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Two-dimensional coherent spectroscopy (2DCS) with terahertz radiation offers a promising new avenue
for the exploration of many-body phenomena in quantum magnets. This includes the potential diagnosis of
fractionalized excitations, for which linear response often struggles due to the indistinguishability of a continuum
of fractional excitations from that caused by disorders or impurities. However, the interpretation of the complex
results produced by 2DCS remains a challenge. Here, we explore a numerical approach based on exact diago-
nalization (ED) to help push forward our understanding of 2DCS and, as an example, use it to study the impact
of confinement in the one-dimensional transverse field Ising (TFIM) model. We first validate our approach by
comparing numerical ED and exact analytical results for the spectroscopic signatures of fractionalized spinons
in the model, which exhibits a sharp spinon-echo signal in 2DCS, and show how to understand the finite-size
effects inevitable with the inherently small system sizes in ED calculations. By augmenting the model with a
longitudinal field, which breaks integrability and introduces confinement of spinon pairs, we observe significant
changes to the 2DCS spectrum, such as nonsymmetric broadening of the spinon-echo signal. To further elucidate
these changes, we introduce a “four-kink” approximation, an effective model that captures the interactions
between multiple (confined) spinon pairs. Comparing ED data to these four-kink results provides understanding
of the multiple features of the 2DCS spectra, allowing us to interpolate between finite-system size data and
the thermodynamic limit. One advantage of our ED approach is its possible extension to finite temperatures,
which we explore using thermally pure quantum states and demonstrate how the intensity and spectroscopic
patterns of 2DCS change when going beyond the integrable model. Our numerically exact results provide a
benchmark for future experiments and theoretical studies relying on approximation methods and pave the way
for the exploration of fractionalized excitations in quantum magnets.

DOI: 10.1103/PhysRevB.110.134443

I. INTRODUCTION

Terahertz (THz) spectroscopy, in which an incident THz
pulse is used to excite and probe the dynamics of a system,
is widely employed in the study of quantum materials [1–4].
In particular, the THz range aligns well with the typical ex-
citation energies of quantum magnets. The technique can be
understood within the framework of linear response, provid-
ing information akin to the dynamical spin structure factor,
but restricted to zero momentum. In conventional magnets,
this form of linear response typically reveals sharp excitation
modes, such as magnons or triplons. However, in systems with
fractionalized excitations, linear response typically reveals a
broad continuum of excitations, reflecting the underlying fact
that local operators create multiple (deconfined) excitations
[5–7]. Extracting meaningful information from the contin-
uum is notoriously difficult, and distinguishing between a
continuum arising from fractionalized excitations and one
arising from, for example, thermal or impurity-induced dis-
order [8–12], presents a profound challenge to the field. This
complexity highlights the need for complementary methods or
approaches to accurately characterize dynamics in quantum
materials, particularly in distinguishing the nuances of its
excitation spectra.

A recently developed method to gain deeper insights into
the dynamics of unconventional magnets is to expand THz
spectroscopy to include multiple excitation pulses [13–15].
Using two THz pulses to probe the system and, in addi-
tion, varying the timing between the two pulses, leads to
two-dimensional coherent spectroscopy (2DCS)—a technique
that, in the optical range, has already been extensively used in
fields such as quantum chemistry, to probe the structure of
complex molecules [16], and semiconductor physics, to probe
the dynamics of excitons [17]. At its heart, such a multiulse
approach allows one to extract, by subtracting the single pulse
responses from the multipulse response, the non-linear re-
sponse of the system. This reveals the physics of higher-order
dynamical correlation functions, inherently providing more
information than that available with linear response. It can
be analyzed either in the time domain, or, by performing a
two-dimensional Fourier transform over the two time argu-
ments, τ , the time delay between the two pulses, and t , the
measurement time after the second pulse, in the frequency
domain.

It is becoming increasingly clear that 2DCS with THz
sources has the potential to become a potent new tool in
exploring many-body phenomena in quantum magnets, such
as in studying spin waves [13–15,18] or, more enticingly,
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fractionalized quasiparticles such as spinons [19–24]. The lat-
ter example was first studied in Ref. [19], which showed that
2DCS can clearly identify one of the most elementary forms
of fractionalized excitations—spinon excitations in the (ex-
actly solvable) one-dimensional transverse field Ising model
(1D-TFIM). A “spinon echo” signal, represented by a sharp
antidiagonal line along the ωt = −ωτ direction, arises from
the interference of phases accumulated by spinon pairs cre-
ated by consecutive THz pulses. Weak perturbations, which
introduce a finite lifetime to the spinon pairs, manifest as
an energy-dependent broadening of the spinon echo signal,
thereby revealing the lifetime of the individual spinon exci-
tations [21,25]. However, the fate of the signal beyond the
perturbative regime has not yet been explored.

Despite the enormous potential of 2DCS, the calculation
of the relevant nonlinear response functions, and the inter-
pretation of the 2DCS spectrum, is, in general, a challenging
task. In the context of fractionalized excitations, other exactly
solvable models, such as the toric code model [26] and Kitaev
honeycomb model [27–29] have also been studied, as well
as an analytical study exploring the potential for identifying
fractional statistics [30]. Outside of exactly solvable models,
or their perturbative regime, numerical studies have so far
been restricted to the realm of matrix product states (MPS).
There, two different approaches, either computing the full
nonlinear magnetization [21], or directly computing the rel-
evant susceptibility [22,23], have been demonstrated so far.

Here, we tackle both of the above issues by, on the one
hand, exploring the utility of using exact diagonalization (ED)
to study 2DCS and, on the other hand, using ED to study the
impact of confinement on the characteristic spinon-echo sig-
nal of the 1D-TFIM. ED is well-suited to achieving long-time
evolution, and correspondingly high-frequency resolution, but
it is obviously rather limited in terms of system sizes. As such,
it offers a different numerical trade-off than recent exploratory
studies [21,22] using MPS time evolution, which can deal
with much larger system sizes than ED but can be limited to
shorter time scales due to the growth of entanglement under
time evolution [31]. To showcase the applicability of our ED
approach, we consider the 1D-TFIM and critically discuss
finite-size effects in its exactly solvable limit and then extend
our study to the case where the integrability is broken by a
longitudinal field, introducing a confining potential for the
spinon excitations. We demonstrate that the fine resolution
in the frequency domain achieved by ED reveals a detailed
structure of the 2DCS spectrum characterized by a sequence
of interacting spinon-pair bound states. Of particular interest
is the evolution of the spinon-echo signal, a key signature of
fractionalized excitations in the (exactly solvable) 1D-TFIM.
By applying both ED on the full model, and using an effec-
tive four-kink approximation that allows us to access large
system sizes, we identify that the significant changes in the
spinon-echo signal result from the interacting nature of spinon
pairs as well as field-induced breaking of spinon bound states
into pairs of lower-energy bound states. Finally, we extend
our approach to finite temperatures, a crucial development for
comparison with future experiments.

Our discussion in the following is structured as follows.
We start, in Sec. II, with a general overview of 2DCS, details
on how we numerically compute the associated nonlinear

response functions with ED, and the model Hamiltonian that
we focus on in this work. Next, in Sec. III, we investigate the
origin of finite-size effects in the 1D-TFIM and discuss how to
interpret the resulting 2DCS spectra. With the understanding
of the finite-size effects in hand, we then turn to the case of a
longitudinal field in Sec. IV. Combining our ED results with a
“four-kink” approximation, we show the confinment of spinon
pairs results in a significant change of the “spinon-echo” sig-
nal. Finally, in Sec. V, we discuss the ED approach to finite
temperatures and demonstrate how the finite-temperature ef-
fects can be captured in 2DCS. In Sec. VI, we summarize our
results and discuss the experimental relevance of our findings.

II. METHODS

Before discussing any results, we first provide a brief
overview of magnetic 2DCS and its theoretical underpinnings,
details on how we numerically compute the associated nonlin-
ear response functions with ED, and the model Hamiltonian
that we focus on in this work.

A. Formalism of 2DCS

We consider a simple time-dependent magnetic field con-
sisting of two δ-function pulses at times t ′ = 0 and t ′ = τ . The
magnetization is measured after the second pulse at a time
t ′ = t + τ . Thus τ is the delay time between the two pulses
and t is the measurement time after the second pulse. The α

component of the resulting time-dependent applied field can
be written as Bα (t ′) = Bα

0 δ(t ′) + Bα
τ δ(t ′ − τ ).

We define mα
0τ (t, τ ) as the α component of the induced

magnetization at time t ′ = t + τ after two successive pulses
at t ′ = 0 with strength B0 and at t ′ = τ with strength Bτ .
Analogously, mα

0 (t, τ ) and mα
τ (t, τ ) represent the induced

magnetization after single pulses at t ′ = 0 with strength B0

and at t ′ = τ with strength Bτ , respectively. Subtracting these
single-pulse magnetization responses (mα

0 and mα
τ ) from the

two-pulse magnetization mα
0τ isolates the nonlinear magneti-

zation as

mα
NL(t, τ ) = mα

0τ (t, τ ) − [
mα

0 (t, τ ) + mα
τ (t, τ )

]
= χ

(2)
αβγ (t, τ )Bβ

τ Bγ

0 + χ
(3)
αβγ γ (t, τ, 0)Bβ

τ Bγ

0 Bγ

0

+ χ
(3)
αββγ (t, 0, τ )Bβ

τ Bβ
τ Bγ

0 + · · · , (1)

wherein only mixed cross-terms survive (for example, second-
order terms proportional to B2

0 and B2
τ cancel out). This setup

is schematically illustrated in Fig. 1. Note that, in this two-
pulse setup, there is a single second-order susceptibility but
two distinct third-order contributions proportional to Bτ B2

0 and
B2

τ B0, respectively.
Concrete expressions for the nonlinear susceptibilities can

be derived using time-dependent perturbation theory [32]. In
general, they are written as the equilibrium expectation value
of nested commutators of the magnetization operators. As an
example, the relevant third-order susceptibility can be neatly
expressed in its most general form as

χ
(3)
αβγ δ (t3, t2, t1) = 2

N
Im[R1 + R2 + R3 + R4], (2)
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FIG. 1. Schematic of the two-pulse measurement setup. Two
THz pulses (in red) are applied at times t ′ = 0 and t ′ = τ , and the
magnetization m0τ (in blue) is measured at t ′ = t + τ . Subtracting
the single pulse responses, m0 and mτ , from m0τ isolates the nonlinear
magnetization mNL.

where t1, t2, and t3 are the time delays for a general multipulse
setup, and the Ra encode the contributions from the different
possible orderings of the operators (we have suppressed their
arguments and labels here for simplicity) given by

R1 = 〈Mγ (t1)Mβ (t2 + t1)Mα (t3 + t2 + t1)Mδ (0)〉,
R2 = 〈Mδ (0)Mβ (t2 + t1)Mα (t3 + t2 + t1)Mγ (t1)〉,
R3 = 〈Mδ (0)Mγ (t1)Mα (t3 + t2 + t1)Mβ (t2 + t1)〉,
R4 = 〈Mα (t3 + t2 + t1)Mβ (t2 + t1)Mγ (t1)Mδ (0)〉, (3)

where Mα (t ) = ∑
i Sα

i (t ) and Sα
i (t ) is the α component of the

spin operator on site i at time t . By inserting resolutions of
the identity, each Ra can be rewritten in terms of the energy
eigenstates |P〉, |Q〉, and |R〉 as

R1 =
∑
PQR

mγ

0Rmβ
RQmα

QPmδ
P0e−iEPt1 e−i(EP−ER )t2 e−i(EP−EQ )t3 ,

R2 =
∑
PQR

mδ
0Rmβ

RQmα
QPmγ

P0e+iERt1 e−i(EP−ER )t2 e−i(EP−EQ )t3 ,

R3 =
∑
PQR

mδ
0Rmγ

RQmα
QPmβ

P0e+iERt1 e+iEQt2 e−i(EP−EQ )t3 ,

R4 =
∑
PQR

mα
0Rmβ

RQmγ
QPmδ

P0e−iEPt1 e−iEQt2 e−iERt3 , (4)

where we have defined the magnetization matrix elements
mα

f i = 〈 f | Mα |i〉. See Appendix A for the full expressions for
χ (2) and χ (3) and their associated Ra.

