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Semimetals, in which conduction and valence bands touch but do not form Fermi surfaces, have attracted
considerable interest for their anomalous properties starting with the discovery of Dirac matter in graphene
and other two-dimensional honeycomb materials. Here we introduce a family of three-dimensional honeycomb
systems whose electronic band structures exhibit a variety of topological semimetals with Dirac nodal lines.
We show that these nodal lines appear in varying numbers and mutual geometries, depending on the underlying
lattice structure. They are stabilized, in most cases, by a combination of time-reversal and inversion symmetries
and are accompanied by topologically protected “drumhead” surface states. In the bulk, these nodal line systems
exhibit Landau level quantization and flat bands upon applying a magnetic field. In the presence of spin-orbit
coupling, these topological semimetals are found to generically form (strong) topological insulators. This
comprehensive classification of the electronic band structures of three-dimensional honeycomb systems might

serve as guidance for future material synthesis.
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I. INTRODUCTION

In Fermi liquid theory, conventional metals are described
by the physics in the vicinity of their Fermi surface. A defining
characteristic of a Fermi surface is its codimension of one,
which enters, for instance, directly in thermodynamic signa-
tures such as the linear temperature scaling of the specific heat
of a metal. Since the early days of solid-state band theory, it
has also been known that two bands can accidentally touch
each other along manifolds of higher codimension (and thus
smaller dimensionality) such as lines or even singular points
in momentum space [1]. What has been appreciated only
much more recently [2,3] is that in the presence of addi-
tional discrete symmetries such as time-reversal, inversion,
or certain lattice symmetries, these band touchings can be
pinned to the Fermi energy, resulting in semimetals whose
nodal structures have codimension two or higher. This insight
has paved the way to the recent theoretical prediction and
subsequent experimental discoveries of Weyl semimetals [4,5]
and nodal-line semimetals [6-9]. Such semimetals exhibit
many interesting anomalous properties [9,10] that trace back
directly to the nontrivial momentum-space topology of their
electronic band structures. As such they are often considered
to be gapless cousins of time-reversal invariant topological
insulators [11-18].

In this paper, we go back to one of the starting points in the
exploration of semimetals—the observation of Dirac points
in graphenelike honeycomb materials—and ask whether there
is a systematic way to discover novel, nontrivial band struc-
ture phenomena by generalizing the underlying honeycomb
lattice geometry to three spatial dimensions. Considering the
most elementary tricoordinated lattices in three dimensions
(discussed in more detail below), we indeed generically find
topological phenomena in their respective band structures.
This includes the formation of Dirac nodal-line semimetals in
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lieu of a conventional metal (with a Fermi surface) in many of
these systems. Depending on the underlying lattice geometry
we find an odd number of nodal lines that remain separated
from one another in momentum space, form nodal chains
or more complex networks with multiple crossing points, as
illustrated in Fig. 1 below. The topological nature of these
nodal-line semimetals reveals itself in flat-band surface states,
sometimes called drumhead states [6—8], whose origin can be
traced back to a nontrivial winding number associated with
each nodal line. These nodal-line features are stabilized by
discrete symmetries. Recent work, aimed at systematically
classifying these symmetries, has identified possible combina-
tions of inversion and time-reversal symmetry (P7T) [19-21],
sublattice/chiral symmetry [22], crystal reflection [8], non-
centrosymmetric [23] and nonsymmorphic lattice symmetries
[24] as permissible symmetry sets. Most of our nodal line
scenarios are found to comply with the P T -protection mech-
anism, supplemented by sublattice symmetry which pins the
nodal line(s) to the Fermi energy. One exception is found
where in the absence of any other symmetries the sublattice
symmetry alone suffices to stabilize and pin three nodal lines
to the Fermi energy. These nodal-line systems give rise to
additional topological band structure phenomena upon apply-
ing an external magnetic field or by considering the effect
of spin-orbit coupling. In the case of an external magnetic
field, one finds a Landau level quantization of extended flat
bands in the bulk. In the presence of spin-orbit coupling, the
bulk energy spectrum gaps out and the nodal-line semimetals
are found to generically transition into (strong) topological
insulators.

For some of the three-dimensional honeycomb lattices an
alternative scenario plays out with these systems forming con-
ventional metals with a Fermi surface. Upon closer scrutiny,
however, some of these systems are found to also exhibit
topological bulk and surface features. The nontrivial topology

©2018 American Physical Society
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FIG. 1. Overview of nodal line geometries for a set of three-dimensional generalizations of the honeycomb lattice (specified in further
detail in Table II). Depending on the underlying lattice geometry one or three nodal lines form that are either separated in momentum space
[(10,3)c], form nodal chains [(10,3)d] or complex networks with multiple touching points [(8,3)n].

in these metallic systems arises from Weyl or Dirac cones
hidden above/below the Fermi energy, which endows each
Fermi surface with a nontrivial Chern number and results in
characteristic Fermi arc surface states. For the remaining cases
of conventional metals, we find that the inclusion of spin-orbit
coupling can lead to nontrivial band-structure phenomena,
including the formation of a Dirac semimetal.

