quadrupolar nature of these excitations, in
particular, since for FeI2 the SIBS is better separated from
the 2-magnon continuum than for the NiNb2O6 chain
compound mentioned previously. Along similar lines,
one might reinspect other Ni2þ compounds [33] which
may also show well-separated SIBS.
Outside of higher-spin magnets, another interesting class

of materials expected to exhibit quadrupolar excitations are
systems with non-Kramers doublets [34,35] whose local
moments carry quadrupolar character. This includes the

rare-earth intermetallics PrðTi;V; IrÞ2ðAl;ZnÞ20 which
exhibit quadrupolar-octupolar non-Kramers doublets
[36,37] or 5d2 vacancy-ordered halide double perovskites
[38]. As these systems lack any dipolar character, their
excitations remain invisible in many conventional probes,
but nonlinear 2DCS probes could be used to reveal their
quadrupolar excitations [30].
In general, it should be clear that nonlinear response has

enormous potential in probing multipolar excitations, both
elementary mutipolar excitations in S > 1=2 systems with
easy-axis anisotropy or field-induced polarized phases
[39,40] and non-Kramers doublets with multipolar char-
acter, as well as composite multipolar excitations such
as exchange bound states, feasible even in spin-1=2
systems [21,41–46]. Though we focused here on a rela-
tively simple spin-1 FM as a proof-of-concept example in
this work, the linear GSWT approach can be straightfor-
wardly extended to other ordered phases. However, to
properly incorporate nonlinear corrections into GSWT, it is
essential to renormalize the energies of one- and two-
particle excitations on an equal footing. This ensures that
the cancellation of different processes is accurately
accounted for (see Supplemental Material [30] for more
details). It can either be achieved through a mean-field
approach or via direct numerical diagonalization [7]. In the
latter case, it may be necessary to include subspaces beyond
the two-particle subspace.
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