Setting t1 = 0, t2 = τ, t3 = t and t1 = τ, t2 = 0, t3 =
t yields χ

(3)
αβγ γ (t, τ, 0) and χ

(3)
αββγ (t, 0, τ ) respectively. The

two-dimensional Fourier transform of χ (3) over posi-
tive t and τ generates the 2DCS frequency spectrum.
We define χ (3;1)(ωt , ωτ ) ≡ FT[θ (t )θ (τ )χ (3)(t, τ, 0)] and
χ (3;2)(ωt , ωτ ) ≡ FT[θ (t )θ (τ )χ (3)(t, 0, τ )]. It is important to
note here that the positive time constraint, t > 0, τ > 0, im-
posed by the form θ (t )θ (τ )χ (t, τ ), results in a convolution
of [πδ(ωt ) + 1/(iωt )][πδ(ωτ ) + 1/(iωτ )] with χ̃ (ωt , ωτ ),
where χ̃ (ωt , ωτ ) is the unconstrained Fourier transform of

χ (t, τ ). Unfortunately, this convolution means that both the
real and imaginary parts of the Fourier transform contain
artificial broadening, e.g., an additional 1/(ωtωτ ) term for
the real part. This distortion of the spectrum of the pure
χ̃ (ωt , ωτ ) is commonly referred to as “phase twisting” [25,26]
and is a known impediment to the clean interpretation of
2DCS spectra [16,33]. Nevertheless, we focus here only on
Re[χ (2)(ωt , ωτ )] and Im[χ (3;1,2)(ωt , ωτ )]. In the absence of
the positive time constraint and if all matrix elements are real,
these are the parts that would be nonvanishing.

B. Evaluation of nonlinear susceptibilities
with exact diagonalization

We individually compute the nonlinear susceptibilities χ (2)

and χ (3) using the approach developed in Ref. [21]. Similar
to the experimental setup, this involves applying two Dirac-δ
pulses to the system and analyzing the resulting time evolution
to determine the nonlinear response. In the remainder, we
focus on the case in which the field pulses and the measured
magnetization are all aligned, so γ = β = α. The action of a
single pulse at time t ′ on a state |ψ〉 is described by

|ψ ′〉 = exp (iBt ′Mα )|ψ〉, (5)

where Bt ′ signifies the pulse magnitude. The wave function
after two successive pulses, applied at times t ′ = 0 and τ is

|ψ (t, τ )〉 = e−iHt eiBτ Mα

e−iHτ eiB0Mα |ψ〉. (6)

The magnetization per site after two successive pulses is thus
given by

mα (t, τ, Bτ , B0) = 1

N
〈ψ (t, τ )| Mα|ψ (t, τ )〉. (7)

We can then calculate the individual nonlinear susceptibilities
as follows:

χ (2)
ααα (t, τ ) = ∂2mα (t, τ, Bτ , B0)

∂Bτ ∂B0

∣∣∣∣
B0=Bτ =0

,

χ (3)
αααα (t, τ, 0) = ∂3mα (t, τ, Bτ , B0)

∂Bτ ∂B2
0

∣∣∣∣
B0=Bτ =0

, (8)

χ (3)
αααα (t, 0, τ ) = ∂3mα (t, τ, Bτ , B0)

∂B2
τ ∂B0

∣∣∣∣
B0=Bτ =0

.

In practice, we numerically compute the derivatives using the
central difference method. For example, χ (2)

ααα (t, τ ) can be
computed using four different (B0, Bτ ) combinations. Setting
B0 = Bτ = B, it can be written as

χ (2)
ααα (t, τ ) = 1

4B2
[mα (t, τ, B, B) − mα (t, τ,−B, B)

−mα (t, τ, B,−B) + mα (t, τ,−B,−B)]. (9)

This method is similarly applied to the calculation of the third-
order derivatives for χ (3)

αααα (t, τ, 0) and χ (3)
αααα (t, 0, τ ), using

six combinations of (B0, Bτ ). Throughout, we use B0 = Bτ =
0.001. Note that one could alternatively directly compute the
nonlinear susceptibilities via the Ra dynamical correlation
functions, as given for example in Eq. (4) for χ (3), for which
the computational cost is comparable. One advantage of the
present method is that, being closer to the actual experimental
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setup, it allows for more flexibility and easier comparison
to experimental results, e.g., one can easily take different
pulse shapes, sequences and strengths into account in the time
evolution, or even take the actual measured magnetic field
pulse profile from an experiment and use that time-dependent
magnetic field in the time evolution of Eq. (6).

To make the Fourier transform well-behaved with finite
time windows, a filter function e−η(t2+τ 2 ) is applied, which
broadens the signal in the frequency domain. We set a rather
small broadening of η = 0.001, resulting in rather sharp peaks
in the frequency domain. With this filter, we time evolve to a
maximum time of tmax = τmax = 150. The sampling intervals
δt and δτ determine the energy range as ωmax

t = π/δt and
ωmax

τ = π/δτ . We set δt = δτ = 0.25. For the time evolution
and application of the pulses, both of which are achieved
by exponential operator multiplications, we use the package
“Expokit.jl,” a JULIA implementation of EXPOKIT [34] that
efficiently executes these calculations using Lanczos routines.

For the finite temperature simulations, we use the canonical
thermal pure quantum state |φ〉 = exp(−βH/2)|φ0〉 [35,36],
where |φ0〉 is a random vector whose norm is initialized to
one, as the initial state. We average the results over N = 10
random initial states. See Appendix B for the details of the
finite temperature simulation.

C. 1D transverse field Ising model (1DTFIM)

The model we consider is the 1D-TFIM in the presence of
a longitudinal field with the Hamiltonian

H = −J
L∑

i=1

σ z
i σ z

i+1 − hx

L∑
i=1

σ x
i − hz

L∑
i=1

σ z
i , (10)

where σα
i (α = x, y, z) are Pauli matrices at site i, J > 0 is

the nearest neighbor ferromagnetic (FM) coupling, hx is the
transverse field, and hz the longitudinal field. We assume
periodic boundary conditions throughout. When hz = 0, the
model is exactly solvable via a Jordan-Wigner transformation,
and, in the low-field ferromagnetically ordered phase, the
elementary excitations are the kinks, or “spinons,” of the FM
order (domain walls between blocks of aligned spins). These
form a gapped dispersive band of excitations with energies λk .
However, a single spin flip σ x

i generates a pair of spinons, with
equal and opposite momenta. This form of fractionalization
results in a continuum response at zero momentum when
probed within the linear response regime.

A finite longitudinal field hz breaks the integrability of
the model, and generates a confining potential for the spinon
pairs. Though the model is no longer exactly solvable, the
resulting dynamics can be well described by a “four-kink” ap-
proximation, in which an effective Hamiltonian acting within
the subspace of two spinon states is constructed [37,38]. At
large hz, the spinons are tightly bound, and connect to the
single spin-flip excitations of the high-field limit.

III. FINITE-SIZE EFFECTS

Since the available system sizes are limited in ED, we
first need to have a solid understanding of potential finite-size
effects. Here, we investigate finite size effects in two distinct
scenarios, namely, (i) a magnetic field pulse creates a pair of

excitations, meaning that linear response exhibits a continuum
of excitations, and (ii) a magnetic field pulse creates only
single excitations, meaning that linear response exhibits a
discrete set of excitation modes. We will see that finite-size
effects are more significant in the former scenario.

A. Revival of signals

If a system of interest has a continuous spectrum at
zero momentum, then simulating 2DCS with a finite sys-
tem size can lead to a spurious “revival of signals” in the
time domain. As a result, the Fourier-transformed signal in
the frequency domain deviates from the true behavior ex-
pected in the thermodynamic limit. Here, we illustrate that
the origin of this deviation is a combination of the discrete
nature of the spectrum in finite-sized systems and the positive
time constraint, t > 0, τ > 0, enforced in the experimental
setup.

In Ref. [19], the full 2DCS spectrum for the exactly
solvable 1D-TFIM was obtained (see Appendix C for the
derivation). The third-order susceptibility χ (3)

xxxx reads

χ (3)
xxxx(t3, t2, t1) = 1

L

∑
0<k<π

[
A(1)

k + A(2)
k + A(3)

k + A(4)
k

]
, (11)

where

A(1)
k = −8 sin2 θk cos2 θk sin(2λk (t3 + t2 + t1)),

A(2)
k = 8 sin2 θk cos2 θk sin(2λk (t2 + t1)),

A(3)
k = −4 sin4 θk sin(2λk (t3 + t1)),

A(4)
k = −4 sin4 θk sin(2λk (t3 − t1)), (12)

with λk the single-spinon energies, and the angle θk defined
by tan θk = (2J sin k)/(2J cos k − 2hx ).

Figure 2 compares the analytical and numerical χ (1)
xx and

χ (3;1,2)
xxxx of the 1D-TFIM in the FM phase. The analytical

data are obtained for a large system size of L = 500 using
Eq. (12), representing the expected behavior in the thermo-
dynamic limit, and the numerical data is obtained for L = 24
with ED. For the ED data, we checked that the error between
the analytical result and the ED result for the same system size
is less than 10−5 in the time domain data, and no apparent
increasing trend is evident during the chosen time evolution
window.

There are unsurprisingly a number of similarities between
the two system sizes. In χ (3;1)

xxxx , there is a pump-probe (PP)
signal along the ωt axis at (ωt , ωτ ) = (2λk, 0). In χ (3;2)

xxxx , there
is an antidiagonal signal at ωt = −ωτ = 2λk corresponding
to the “spinon-echo” or rephasing (R) signal, originating from
A(4)

k . For the smaller system size, the discrete nature of these
signals simply results from the discreteness of the momentum
k. This is most evident in the linear response χ (1)

xx , where the
L = 24 system contains a visibly discrete set of L/2 peaks,
corresponding to the L/2 allowed pairs of spinons with mo-
menta k and −k, while the larger system size effectively has
a continuum of excitations due to its much larger number of k
points.

There are two obvious differences though between the two
system sizes. In the time domain, there are periodic revivals
of the signal in the small system size used for the ED that
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FIG. 2. Revival of the signal in the small system size in one-dimensional transverse field Ising (1D-TFIM). Two-dimensional coherent
spectroscopy (2DCS) of 1D-TFIM with the model parameters J = 0.7, hx = 0.3, i.e., ferromagnetic phase. [(a)–(e)] Analytically calculated
linear-response Im[χ (1)

xx (ωt )], third-order response χ (3)
xxxx (t, t + τ, t + τ ) and χ (3)

xxxx (t, t, t + τ ) for L = 500, and 2d-FT of them. Spinon pairs
manifest as continuous pump-probe (PP) signal at ωτ = 0 in χ (3;1)

xxxx and spinon-echo/rephasing (R) signal at ωt = −ωτ in χ (3;2)
xxxx . [(f)–(j)] The

same quantities obtained by exact diagonalization (ED) for L = 24. Though the small t and τ data are similar to the that of large system size,
the signal starts to revive as t and τ increase. The discrete character of the PP/R signal is evident. The nonrephasing (NR) signal at ωt = ωτ is
also visible in χ (3;2)

xxxx , which is absent in the thermodynamic limit.

do not appear in the larger system size, and, in the frequency
domain, there are additional diagonal nonrephasing (NR) sig-
nals in the small system size which are absent in the larger
system size. To understand this, let’s first consider a one-
dimensional time domain, and for simplicity, assume that the
energies of the spinons are equally spaced with a uniform
frequency spacing of �ω ∝ 1/L. If one superposes multiple
sine waves,

∑
k>0 sin(ωkt ′), with a uniform frequency spacing

of �ω, then the wavelength of the resulting beating pattern
will be proportional to 1/�ω. In the thermodynamic limit,
L → ∞, �ω → 0, and the spinon spectrum becomes con-
tinuous, which means that the wavelength diverges and the
periodic signal disappears from the positive time axis, leaving
a maxima at t ′ = 0.

In the two-dimensional time domain of relevance here,
a similar scenario plays out. As illustrated in Fig. 3, for
L → ∞, we need to superpose a continuum of sine waves,∫

dk g(k) sin[ωk (t ± τ )], with g(k) simply representing ma-
trix element factors. For the t − τ case, there is a maxima
along the line t = τ , and for the t + τ case, the maxima
is along t = −τ . Focusing on the relevant quadrant with
t > 0, τ > 0, only the t = τ line can be observed which, after
Fourier transforming, is exactly the rephasing R signal. The
t = −τ line is absent from the purely positive time window,
and thus the absence of the corresponding nonrephasing NR
signal is generally expected when the system has a continuous
spectrum in the thermodynamic limit. On the other hand,
for L finite, we are adding a finite number of frequencies,

∑
k g(k) sin[ωk (t ± τ )], resulting in periodic signals with

wavelengths roughly proportional to L. This means that, in
the positive time quadrant, t > 0, τ > 0, both rephasing and
nonrephasing lines are present, and thus the Fourier trans-
formed spectra have both signals present. The appearance of
the NR signal is thus a consequence of the discreteness of the
spectrum. In the ED, our time window for the FT in both t and
τ extends to several times L, so we indeed observe both R and
NR signals and, similarly, we are able to resolve the discrete
nature of the signals.

It should be noted that there is a straightforward solution
in this particular case to avoid such revivals of signals in
the time domain. One can simply choose the time window
small enough such that no revivals occur within it (alterna-
tively, one can choose a large damping factor η in the filter
function e−η(t2+τ 2 )). Thus the NR signal will be absent and
the R signal will be continuous, both as expected for the
thermodynamic limit. For large system sizes, this is relatively
straightforward as the periodic revivals are anyway spread
far apart in time, but for the small system sizes accessible
with ED this heavily constrains the available time window
and hence leads to an extremely poor resolution in frequency
space. More importantly, it is, in general, not possible to know
a priori whether the revivals are an artifact, to be avoided, or a
feature, to be included, i.e., whether the true physics is really
a continuum or simply a dense set of discrete excitations (as,
for example, observed in the confining scenario of the next
section).
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FIG. 3. Schematics of the rephasing (R) and nonrephasing (NR) signal. In the experiment, signals are measured at t, τ > 0 represented
by the shaded area. (a) In the thermodynamic limit, the signal can be described by a superposition of continuous poles; therefore, it takes the
form of the integral. R signal decays as t + τ increases, and NR signal decays as t − τ increases. FT of the signal for t, τ > 0 only reveals R
signal. (b) In the finite size system, the signal takes the form of the sum due to the discrete nature of possible k. R and NR signals are visible
at t, τ > 0 as a revival of the signal. FT of the signal yields discrete R and NR signals.

In Fig. 3(a), it is the positive time constraint, t > 0, τ > 0,
that ensures that it is only the R signal that is present in the
thermodynamic limit. If we were to include both positive and
negative τ , then both the NR and R lines would be visible in
the time domain, and hence one would observe both diagonal
NR and antidiagonal R signals in the 2DCS spectrum. In
addition, the artificial broadening induced by the positive time
constraint in the Fourier transform would be absent (in the
case of the imaginary part). Taken together, this means that,
for the relaxed constraint, t > 0 only, the small system size
ED result is simply a discretized version of the results in the
thermodynamic limit, with all of the same qualitative features
and signals (see Appendix D for an illustration of this).

Twisted Kitaev model

As another example in which identical finite size effects are
present, we show results for another exactly solvable model,
the twisted Kitaev model (TKM) [23,39–41]. The Hamilto-
nian is

H = −J
L′∑
i

[σ̃2i−1(θ )σ̃2i(θ ) + σ̃2i(−θ )σ̃2i+1(−θ )], (13)

where L′ = L/2, σ̃i(θ ) = σ z
i cos(θ/2) + σ

y
i sin(θ/2), and θ is

the “twist” angle. For 0 � θ < π/4, the ground state is a
doubly degenerate FM state, polarized along the z direction.
The elementary excitations are again spinons (kinks, or do-
main walls, of the FM state), but now there are two kinds of
spinons, with dispersions lk and λk , where k = 2πn/L′ and
n = 1, 3, . . . , L′ [40].

Analytical expressions for the second- and third-order sus-
ceptibilities for the TKM have been derived in Ref. [23], with
the result for χ (3;2)

xxxx shown in Fig. 4(a) for a large system size
of L = 500, again representing the behavior of the thermody-
namic limit. Similar to the 1D-TFIM, a magnetic pulse along
the x-direction only excites spinon pairs, with equal and oppo-
site momenta; therefore there appears again a spinon-echo R
signal. In addition, due to the interplay between the lk spinons
and λk spinons, there are additional streak features for both
positive and negative ωτ [40].

In ED, on an L = 24 chain, we observe all of the features
of the analytical result in the thermodynamic limit, but with
discretized streaks due to the discrete number of k points.
Again, as in the TFIM, the main difference, in the frequency
domain, is the additional diagonal NR signal, which is absent
in the thermodynamic limit. The small system sizes available
in ED are again able to capture the key qualitative features
of the 2DCS spectrum, with the caveat that an additional NR
signal presents itself.

B. Discrete spin-flip excitations in the paramagnetic phase

Next, we discuss finite size effects in the paramagnetic
(PM) phase of the 1D-TFIM, i.e., hx > J . In this phase, a
magnetic field pulse along the z direction creates a single spin
flip excitation with momentum k = 0, and the spectrum is ex-
pected to be discrete even in the thermodynamic limit. We thus
expect that ED should be able to produce qualitatively similar
results as those expected in the thermodynamic limit. Also,
unlike the case of the FM ground state, we expect to observe
an NR signal corresponding to single spin-flip excitations.
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FIG. 4. Twisted Kitaev model. (a) Analytical result for L = 500.
In addition to the R signal, there are streak features in both first
and fourth quadrant, originating from the interplay between different
spinon modes. (b) ED result for L = 24. Additional diagonal NR
signal at ωt = ωτ is observed.

Figures 5(a) and 5(b) show χ (3;2) for the trivial limit
of J = 0, hx = 1 (hx/J → ∞), in which the result can be
obtained analytically. In this transverse field-only limit, the
ground state can be written as |0〉 = |→→ · · · →〉. Excita-
tions involving either a single or double spin-flip at sites i
or (i, j) are represented by |←〉i = σ z

i |0〉 for a single site,
and |←〉i |←〉 j = σ z

i σ z
j |0〉 (i 
= j) for two sites, respectively.

These are energy eigenstates with energies E = 2hx and
E = 4hx, respectively.

Keeping in mind that the matrix elements involved for
χ (3) can be written as mz

0Rmz
RQmz

QPmz
P0, we can think of two

types of processes: one with |Q〉 = |0〉, simplifying the ma-
trix element to |mz

0R|2|mz
0P|2, and another with |Q〉 involving

double spin-flip states. In both cases, |P〉 and |R〉 are single
spin-flip states. Noting that (σ z

i )2 is the identity operator,
the number of contributions scales as L2 for |Q〉 = |0〉 pro-
cesses, and as 2L(L − 1) for processes with |Q〉 involving
double spin-flip states. Combining these together, it can be
shown that the summation of the different Ra in Eq. (2) for
both types of processes results in a cancellation of the terms
proportional to L2, leaving only the terms proportional to L.
Dividing by L, we thus obtain system size-independent peaks
at (ωt , ωτ ) = (2hx, 2hx ) and (2hx,−2hx ), corresponding to
NR and R signals, respectively. Such a (partial) cancellation
of terms proportional to L2 is common and indeed will appear
again in the next section. Note that unlike in the low-field FM
phase, the NR signal does not vanish here as the pole is now
discrete.

FIG. 5. Single spin flip excitations in paramagnetic phase (PM).
[(a) and (b)] The result for J = 0, where the system size indepen-
dent exact result is available. R and NR are observed at (ωt , ωτ ) =
(2hx, −2hx ) and (2hx, 2hx ), respectively. [(c) and (d)] ED result for
L = 24 with J = 0.1. (e) Schematics of the processes responsible for
the NR signal. The intermediate state Q is either the ground states
(red) or two-spin flip state (blue). In the presence of the interaction
J , the two-spin flip states with zero total momentum constitute a con-
tinuum, which ends up with discrete poles in the finite size system.
(f) Actual position of the poles for L = 24. The data are obtained
by Fourier transforming both positive and negative time data, which
eliminates the phase twisting effect. Slightly different frequencies
of the signals with opposite signs are superposed, which manifests
diverging behavior in the time domain data (c).

Next, we consider the effects of a finite Ising interaction
J , by which the spin-flip excitation obtains a dispersion.
Figures 5(c) and 5(d) show the ED result with L = 24 for
J = 0.1 and hx = 0.9. Similar to the noninteracting case, we
observe NR and R signals at (ωt , ωτ ) ≈ (2hx − 2J, 2hx − 2J )
and (2hx − 2J,−2hx + 2J ), respectively, whose energies cor-
responds to that of the single spin-flip excitation at k = 0. In
the time domain data, the amplitude of the signal increases as
t increases, see Fig. 5(c). Similar to the noninteracting case,
the contribution from the processes with |Q〉 = |0〉 should be
partially canceled out by the processes with |Q〉 involving
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FIG. 6. Spinon-confinement via an applied longitudinal field with parameters J = 0.7, hx = 0.06 in [(a) and (b)] the weakly confined limit,
hz = 0.06, and [(c) and (d)] the strongly confined limit, hz = 0.4. All relevant susceptibilities, χ (1)

xx , χ (2)
xxx , and χ (3;1,2)

xxxx are shown. The results in
[(a) and (c)] (top) are obtained using the four-kink approximation for a large system size (L = 100), while the results in [(b) and (d)] (bottom)
are obtained with ED for L = 24.

two-spin flip states. However, since the double spin-flip states
with k = 0 now form a continuum in the thermodynamic
limit, this not only leads to the cancellation of the |Q〉 = |0〉
processes, but also results in a tail of signals in the frequency
domain [26,42,43], as schematically shown in Fig. 5(e). In-
deed, in the zoomed in data of Fig. 5(f), both the numerical
NR and R signals exhibit a tail in the frequency domain.
The superposition of slightly different signal frequencies with
opposite signs generates the diverging behavior in the time do-
main data, in line with the “long-time divergences” discussed
in Ref. [18].

IV. BREAKING INTEGRABILITY AND CONFINEMENT

Having understood the impact of finite size effects, we
now consider the addition of a longitudinal field, which intro-
duces a confining potential for the spinon pairs. This explicitly
breaks the integrability of the model, meaning it is no longer
exactly solvable via a Jordan-Wigner transformation.

Though there is no longer an exact solution to compare
the ED against, it is possible to numerically compute the
response of large systems of O(100) sites using a few-kink
approximation, derived by projecting the full Hamiltonian
into the subspace of few-spinon states [37,38,44–46] (see
Appendix E for details). Reference [22] explored the impact
of confinement on the second-order response χ (2) using a two-
kink approximation. Here, we focus on χ (3), and in particular
the evolution of the spinon-echo rephasing signal, predicted
as a key fingerprint of fractionalization [19], with increasing
longitudinal field.

Figure 6 compares the four-kink approximation and ED
results for χ (1)

xx , χ (2)
xxx, and χ (3;1,2)

xxxx for both the weakly confined,
with hz = 0.06, and strongly confined, with hz = 0.4, cases.
The confining potential leads to a set of spinon bound states
with a discrete energy spectrum En (sometimes referred to

as “meson” bound states), clearly visible in the linear sus-
ceptibility χ (1)

xx . Intuitively, when the confinement potential
is sufficiently strong, the nth excited state can be roughly
associated with a domain of flipped spins (relative to the
ground state) of length n. The energy spacing between these
states increases as hz increases, with for example only the
lowest three visible within the frequency range 0 < ωt < 6
in the strongly confined limit, hz = 0.4. The second-order
susceptibilities are consistent with Ref. [22] and are discussed
in depth there.

In the weakly confined limit, hz = 0.06, we see that even
a small longitudinal field produces significant deviations from
the integrable (zero confinement) results. First, in χ (3;1)

xxxx , there
is a series of additional features surrounding the on-axis
pump-probe signal. More interestingly, in χ (3;2)

xxxx , the spinon-
echo R signal has now split into a grid of discrete peaks spread
over a wide frequency range, accompanied by a set of weak
line features shifted to ωt < E1, in dramatic contrast to the
single sharp antidiagonal line in the integrable case. We focus
now on elucidating the origins of these new features and the
evolution of the spinon-echo R signal (see also Appendix F
for further details).

Firstly, the nature of the discrete grid of peaks occurring
at energies (ωt , ωτ ) = (En,−Em) can be discerned by ex-
amining the structure of the Lehmann representation of the
third-order response, as given in Eq. (4), with the relevant
matrix elements involved being mx

0Rmx
RQmx

QPmx
P0. Similar to

the PM phase discussed in Sec. III B, there are two distinct
contributions to the peaks. In both cases, |P〉 and |R〉 are
spinon bound states, but the intermediate state |Q〉 is different.
In the first case, the intermediate state |Q〉 is the ground state
and the R2,3 process generates a grid of rephasing peaks with
intensities proportional to |mx

n0|2|mx
m0|2, with n = m corre-

sponding to the peaks on the diagonal and n 
= m to peaks
on the antidiagonal (see also Fig. 19 in Appendix G). This
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FIG. 7. Evolution of the spinon-echo rephasing signal. A comparison of χ (3;2)
xxxx , which contains the spinon-echo signal, for different

longitudinal fields computed with the four-kink approximation (top) and ED (bottom). In both cases, the sharp spinon-echo signal at hz = 0 is
broadened as hz increases, ending as a set of discrete peaks in the strongly confined regime.

contribution contains similar information to the linear re-
sponse, as matrix elements of the form |mn0|2 ∝ L also
appear there. The resulting matrix element is thus propor-
tional to L2. As a result, this contribution to the third-order
response is actually extensive, i.e., it scales with the system
size L. This pathological behavior is remedied by taking
the four-kink states into account as the intermediate state
|Q〉. The four-kink states introduce cancellation terms, e.g.,
R1 in χ (3;2)

xxxx (see Fig. 19), regulating the apparent system
size-dependent behavior, leading ultimately to L-independent
signals. These remaining L-independent contributions, which
survive the partial cancellation, reflect the interacting nature
of the spinon-bound states. Note that, in addition to this grid of
peaks, there is a continuum feature between each peak due to
the four-kink states forming a continuum (more easily visible
in Fig. 18 in Appendix F).

Secondly, the other prominent feature visible in the weakly
confined limit is the series of predominantly negative line fea-
tures appearing to the left of the R cross peaks at (ωt , ωτ ) =
(E1,−En), where this negative signal appears only for n � 3.
These features can be understood by considering processes in
which a spinon bound pair breaks apart into two bound pairs
of lower energy or, alternatively, a domain splits up into a
pair of smaller domains. It is perhaps most straightforward
to understand in the domain perspective. A domain of length
n can be split into two smaller domains by flipping a spin
somewhere within the domain, a process which requires n to
be 3 or greater. The field pulses induce a domain splitting pro-
cess, (l = n) → (l1 = n − m − 1) + (l2 = m), resulting in a
pair of domains that form a continuum. One can also split a
domain by flipping two spins, i.e., (l = n) → (l1 = n − m −
2) + (l2 = m), or by flipping three spins, and so on. This re-
sults in a series of line features of alternating sign (though only

the first three are clearly visible). Such processes account for
the continuous signals appearing to the left of the rephasing
peaks.

In the strongly confined limit, hz = 0.4, we see that the
number of peaks visible has sharply reduced, primarily due
to the increased spacing in energy between bound states.
In χ (3;2)

xxxx , the peaks along the antidiagonal, as well as their
associated cross-peaks, again originate from the case where
the ground state is the intermediate state |Q〉 = |0〉/four-kink
states, and |P〉 and |R〉 are spinon bound states. On the other
hand, the terahertz rectification (TR) peaks on, and just off,
the ωτ axis originate purely from processes in which the
intermediate state is a two-kink state (see also Fig. 18).

It is important to note that here the discreteness of the
spectrum is not a finite-size effect, as it was in the integrable
FM phase, but rather it has a clear physical origin. Therefore
the NR signals observed in χ (3;1,2)

xxxx are expected to remain even
in the thermodynamic limit. Indeed, the four-kink approxima-
tion results, which well reproduce the ED data, are computed
for much larger system sizes of O(100), suggesting small
finite-size effects. Thus, in this particular case, the appearance
of a finite NR signal is a direct consequence of confinement
converting the spinon continuum into a discrete set of spinon
bound states.

In Fig. 7, we show the full evolution of χ (3;2)
xxxx with increas-

ing longitudinal field, computed both within the four-kink
approximation and ED. The sharp line features of the zero
field case, corresponding to free, deconfined spinon pairs,
quickly decompose into a discrete set of peaks due to the
confining potential. The rephasing signal decomposes into a
grid pattern of discrete peaks, a nonrephasing signal appears
with a similar grid of diagonal and cross peaks, and the tera-
hertz rectification signal along the ωτ axis also decomposes
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FIG. 8. Finite temperature spectra of 1D-TFIM. A comparison
between analytical [(a) and (b)] and numerical (c) results of fi-
nite temperature with L = 500 and L = 16 is displayed. Parameters
J = 0.7 and hx = 0.3 are used for calculation.

into discrete peaks which expand along both directions in
frequency space.

As hz → 0, the partial cancellation of the two processes
responsible for the grid of R peaks becomes exact and, ex-
actly at hz = 0, only the sharp antidiagonal R signal remains.
In addition, the features observed at hz = 0.06, attributed to
domain splitting processes, begin to merge to form an oscil-
lating pattern with alternating signs on the lower left side of
the antidiagonal R line as hz decreases. The precise physical
intuition behind this pattern, which has a clear picture at
large hz in terms of domains, close to the integrable limit still
requires further study. As a result of the oscillating signal, in
the four-kink approximation, the broadening of the R signal
is asymmetric along ωt = −ωτ , in contrast to the symmet-
ric broadening caused by the finite lifetime of the spinon
pairs [25].

V. FINITE TEMPERATURE

Finally, we make use of one of the other advantages of ED
and extend our study to finite temperatures. As in the zero-
temperature case, we first investigate the exactly solvable case
with hz = 0. Figure 8 shows χ (3;2)

xxxx calculated for L = 500 and
L = 16 at a temperature T = 1.43. For this model, one should
note that this particular response function is rather special as
the only change with temperature is in the intensities of the
signals. For L = 500, the overall peak intensity is suppressed
as temperature increases, but the rephasing R signal remains
sharp in the two-dimensional frequency space. For L = 16,
there are twice as many peaks in the signal, which is due to
the fact that at finite temperatures we also have a contribution
from the parity odd sector of the Jordan-Wigner transformed
fermionic Hamiltonian of the TFIM model (see Appendix C
for details). Similar to the zero-temperature case, we also
observe a nonrephasing NR signal due to the finite system
size, and no other additional signal appears. Figure 8(c) shows
ED result for L = 16 at T = 1.43. The quantitative agreement
between the analytical and ED results helps to validate our
method for finite temperature.

FIG. 9. Temperature dependence of T χ (3;2)
xxxx (ωt , ωτ ) of the 1D-

TFIM in a longitudinal field from ED. The parameters are J =
0.7 and hx = 0.3. [(a)–(c)] hz = 0, i.e., exactly solvable case with in-
verse temperature T = 10.0, 1.00, and 0.33, respectively. [(d)–(f)]
hz = 0.06. [(g)–(i)] hz = 0.4.

Next, we investigate the finite-temperature 2DCS in the
presence of the spinon confining potential. The impact on
χ (3;2) is shown in Fig. 9 for the zero, weakly, and strongly con-
fined cases, with the data normalized by β = 1/T so that they
can be plotted with a common color scale. At a sufficiently
low temperature of T = 0.33, which is below the specific heat
peaks for all three cases (see Fig. 15 in Appendix B), the in-
tensities and peak positions are close to the zero-temperature
result. As temperature increases, the signal intensities de-
crease for all values of hz. For the weakly confined case,
hz = 0.06, the discreteness of the low-temperature signal is
smeared out as temperature increases, and the signal becomes
continuous. In particular, at T = 10.0, the spectrum exhibits
qualitative similarities to the hz = 0.00 spectrum found in the
thermodynamic limit, suggesting the impact of confinement
can only be resolved at low temperatures. For hz = 0.4, the
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discreteness of the signal is preserved even at high tempera-
tures. We also observe additional peaks along the line ωt ≈ 1,
which arise from the processes involving transitions between
two-kink states.

VI. DISCUSSION

The calculation of nonlinear dynamical response functions
for a quantum many-body system is a formidable and chal-
lenging task. We explored here, on the one hand, the utility
of using ED to calculate nonlinear susceptibilities in the
1D-TFIM, and, on the other hand, the impact of confine-
ment on the unique signatures of spinon fractionalization in
the model. One of the key advantages of ED, the ability to
simulate to long times without any corresponding increase
in computational complexity, can be used to obtain high-
resolution 2DCS spectra in frequency space. However, the key
disadvantage, the relatively small system sizes available with
ED, generates additional issues with interpreting the spectra
due to potential finite size effects. We have discussed in detail
these issues in the context of the 1D-TFIM and its two dis-
tinctive ground states. In both limits, ED can capture many of
the important qualitative features expected, though care must
be taken in distinguishing whether discrete excitations arise
due to finite-size effects or due to some underlying physical
mechanism. Using this knowledge, we were able to explore
the impact of spinon confinement on the third-order suscep-
tibilities, and, in particular, on the characteristic spinon-echo
rephasing signal. Combining ED in small system sizes with
the four-kink approximation in large system sizes, we were
able to show how even a moderate longitudinal field can
break up the sharp antidiagonal signal and induce a visible
nonrephasing signal.

In terms of experimental relevance, there are a number of
materials whose dominant interactions can be written in the
form of a 1D-TFIM. As an example, in CoNb2O6, the FM
chain of Co2+ ions is considered to be a good realization
of the 1D-TFIM [37,38,41,47]. The dominant magnetic ex-
change interaction is an Ising interaction with an estimated
J =2.48 meV =0.6 THz. The weak interchain interaction
effectively introduces a longitudinal field, and the discrete
spectrum of spinon bound states has been experimentally ob-
served with linear response probes [37,38], including linear
THz spectroscopy [41]. Therefore, with 2DCS, we would
expect some qualitative features of the 2D spectrum computed
here to also be observed in the material. However, it would be
necessary to investigate the effects of additional terms, which
are proposed to be relevant in the material, such as XY and
bond-dependent interactions, in order to gain a quantitative
understanding of the expected experimental spectrum.

An important caveat, relevant for any experimental com-
parison, is that in reality it is the nonlinear magnetization
mα

NL that is measured in experiment, as opposed to the in-
dividual susceptibilities [13]. The nonlinear magnetization
contains contributions from χ (2), χ (3;1), and χ (3;2), as well
as higher order terms. The ratio of the intensities of these
terms is, roughly speaking, determined by the strength of the
THz field; nth order terms are proportional to the nth power
of the THz field. Therefore, if there is a finite χ (2), it will
typically be the dominant contribution to the experimental

FIG. 10. Fourier transform of the nonlinear magnetization mNL

with increasing magnitude of incident THz pulses, B0, Bτ , obtained
by ED. The parameters for the weakly confined case, J = 0.7, hx =
0.3, and hz = 0.06 are used.

signal. Figure 10 shows the Fourier transform of the nonlinear
magnetization mx

NL obtained by ED with different strengths
of the magnetic field pulses. The parameters for the weakly
confined case, J = 0.7, hx = 0.3, hz = 0.06 are used. Up to
B0 = Bτ = 0.01, the visible signal is dominated by the χ (2)

contribution. Only when B0 = Bτ = 0.1 is the visibility of the
third-order contribution comparable to the second-order one,
including the third-order pump-probe and rephasing signals.
Finally, at B0 = Bτ = 1.0, the field pulses can no longer re-
ally be considered as perturbations, and the signal becomes
dominated by the pump-probe response. To give an idea of the
relative strength of the nonlinear signal, for B0 = Bτ = 0.01,
the nonlinear magnetization, mx

NL, is roughly 20 times smaller
than the linear magnetization, mx

0 and mx
τ . As a comparison,

in the experiments of Ref. [13] on the canted antiferromagnet
YFeO3, the measured mx

NL is roughly 50 times smaller than
the linear response.

Looking forward, there are a multitude of nonlinear many-
body phenomena that can be further studied using ED and
complementary analytical insights. For example, in ordered
phases, the 2DCS signatures of nonlinear magnon decay and
lifetime effects, or the interplay between distinct excitation
modes. On the computational front, it would be useful to test
the capabilities of ED in studying 2D spin models. As an
example, there are already known analytical results for the
nonlinear response of the Kitaev honeycomb model [27–29],
which can be used to compare and contrast with ED results
and to diagnose potential finite size effects. Taken together, it
is clear that there is a wide world of exciting physics beyond
the linear response regime still waiting to be explored.

The numerical data shown in the figures are available on
Zenodo [48].
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APPENDIX A: FULL EXPRESSIONS
FOR THE NONLINEAR SUSCEPTIBILITIES

For a multipulse setup of n delta-function pulses, as illus-
trated in Fig. 11, the time-dependent magnetic field can be
written as

B(t ) = B0δ(t ) + Bt1δ(t − t1) + · · ·
+ Btn−1δ(t − t1 − · · · − tn−1), (A1)

with tm the delay time between the pulses at time t1 + · · · +
tm−1 and at time t1 + · · · + tm, e.g., t1 is the delay time between
the pulses at times t = t0 = 0 and t = t1, and t2 is the delay
time between the pulses at times t = t1 and t = t1 + t2. The
general expression for the associated nth order susceptibility
can be written as the equilibrium ground state expectation
value of a nested commutator of n + 1 magnetization oper-
ators [32],

χ
(n)
αβγ ...δ (tn, tn−1, . . . , t1)

= in

2N
〈[[. . . [[Mα (tn + · · · + t1), Mβ (tn−1 + · · · + t1)],

× Mγ (tn−2 + · · · + t1)], . . . ], Mδ (0)]〉, (A2)

where tn is the time between the last pulse and the measure-
ment of the α-component of the magnetization. The induced
magnetization can then be expressed as

mα (tn, . . . , t1) =
n−1∑
m=0

∑
β

χ
(1)
αβ (tm+1 + · · · + tn)Bβ

tm

+ 1

2

n−1∑
m=0

n−1∑
l=0

∑
β,γ

χ
(2)
αβγ (tm+1 + · · · + tn, tl+1

+ · · · + tn)Bβ
tm Bγ

tl + · · · (A3)

1. First-order susceptibility

Assume that we have just a single delta-function magnetic
field pulse at time t = t0 = 0, so that the time-dependent mag-
netic field can be written as

B(t ) = B0δ(t ). (A4)

The first-order, or linear, magnetic susceptibility can be ex-
pressed as(

2N

i

)
χ

(1)
αβ (t1) = 〈[Mα (t1), Mβ (0)]〉

= 〈Mα (t1)Mβ (0)〉 − 〈Mβ (0)Mα (t1)〉
= Rαβ

1 (t1) − [
Rαβ

1 (t1)
]∗

= 2iIm
[
Rαβ

1 (t1)
]
,

⇒ χ
(1)
αβ (t1) = − 1

N
Im

[
Rαβ

1 (t1)
]
, (A5)

where we have defined the function Rαβ

1 (t1) as

Rαβ

1 (t1) = 〈Mα (t1)Mβ (0)〉. (A6)

Note that in the definition of the time-dependent susceptibility,
we have omitted a Heaviside θ -function, θ (t1), which ensures
causality of the response, and will instead include it only later
when we define the Fourier transform.

Defining the matrix element mα
f i = 〈 f | Mα |i〉 =∑

j 〈 f | Sα
j |i〉, and fixing the energy such that E0 = 0,

meaning that all energies are measured relative to the ground
state, we can insert resolutions of the identity and simplify R1

as

Rαβ

1 (t1) = 〈0| eiHt1 Mαe−iHt1 Mβ |0〉
= 〈0| Mαe−iHt1

∑
P

|P〉 〈P| Mβ |0〉

=
∑

P

〈0| Mα |P〉 〈P| Mβ |0〉 e−iEPt1

=
∑

P

mα
0Pmβ

P0e−iEPt1 . (A7)

This allows us to write a simple expression for the first-order
susceptibility in terms of matrix elements of the magnetization
operator times an oscillating sine function,

χ
(1)
αβ (t1) = 1

N

∑
P

mα
0Pmβ

P0 sin (EPt1). (A8)

FIG. 11. The multipulse setup for the discussion in Appendix A is illustrated in (a), while the specific two-pulse setup used in the main
text is shown again in (b).

134443-12



EXPLORING TWO-DIMENSIONAL COHERENT … PHYSICAL REVIEW B 110, 134443 (2024)

Note that, in the above expression, we have explicitly assumed that the relevant product of matrix elements is real. Otherwise,
there would be an additional cosine term times the imaginary part of the product. To simplify the remaining discussion, hereafter,
we explicitly assume all relevant products of matrix elements are real.

Switching from time to frequency space, the Fourier transform of the susceptibility is

χ
(1)
αβ (ω1) =

∫
dt1 θ (t1)χ (1)

αβ (t1) e−iω1t1 . (A9)

Note that here we have now included the Heaviside θ -function to implement the positive time constraint t1 > 0. In order to
take the Fourier transform, we need to make use of the identity

∫
dt θ (t ) e−i(ω−E )t = πδ(ω − E ) − P i

ω−E , with P denoting the
principal value (which, for simplicity, we omit in the following). The real part of the frequency-dependent susceptibility is then
given by

Re[χ (1)
αβ (ω1)] = − 1

2N

∑
P

mα
0Pmβ

P0

[
1

ω1 − EP
− 1

ω1 + EP

]
, (A10)

while the imaginary part is given by

Im
[
χ

(1)
αβ (ω1)

]= − π

2N

∑
P

mα
0Pmβ

P0[δ(ω1 − EP )−δ(ω1 + EP )]. (A11)

The real and imaginary parts are often referred to as the reactive and absorptive (or dissipative) parts respectively. Crucially, the
imaginary part isolates purely the matrix elements of interest, while the real part involves broadening in the form of 1/(ω1 ± EP ).

In the special diagonal case of β = α, we have an even more compact form of the susceptibility as

χ (1)
αα (t1) = 1

N

∑
P

∣∣mα
0P

∣∣2
sin(EPt1). (A12)

2. Second-order susceptibility

Assume now that we have two delta-function magnetic field pulses, at times t = 0 and t = t1, so that the time-dependent
magnetic field can be written as

B(t ) = B0δ(t ) + Bt1δ(t − t1). (A13)

The second-order nonlinear magnetic susceptibility can then be expressed as(
2N

i2

)
χ

(2)
αβγ (t2, t1) =〈[[Mα (t2 + t1), Mβ (t1)], Mγ (0)]〉

=〈Mα (t2 + t1)Mβ (t1)Mγ (0)〉 + 〈Mγ (0)Mβ (t1)Mα (t2 + t1)〉

− 〈Mβ (t1)Mα (t2 + t1)Mγ (0)〉 − 〈Mγ (0)Mα (t2 + t1)Mβ (t1)〉

= Rαβγ

1 (t2, t1) + [
Rαβγ

1 (t2, t1)
]∗ − [

Rαβγ

2 (t2, t1) + [
Rαβγ

2 (t2, t1)
]∗]

= 2Re
[
Rαβγ

1 (t2, t1) − Rαβγ

2 (t2, t1)
]
,

⇒ χ
(2)
αβγ (t2, t1) = − 1

N
Re

[
Rαβγ

1 (t2, t1) − Rαβγ

2 (t2, t1)
]
, (A14)

where t2 is the time between the second pulse, at time t = t1, and the measurement of the α-component of the magnetization.
The Ra functions in this case are defined as

Rαβγ

1 (t2, t1) = 〈Mα (t2 + t1)Mβ (t1)Mγ (0)〉, (A15)

Rαβγ

2 (t2, t1) = 〈Mβ (t1)Mα (t2 + t1)Mγ (0)〉. (A16)

Similar to the first-order case, we can, by inserting resolutions of the identity, alternatively write these as

Rαβγ

1 (t2, t1) =
∑
PQ

mα
0Qmβ

QPmγ

P0e−iEPt1 e−iEQt2 , (A17)

Rαβγ

2 (t2, t1) =
∑
PQ

mβ

0Qmα
QPmγ

P0e−iEPt1 e−i(EP−EQ )t2 . (A18)
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FIG. 12. Graphical representation of Rαβγ

2 (t2, t1) for the second-order magnetic susceptibility. In (a)–(f), the individual steps in building up
the final diagram are shown.

These Ra processes can be neatly summarized in graphical form using Liouville pathways and double-sided Feynman diagrams
[32]. Such diagrams are commonly used in the field of nonlinear optics, and are based on a density-matrix description of the
response. This allows for a compact visual representation that includes both emission and absorption, as well as keeping track
of the wave vector of the pulses. In Fig. 12, we illustrate the individual steps in constructing a slightly alternate form of such a
diagram, which focuses on the Heisenberg representation of the magnetization operators appearing in the dynamical correlation
functions of interest for the magnetic susceptibilities. In Fig. 13, the resulting diagrams for both the first- and second-order
susceptibility are shown. They are almost identical to the diagrams shown in Ref. [28] but with bras and kets reversed.

Now, defining the energy difference �EPQ = EP − EQ, the second-order susceptibility can be written (again, assuming the
relevant matrix elements are real) in the time domain as

χ
(2)
αβγ (t2, t1) = − 1

N

∑
PQ

[
mα

0Qmβ
QPmγ

P0 cos
(
EPt1 + EQt2

) − mβ

0Qmα
QPmγ

P0 cos
(
EPt1 + �EPQt2

)]
. (A19)

To convert to frequency space, we need to Fourier transform the above second-order susceptibility, taking into account the
positive time constraints t2 > 0, t1 > 0,

χ
(2)
αβγ (ω2, ω1) =

∫
dt2

∫
dt1 θ (t2)θ (t1)χ (2)

αβγ (t2, t1) e−iω2t2 e−iω1t1 . (A20)

Again, making use of the fact that
∫

dt θ (t ) e−i(ω−E )t = πδ(ω − E ) − P i
ω−E , we can separate out the real and imaginary parts

of the frequency-dependent second-order susceptibility, with the real part given by

Re
[
χ

(2)
αβγ (ω2, ω1)

] = − 1

2N

∑
PQ

(
mα

0Qmβ
QPmγ

P0

[
π2δ(ω1 − EP )δ(ω2 − EQ) − 1

ω1 − EP

1

ω2 − EQ
+ (E → −E )

]

−mβ

0Qmα
QPmγ

P0

[
π2δ(ω1 − EP )δ(ω2 − �EPQ) − 1

ω1 − EP

1

ω2 − �EPQ
+ (E → −E )

])
. (A21)

FIG. 13. Double-sided diagrams for the Ra processes contributing to (a) the linear susceptibility and (b) the second-order susceptibility.
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and the imaginary part by

Im
[
χ

(2)
αβγ (ω2, ω1)

] = π

2N

∑
PQ

(
mα

0Qmβ
QPmγ

P0

[
δ(ω1 − EP )

ω2 − �EPQ
+ δ(ω2 − �EPQ)

ω1 − EP
+ (E → −E )

]

−mβ

0Qmα
QPmγ

P0

[
δ(ω1 − EP )

ω2 − �EPQ
+ δ(ω2 − �EPQ)

ω1 − EP
+ (E → −E )

])
. (A22)

Unlike the first-order case, here both the real and imaginary parts pick up unwanted broadening factors of the form 1/(ω ± E ).
This means that neither signal isolates the matrix element peaks themselves, contaminating any easy interpretation. As discussed
in the main text, this situation, often referred to as “phase twisting” [16,25,26,33], arises due to the positive time constraint
t2 > 0, t1 > 0 used in the Fourier transform. This can be more clearly observed by focusing on just the time-dependent parts of
the calculation∫

dt2

∫
dt1 θ (t2)θ (t1) e−i(ω2−E2 )t2 e−i(ω1−E1 )t1 =

(
πδ(ω1 − E1) − i

ω1 − E1

)(
πδ(ω2 − E2) − i

ω2 − E2

)
,

=
[
π2δ(ω1 − E1)δ(ω2 − E2) − 1

ω1 − E1

1

ω2 − E2

]

− iπ

[
δ(ω1 − E1)

ω2 − E2
+ δ(ω2 − E2)

ω1 − E1

]
, (A23)

where we see that both real and imaginary parts include unwanted broadening factors. As discussed in the main text, and further
in Appendix D, this issue can be avoided by relaxing the constraint to include strict positivity on only one of the time arguments,
say t2. In that case, the resulting real part will only involve pure matrix element contributions

Re
[
χ

(2)
αβγ (ω2, ω1)

] = Re

[∫
dt2

∫
dt1 θ (t2)χ (2)

αβγ (t2, t1) e−iω2t2 e−iω1t1

]

= − π

N

∑
PQ

[
mα

0Qmβ
QPmγ

P0δ(ω1 − EP )δ(ω2 − EQ) − mβ

0Qmα
QPmγ

P0δ(ω1 − EP )δ(ω2 − �EPQ) + (E → −E )
]
.

(A24)

Finally, we note again that, in the special case of γ = β = α, the second-order susceptibility, in the time domain, can be
simplified by taking out common matrix element factors as

χ (2)
ααα (t2, t1) = − 1

N

∑
PQ

mα
0Qmα

QPmα
P0

[
cos

(
EPt1 + EQt2

) − cos
(
EPt1 + �EPQt2

)]
. (A25)

3. Third-order susceptibility

Assume now that we have three delta-function magnetic field pulses, at times t = 0, t = t1 and t = t2, so that the time-
dependent magnetic field can now be written as

B(t ) = B0δ(t ) + Bt1δ(t − t1) + +Bt2δ(t − t1 − t2). (A26)

The resulting third-order nonlinear magnetic susceptibility is(
2N

i3

)
χ

(3)
αβγ δ (t3, t2, t1) = 〈[[[Mα (t3 + t2 + t1), Mβ (t2 + t1)], Mγ (t1)], Mδ (0)]〉

= 〈Mγ (t1)Mβ (t2 + t1)Mα (t3 + t2 + t1)Mδ (0)〉 − 〈Mδ (0)Mα (t3 + t2 + t1)Mβ (t2 + t1)Mγ (t1)〉
+ 〈Mδ (0)Mβ (t2 + t1)Mα (t3 + t2 + t1)Mγ (t1)〉 − 〈Mγ (t1)Mα (t3 + t2 + t1)Mβ (t2 + t1)Mδ (0)〉
+ 〈Mδ (0)Mγ (t1)Mα (t3 + t2 + t1)Mβ (t2 + t1)〉 − 〈Mβ (t2 + t1)Mα (t3 + t2 + t1)Mγ (t1)Mδ (0)〉
+ 〈Mα (t3 + t2 + t1)Mβ (t2 + t1)Mγ (t1)Mδ (0)〉 − 〈Mδ (0)Mγ (t1)Mβ (t2 + t1)Mα (t3 + t2 + t1)〉

= Rαβγ δ

1 (t3, t2, t1) − [
Rαβγ δ

1 (t3, t2, t1)
]∗ + Rαβγ δ

2 (t3t2, t1) − [
Rαβγ δ

2 (t3, t2, t1)
]∗

+ Rαβγ δ

3 (t3, t2, t1) − [
Rαβγ δ

3 (t3, t2, t1)
]∗ + Rαβγ δ

4 (t3t2, t1) − [
Rαβγ δ

4 (t3, t2, t1)
]∗

= 2iIm
[
Rαβγ δ

1 (t3, t2, t1) + Rαβγ δ

2 (t3, t2, t1) + Rαβγ δ

3 (t3, t2, t1) + Rαβγ δ

4 (t3, t2, t1)
]
,

⇒ χ
(3)
αβγ δ (t3, t2, t1) = 1

N
Im

[
Rαβγ δ

1 (t3, t2, t1) + Rαβγ δ

2 (t3, t2, t1) + Rαβγ δ

3 (t3, t2, t1) + Rαβγ δ

4 (t3, t2, t1)
]
, (A27)
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FIG. 14. Double-sided diagrams for the four distinct Ra processes that contribute to the third-order susceptibility.

with t3 the time between the second pulse, at t = t2 + t1, and the measurement of the α component of the magnetization. In this
case, the Ra are defined as

Rαβγ δ

1 (t3, t2, t1) = 〈Mγ (t1)Mβ (t2 + t1)Mα (t3 + t2 + t1)Mδ (0)〉, (A28)

Rαβγ δ

2 (t3, t2, t1) = 〈Mδ (0)Mβ (t2 + t1)Mα (t3 + t2 + t1)Mγ (t1)〉, (A29)

Rαβγ δ

3 (t3, t2, t1) = 〈Mδ (0)Mγ (t1)Mα (t3 + t2 + t1)Mβ (t2 + t1)〉, (A30)

Rαβγ δ

4 (t3, t2, t1) = 〈Mα (t3 + t2 + t1)Mβ (t2 + t1)Mγ (t1)Mδ (0)〉. (A31)

Again, as before, we can express these in terms of magnetization matrix elements and time-dependent phase factors as

Rαβγ δ

1 (t3, t2, t1) =
∑
PQR

mγ

0Rmβ
RQmα

QPmδ
P0e−iEPt1 e−i�EPRt2 e−i�EPQt3 , (A32)

Rαβγ δ

2 (t3, t2, t1) =
∑
PQR

mδ
0Rmβ

RQmα
QPmγ

P0e+iERt1 e−i�EPRt2 e−i�EPQt3 , (A33)

Rαβγ δ

3 (t3, t2, t1) =
∑
PQR

mδ
0Rmγ

RQmα
QPmβ

P0e+iERt1 e+iEQt2 e−i�EPQt3 , (A34)

Rαβγ δ

4 (t3, t2, t1) =
∑
PQR

mα
0Rmβ

RQmγ

QPmδ
P0e−iEPt1 e−iEQt2 e−iERt3 . (A35)

The corresponding diagrams for these four Ra processes are shown in Fig. 14. This allows us to rewrite the susceptibility in the
time domain as

χ
(3)
αβγ δ (t3, t2, t1) = − 1

N

∑
PQR

[
mγ

0Rmβ
RQmα

QPmδ
P0 sin(EPt1 + �EPRt2 + �EPQt3)

+ mδ
0Rmβ

RQmα
QPmγ

P0 sin(−ERt1 + �EPRt2 + �EPQt3) + mδ
0Rmγ

RQmα
QPmβ

P0 sin(−ERt1 − EQt2 + �EPQt3)

+mα
0Rmβ

RQmγ
QPmδ

P0 sin
(
EPt1 + EQt2 + ERt3

)]
. (A36)

Again, in the general case in which the relevant products of matrix elements above have both real and imaginary parts, there
would also be cosine factors present proportional to the imaginary parts of the products. Note that, for |Q〉 = |0〉, the matrix
elements reduce to a product of linear response matrix elements, e.g., in the first term, we would get [mγ

0Rmβ

R0][mα
0Pmδ

P0], which
are precisely the matrix elements that appear in χ

(1)
γ β and χ

(1)
αδ . The case |Q〉 = |0〉 thus contains similar information as the

linear response (it is in a sense “linear response squared”). Switching to the frequency domain now involves a three-dimensional
Fourier transform over t1, t2, and t3,

χ
(3)
αβγ δ (ω3, ω2, ω1) =

∫
dt3

∫
dt2

∫
dt1 θ (t3)θ (t2)θ (t1)χ (3)

αβγ δ (t3, t2, t1) e−iω3t3 e−iω2t2 e−iω1t1 . (A37)

We will not write the full expressions here for the real and imaginary parts of χ
(3)
αβγ δ (ω3, ω2, ω1). However, their structure

can be straightforwardly gleaned from the discussion of the second-order susceptibility. For the third-order case, the real
part will involve contributions of the form [δ(ω1 − E1)δ(ω2 − E2)]/(ω3 − E3) and 1/[(ω1 − E1)(ω2 − E2)(ω3 − E3)], while the
imaginary part will involve contributions of the form δ(ω1 − E1)δ(ω2 − E2)δ(ω3 − E3) and δ(ω1 − E1)/[(ω2 − E2)(ω3 − E3)].
Once again, as expected for the nonlinear susceptibilities, both parts are contaminated by broadening factors. In order to eliminate
such broadening, the positive time constraint needs again to be relaxed, to include strict positivity for only one of the three time
arguments. This is illustrated explicitly in Appendix D for the two-pulse case, with the clean broadening-free signal shown in
Fig. 16.
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In the case of 2DCS, only two pulses are used and so this results in two distinct third-order susceptibilities, defined as χ (3;1)

for t1 = 0 and χ (3;2) for t2 = 0. This results in the following relationships between the associated Ra processes:

χ
(3;1)
αβγ γ (t3, t2, 0) : Rαβγ γ

1 (t3, t2, 0) = Rαβγ γ

2 (t3, t2, 0), (A38)

χ
(3;2)
αββδ (t3, 0, t1) : Rαββδ

2 (t3, 0, t1) = Rαββδ

3 (t3, 0, t1). (A39)

In the special case of a diagonal susceptibility χ (3;1,2)
αααα as, for example, studied in the main text, we have simply R1 = R2 for the

χ (3;1) case, and R2 = R3 for the χ (3;2) case.
Using τ and t as the time delay between the two pulses and the measurement time respectively, this leads to the following

expression for χ (3;1) in the time domain:

χ
(3;1)
αβγ δ (t, τ, 0) = − 1

N

∑
PQR

[
mγ

0Rmβ
RQmα

QPmδ
P0 sin(�EPRτ + �EPQt ) + mδ

0Rmβ
RQmα

QPmγ

P0 sin(�EPRτ + �EPQt )

+mδ
0Rmγ

RQmα
QPmβ

P0 sin(−EQτ + �EPQt ) + mα
0Rmβ

RQmγ
QPmδ

P0 sin(EQτ + ERt )
]
.

For |Q〉 = |0〉, and thus EQ = 0, the final two terms in χ (3;1) take the form of PP signals. This is also the case for the first two
terms if, in addition, |P〉 = |R〉. On the other hand, χ (3;2) in the time domain is written as

χ
(3;2)
αβγ δ (t, 0, τ ) = − 1

N

∑
PQR

[
mγ

0Rmβ
RQmα

QPmδ
P0 sin(EPτ + �EPQt ) + mδ

0Rmβ
RQmα

QPmγ

P0 sin(−ERτ + �EPQt )

+mδ
0Rmγ

RQmα
QPmβ

P0 sin(−ERτ + �EPQt ) + mα
0Rmβ

RQmγ

QPmδ
P0 sin (EPτ + ERt )

]
.

For |Q〉 = |0〉, and thus EQ = 0, the first term in χ (3;2) will
take the form of a diagonal NR signal. In addition, the final
term takes the form of diagonal (P = R) and off-diagonal
(P 
= R) NR signals, and the second and third terms diag-
onal (P = R) and off-diagonal (P 
= R) R signals. It should
be noted that whether such signals are observed in the final
susceptibility of course depends on the corresponding matrix
elements being finite and the different terms in the sum over
intermediate states combining constructively (as, in many
cases, cancellations can occur which suppress certain signals).
In any case, the above |Q〉 = |0〉 considerations illustrate that
it is rather natural to observe PP signals in χ (3;1) and NR and
R signals in χ (3;2).

4. nth-order susceptibility

At nth order, the general expression for the susceptibility
in the time domain is

χ
(n)
αβγ ...δ (tn, tn−1, . . . , t1)

= in

2N
〈[[. . . [[Mα (tn + · · · + t1), Mβ (tn−1 + · · · + t1)],

× Mγ (tn−2 + · · · + t1)], . . . ], Mδ (0)]〉. (A40)

Thus, at nth order, there will be 2n terms total, giving 2n−1

unique Ra contributions. For n even, χ (n) will be written as
the real part of the sum of Ra processes, χ (n) ∝ Re[R1 +
· · · + R2n−1 ], and in frequency space the real part will be of
central interest if both positive and negative time arguments
are considered. On the other hand, for n odd, χ (n) ∝ Im[R1 +
· · · + R2n−1 ], and in frequency space the imaginary part will be
of central interest if both positive and negative time arguments
are considered.

APPENDIX B: PREPARATION OF THE THERMAL STATE

The thermal state |φ〉, which is used to calculate specific
heat and 2DCS, is obtained by the imaginary time evolution of

the initial state |φ0〉. Instead of computing |φ〉 directly, we first
compute eβ(l−H )/2 |φ0〉, where l is set to larger than the largest
eigenvalue of H . The expansion of the exponential operator is
given by

eβ(l−H )/2 |φ0〉 =
∞∑

k=0

(β/2)k

k!
(l − H )k |φ0〉 =

∞∑
k=0

(β/2)k

k!
|k〉 ,

(B1)

It is known that the relevant terms in the sum is local-
ized in the range |k∗ − k| = o(L), where the temperature
of normalized microcanonical thermal pure quantum state
|φk∗ 〉 = |k∗〉 /‖ |k∗〉 ‖ is close to 1/β [35,36]. We choose the
number of iterations as kmax = 2000, which is sufficiently
large for the temperature range we are interested in in this
study. Then, multiplying scalar e−βl/2 to this state gives |φ〉.
Similarly to the linear response [49], we calculate the nonlin-
ear susceptibility from the time evolution of |φ〉.

FIG. 15. Specific heat cV of 1D-TFIM in the longitudinal field
from ED with L = 16. The parameters J = 0.7, hx = 0.3, and sev-
eral values of hz are considered.
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FIG. 16. Phase untwisted 2DCS obtained by including negative
τ in the calculation. The parameters J = 0.7, hx = 0.3, hz = 0.06,
and the system size L = 500 (a) and 24 (b) are used.

Figure 15 shows the calculated specific heat cV with dif-
ferent values of hz. The temperatures used for the finite
temperature 2DCS are chosen to cover the different temper-
ature regimes separated by the peaks of cV .

APPENDIX C: ZERO/FINITE TEMPERATURE
2DCS IN TFIM

Here, we provide a 2DCS in TFIM based on Ref. [19]. With
the Jordan-Wigner transformation,

σ x
i = 2c†

i ci − 1,

σ z
i = (c†

i + ci ) exp

⎛
⎝iπ

i−1∑
j=1

c†
j c j

⎞
⎠, (C1)

the Hamiltonian reads

Hp = −J
L−1∑
i=1

(c†
i − ci )(c

†
i+1 + ci+1)

+ (−1)pJ (c†
L − cL )(c†

1 + c1) − hx

L∑
i=1

(2ni − 1), (C2)

where p is the parity of the number of fermions. Among 2L

Fock states of each fermionic Hamiltonian, only 2L−1 states
with the same parity as p are correct states of the spin Hamil-
tonian with the periodic boundary condition. The ground state
is known to lie in the parity even sector, therefore the contri-
bution from parity odd sector becomes finite only at the finite

temperature 2DCS. We introduce the momentum represen-
tation of the fermionic operators as c j = (1/

√
L)

∑
k eik jck ,

where k = ±(2n − 1)π/L with n = 1, . . . , L/2 for parity
even sector, and k satisfies k = 2πn/L with n = −L/2 +
1, . . . , 0, . . . , L/2 for parity odd sector. Next, we introduce
a pair Hamiltonian with momentums k and −k as

Hk = (c†
k , c−k )

(
εk i�k

−i�k −εk

)(
ck

c†
−k

)
, (C3)

where εk = −2J cos k − 2hx and �k = −2J sin k, and a
Hamiltonian for k = 0 and k = π of the parity odd sector as

Hk=0, π = −2J (n0 − nπ ) − 2hx(n0 + nπ − 1). (C4)

Now, we can rewrite the Hamiltonian of the even sector as

H0 =
∑
k>0

Hk (C5)

and the Hamiltonian of the odd sector as

H1 =
∑

0<k<π

Hk + Hk=0, π . (C6)

Performing the Bogoliubov transformation:(
ck

c†
−k

)
=

(
cos θk

2 −i sin θk
2

−i sin θk
2 cos θk

2

)(
γk

γ
†
−k

)
, (C7)

where tan θk = �k/εk , we obtain the diagonalized Hamilto-
nian

Hk = λk (γ †
k γk − γ−kγ

†
−k ), (C8)

where λk =
√

ε2
k + �2

k .
Using the Anderson pseudospins:

τ x
k = γ−kγk + γ

†
k γ

†
−k,

τ
y
k = i(γ−kγk − γ

†
k γ

†
−k ), (C9)

τ z
k = γ

†
k γk − γ−kγ

†
−k,

magnetization Mx is given by

Mx = 1

2

L∑
i=1

σ x
i

=
∑

0<k<π

(
cos θkτ

z
k + sin θkτ

y
k

)
,

≡
∑

0<k<π

mx
k, (C10)

Note that we drop the contribution from k = 0 and k = π in
the odd sector, which is a constant of the motion and does
not contribute to the 2DCS. In the Heisenberg picture, mx

k
becomes

mx
k (t ) = cos θkτ

z
k + sin θk

(
τ

y
k cos(2λkt ) + τ x

k sin(2λkt )
)
.

(C11)
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Using the fact that each mx
k commutes with each other, the

third-order response is given by

χ (3)
xxxx(t3, t2, t1) = 1

L

∑
0<k<π

〈[[[
mx

k (t3 + t2 + t1), mx
k (t2 + t1)

]
,

× mx
k (t1)

]
, mx

k (0)
]〉

= 1

L

∑
0<k<π

[
A(1)

k + A(2)
k + A(3)

k + A(4)
k

]
, (C12)

where

A(1)
k = 8 sin2 θk cos2 θk sin(2λk (t3 + t2 + t1))

〈
τ z

k

〉
,

A(2)
k = −8 sin2 θk cos2 θk sin(2λk (t2 + t1))

〈
τ z

k

〉
,

A(3)
k = 4 sin4 θk sin(2λk (t3 + t1))

〈
τ z

k

〉
,

A(4)
k = 4 sin4 θk sin(2λk (t3 − t1))

〈
τ z

k

〉
, (C13)

Here we utilized the fact that 〈τ x
k 〉 = 〈τ y

k 〉 = 0. Zero temper-
ature limit Eq. (12) is obtained by 〈τ z

k 〉 = −1, and consider
the even sector only, i.e., we take a sum for k = (2n − 1)π/L
with n = 1, . . . , L/2.

Finite temperature 2DCS is obtained by taking the thermal
average of 〈τ z

k 〉. The distribution function is given by

Z = Tr(e−βHspin ) =
∑

p

Tr(Ppe−βHp ) ≡
∑

p

Zp, (C14)

where Pp is the projection operator to the parity p sector
defined as

Pp = 1
2 (1 + (−1)pe−iπN ). (C15)

Z0 can be computed as

Z0 = e−βE0

2

[∏
k

(1 + e−βλk ) +
∏

k

(1 − e−βλk )

]
, (C16)

where E0 = −∑
k>0 λk is the ground state energy of the parity

even sector, and the product over k runs the entire Brillouin
zone. Similarly, Z1 can be computed as

Z1 = e−βE1

2

[∏
k

(1 + e−βλk ) −
∏

k

(1 − e−βλk )

]
, (C17)

where E1 = −∑
0<k<π λk + 2hx is the energy of the state ob-

tained by annihilating the k = 0 fermion from the odd-sector
ground state. For k = 0 and π, we take λ0 = −2J − 2hx and
λπ = 2J − 2hx, respectively. Finally, we obtain

〈
τ z

k

〉 = −Zp;k̄ (1 − e−2βλk )

Z0 + Z1
, (C18)

where p is the parity that is consistent with k, and Zp;k̄ is
obtained by omitting the contribution from ±k in the product
over k.

APPENDIX D: PHASE UNTWISTED 2DCS

In the main text, we discussed how the positive time con-
straint leads to a distorted signal known as phase twisting,
which can even eliminate the NR signal at ωt = ωτ . We
demonstrate that this issue can be resolved by incorporating

negative τ values, which is feasible in analytical calculations
and ED simulations. Figure 16 presents the 2DCS results
obtained by including negative τ . It is noteworthy that even
for a substantially large system size (L = 500), the NR signal
is observable. Furthermore, the data for L = 24 now appears
as a discretized version of the L = 500 data. It is important to
note that NR and R signals are not symmetric, as predicted
by Eq. (12). Therefore phase untwisting cannot be simply
achieved by symmetrizing the experimental data around about
ωτ [25].

APPENDIX E: FOUR-KINK APPROXIMATION

Here, we provide the detailed calculation of 2DCS us-
ing four-kink approximation. First, we consider the two-kink
approximation. Two-kink model can be solved analyti-
caly, and it is sufficient to describe the linear response
and the second-order response [22,37,44]. Next we discuss
the necessity of the four-kink space to properly calcu-
late third-order response, and then introduce the four-kink
approximation.

As a first step, we approximate the ground state of the
TFIM as a fully polarized FM state, |0〉 = |↑↑ · · · ↑〉. Then
two-kink states can be expressed using two quantum num-
bers j and l , where j is the position of the first kink
and l is the distance between the two kinks, i.e., | j, l〉 ≡
|· · · ↑↑↓ j · · · ↓( j+l−1)↑↑ · · ·〉. The projection to the sub-
space spanned by | j, l〉 gives TK Hamiltonian which acts
as:

HTK | j, l〉 = (4J + 2lhz ) | j, l〉 − hx(| j, l + 1〉 + | j, l − 1〉
+ | j + 1, l − 1〉 + | j − 1, l + 1〉), (E1)

here we carefully omit the coupling between the two-kink sec-
tor and the ground state, i.e., the number of kinks is conserved.
Kink number conservation can be justified for short times, as
long as the system in the deep inside the FM phase [45,46].
The coupling with the two-kink sector and the ground state is
given by the external pulse field Mx acting as

Mx |0〉 = 1

2

∑
j

| j, 1〉 . (E2)

Then, using HTK for the time evolution, we can calculate
2DCS following the same procedure as described in the main
text.

Comparing the results from the two-kink approximation
and ED (Fig. 17), while they agree on most of the key qualita-
tive features, there are significant quantitative differences. The
two-kink approximation tends to overestimate the intensities
compared to the ED data. This is particularly evident in the
R and NR signals in χ (3;2)

xxxx . As discussed in the main text,
this discrepancy arises because the two-kink approximation
fails to fully account for the pole cancellations, which occur
between the processes where the intermediate state |Q〉 is a
four-kink state and the ground state.

Next, we introduce the four-kink basis | j1, l1, j2, l2〉 =
|↑↑↓ j1 · · · ↓( j1+l1−1)↑↑↓ j2 · · · ↓( j2+l2−1)↑↑ · · ·〉. The action
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FIG. 17. 2DCS in the four-kink approximation for the TFIM
obtained by (a) ED, (b) two-kink approximation, and (c) four-kink
approximation. The parameters J = 0.7, hx = 0.3, and hz = 0.06
are used. For two-kink approximation, the results are scaled by a
factor of 0.25 for better visualization.

of the four-kink Hamiltonian is given by

HFK | j1, l1, j2, l2〉
= [8J + 2(l1 + l2)hz] | j1, l1, j2, l2〉

− hx(| j1, l1 + 1, j2, l2〉 + | j1, l1 − 1, j2, l2〉

+ | j1 + 1, l1 − 1, j2, l2〉 + | j1 − 1, l1 + 1, j2, l2〉
+ | j1, l1, j2, l2 + 1〉 + | j1, l1, j2, l2 − 1〉
+ | j1, l1, j2 + 1, l2 − 1〉 + | j1, l1, j2 − 1, l2 + 1〉).

(E3)

Again, we omit the coupling between the four-kink sector and
the two-kink sector.

There are two possible ways to create a four-kink state
from a two-kink state using the external pulse field Mx: either
by creating another pair of kinks at a different position or by
splitting the existing domain into two. Therefore the action of
Mx on two-kink states is given by

Mx | j, l〉 = 1

2

∑
j′

| j, l, j′, 1〉

+ 1

2

∑
j′

| j, j′ − j, j′ + 1, l − j′ + j − 1〉 ,

+ (two-kink states)

+ (ground state), (E4)

where j′ should be properly chosen to ensure the resulting
state is a four-kink state. Note that, in addition to the transition
to the four-kink sector, Mx acting on a two-kink state can also
result in a transition to either the two-kink sector or the ground
state, depending on the length of the domain.

FIG. 18. Structure of χ (3;2)
xxxx in lower quadrant. [(a)–(d)] Relevant double-sided Feynman diagrams. Below each diagram, the resulting signal

location is indicated. (a) Terahertz rectification (TR) peaks originate from R2 = R3 processes, in which all intermediate states are two-kink
states. The grid of peaks at (Em, −En) results from processes where the intermediate state |Q〉 is either the ground state (b) or a four-kink
state (d). In (c), the intermediate four-kink state is created by splitting the existing domain, whereas in (d), the intermediate four-kink state is
created by adding a new domain at a different location. Note that for the four-kink states, both spinon bound pairs carry equal and opposite
momentum, forming a continuum of excitations. For simplicity, in all diagrams above, only the lowest energy state in which both spinon-bound
pairs have zero momentum is shown. (e) The fourth quadrant of χ (3;2)

xxxx obtained from the four-kink calculation. The data are phase-untwisted
for better visualization. The parameters J = 0.7, hx = 0.3, and hz = 0.1 are used. The contributions from (b) and (d) partially cancel each
other out, leaving the remaining signal visible at (Em, −En). The contribution from (c) is visible at (E1 − [En − En−2],−En). As an example,
the contribution from the domain splitting process with single/two spin flips is indicated by green/pink colors. See Appendix E for a more
detailed discussion. A selection of the TR peaks, originating from the process shown in (a), are also highlighted.
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Once the decoupled two/four-kink Hamiltonian is con-
structed, we can again calculate the 2DCS using the same
procedure as in the main text. As shown in Fig. 17, the four-
kink approximation provides qualitatively better agreement
with the ED data than the two-kink approximation. Specifi-
cally, there are no extensive poles remaining in the four-kink
approximation, since the cancellation of poles between pro-
cesses with an intermediate ground state and intermediate
four-kink state is taken care of.

Note that by utilizing the translational invariance of the
Hamiltonian, we can reduce the relevant quantum numbers
from four to three. Therefore the dimension of the Hilbert
space grows as O(L3), which is still manageable for system
sizes up to L ∼ O(100).

APPENDIX F: DOMAIN SPLITTING PROCESSES
AND TERAHERTZ RECTIFICATION SIGNALS

Here we complement the discussion in the main text of the
rephasing signals by looking at the full set of signals in the
ωt > 0, ωτ < 0 quadrant. In particular, the phase untwisted
version of the signals, presented in Fig. 18, provides a much
cleaner and more insightful viewpoint on the structure of the
2DCS signal.

The terahertz rectification signal originates purely from
two-kink processes, as illustrated in Fig. 18(a). The first pulse
creates a bound state with energy En, and the second pulse
changes this to a bound state with energy Ep, while also
creating a bound state with energy Em with the opposite fre-
quency. This R2 = R3 process generates peaks at (ωt , ωτ ) =
(Em − Ep,−En).

As discussed in the main text, the grid of discrete peaks
at (Em,−En) has two distinct contributions, the R2 = R3 pro-
cess with the intermediate state |Q〉 being the ground state
[Fig. 18(b)], and the R1 contribution from the process where
a new domain is created at a different location [Fig. 18(d)]. In
the latter case, the four-kink states form a continuum, as only
their total momentum is fixed, which leads to the continuous
negative features appearing to the right of each (Em,−En)
peak.

A single spin flip can create a four-kink (or two domain)
state from a two-kink (or one domain) state with a domain
length of l = n. For n � 3, this can occur by splitting the
existing domain into two. Depending on how many spins are
flipped and which ones, several two-domain configurations
are possible. For example, from a domain of length l = 5,
we can create two l1/2 = 2 domains or a pair of l1 = 1 and
l2 = 3 domains by flipping a single spin. The four-kink state
with l1 = 1 and l2 = n − 2 generally have the lowest energy
among possible configurations with l1 + l2 = n − 1. The con-
tribution from such a domain splitting process appears at
(E1 − [En − En−2],−En) in the case of a single spin flip, as
indicated by the extended green arrows in Fig. 18(e). Just as in
the process involving adding a second domain, the four-kink
state created by the domain splitting process form a contin-
uum. Since each state in the continuum has a higher energy
than E1 + En−2, the continuum appears to the right side of
(E1 − [En − En−2,−En). As the spacing En − En−2 decreases
with increasing n, the signal from the domain splitting process
becomes squeezed closer to (E1,−En) for larger n.

FIG. 19. Separate calculation of each Ra using ED [(a), (b)], the
two-kink approximation (c), and the four-kink approximation (d).
When t1 = τ , t2 = 0, and t3 = t , R2 = R3 applies. Parameters used
are J = 0.7 and hx = 0.3.

For n � 4, a four-kink state can also be created by flipping
two neighboring spins to split the domain into two. The lowest
energy is again given by the configuration with l1 = 1 and
l2 = n − 3 domains, resulting in a continuous signal starting
from (E1 − [En − En−3],−En). In Fig. 18(e), this signal gives
rise to positive poles, indicated by the extended pink arrows.
It is also possible to create four-kink states by flipping more
and more spins, requiring a larger and larger domain size,
which produces a sign-alternating sequence of continuous line
features in the 2DCS, with the sign depending on the parity of
the number of spin flips.

APPENDIX G: SEPARATE CALCULATION OF EACH Ra

In the main text, we numerically apply a magnetic field in
a manner similar to the MPS study in Ref. [21]. Alternatively,
we can directly calculate the imaginary part of Ra using ED,
which is more similar to the technique used in Ref. [22].
Even though each Ra is not accessible by experiment, it can
be useful to understand which processes contribute to each
signal. Here we provide an example in Fig. 19 where we
calculate the imaginary part of each Ra using ED and the
two/four-kink approximation.
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Figure 19(a) shows the case of hz = 0.0, i.e., the exactly
solvable case. In addition to the peaks in χ (3;2)

xxxx , we observe
additional signals along the ωt = 0 and ωτ = 0 axes. These
exist due to the finite value of mx

00, which arises from the finite
value of hx. However, these contributions cancel each other
out, giving zero intensity once the sum of Ra is taken. Another
feature is that, in addition to the antidiagonal rephasing signal,
we find off-diagonal rephasing signals of opposite sign in R1

and R2 = R3. The former comes from the process where the
intermediate state |Q〉 is a ground state [Fig. 18(b)], while the
latter comes from the process where |Q〉 is a four-kink state
[Fig. 18(d)]. The noninteracting nature of the two pairs of
kinks makes the complete cancellation of R1 and 2R2 possible.
An exception is when k1 = k2, in which case the creation of
the second pair of kinks is forbidden due to the fermionic
statistics of the spinons, which explains the absence of peaks
at ωt = −ωτ in R1. After taking the sum of R1 + 2R2 + R4, we

recover the correct signal, without the off-diagonal rephasing
signals.

As discussed in the main text, for finite hz, the spinons
interact with each other, leading to a partial cancellation of
off-diagonal peaks between R1 and R2 [Fig. 19(b)]. In the
two-kink approximation [Fig. 19(c)], we do not observe any
rephasing signals in R1, confirming that the rephasing signal
in R1 originates from processes where the intermediate state
|Q〉 is a four-kink state. It is important to note that each Ra

contains extensive terms, which results in the signal strength
of the two-/four-kink approximation calculated for L = 100
being much stronger than the ED data for L = 24. If the
signal cancellation occurs properly, the sum of Ra should be
independent of the system size, which is not the case for
the two-kink approximation. Additionally, since mx

00 is zero
in the two-/four-kink approximation, we do not observe the
additional signals along the ωτ = 0 axis.
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