Taken all together, our paper presents an exhaustive classi-
fication of the electronic band structure phenomena in three-
dimensional honeycomb structures. A summary of our results
is given in Table I, which indicates for each 3D generalized
honeycomb lattice the nodal structure at the Fermi energy
for an elementary tight-binding model and in the presence
of spin-orbit coupling. This classification provides context to
and generalizations of some earlier results obtained for the
hyperhoneycomb lattice [25,26] and the hyperoctagon lattice
[27]. It also complements a recent classification of Majorana
metals in 3D Kitaev spin liquids [28,29] pursued for the
same set of 3D generalizations of the honeycomb lattice. We

TABLE I. Overview of results. Classification of the nodal struc-
ture at the Fermi energy for a number of 3D honeycomb lattices
(specified in further detail in Table II). Results for the electronic band
structure captured by a tight-binding model are given in the second
column. The effect of spin-orbit coupling on the band structure is
given in the third column. The last column provides a comparison to
the physics of Majorana fermions on the same lattices relevant to a
family of three-dimensional Kitaev models [28]. The asterisk indi-
cates topological metals where a Weyl/Dirac node is encapsulated by
the Fermi surface.

Lattice  Tight binding  Spin-orbit coupling  Kitaev model
(10,3)a  Fermi surface* Fermi surface* Fermi surface*
(10,3)b nodal line strong TI 1; (000) nodal line
(10,3)c 3 nodal lines strong TI 1; (001) 3 nodal lines
(10,3)d nodal chain strong TI 1; (000) nodal chain
(9,3)a  Fermi surface strong TI 1; (000) Weyl nodes
(8,3)a  Fermi surface* Fermi surface* Fermi surface*
. weak TI 0; (101)
(8,3)b  Fermi surface . Weyl nodes
Dirac nodes
. strong TI 1; (010) .
(8,3)c nodal line ) nodal line
Dirac nodes
. strong TI 1; (001)
(8,3)n 3 nodal lines . gapped
Dirac node

will comment on analogies and differences of the nodal line
physics between the electronic systems considered here and
the Majorana metals arising in 3D Kitaev magnets in the
discussion at the end of the paper.

The remainder of the paper is structured as follows. We
start with an introduction of the 3D honeycomb lattices in
Sec. II. Section III is devoted to the physics of topological
nodal-line semimetals, which includes a detailed discussion
of the underlying symmetry protection, topological surface
states, as well as the formation of topological bulk states
upon applying an external magnet field or via the inclusion
of spin-orbit coupling. Section IV discusses the alternative
scenario of a conventional metal forming in some of the
3D honeycomb lattices, putting an emphasis on topological
bulk and surface phenomena present also in these systems.
We round off our discussion in Sec. V that also touches
on the relevance of our study for future material synthesis.
Supplementary information is provided in the Appendix.

II. THREE-DIMENSIONAL HONEYCOMB LATTICES

The principal input of our study is three-dimensional gen-
eralizations of the honeycomb lattice, i.e., lattice structures
that, like the familiar honeycomb lattice, exhibit only trico-
ordinated sites. While such low-coordinated lattice structures
are relatively rare in conventional solids, they are common-
place in three-dimensional graphene networks [30-32], syn-
thesized as the magnetic sublattice in polymorphs of the iri-
date LiyIrO; [33,34] and potentially realized in certain metal-
organic compounds [35]. Here we take a more abstract point
of view and consider a set of prototypical tricoordinated lattice
structures that contain only elementary loops of identical
length. Each one of these lattices is a representative of an en-
tire family of higher harmonics [34] of tricoordinated lattices
(where some loops are expanded at the expense of shortening
others in a systematic way). The variety of these prototypical
lattice structures (with equal loop length) has been extensively
classified in pioneering work of A.F. Wells in the 1970s [36].
We provide a summary of these lattices in Table II along with
an illustration in Fig. 2. Each lattice is indexed by the Schlafli
symbol (p, c¢), which indicates the length of the elementary
loop p (polygonality) and coordination ¢ = 3, followed by
a letter. In this notation, the honeycomb lattice would be
indexed as (6,3) (not to be followed by a letter as it is the only
tricoordinated lattice with loops of length 6). Other familiar
lattices include the hyperhoneycomb [33] lattice carrying
index (10,3)b and the hyperoctagon [37] lattice (which is also
referred to as the Laves graph [38] or K4 crystal [39] in the
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(10,3)b

FIG. 2. Illustration of the three-dimensional honeycomb lattices of Table II. Each lattice is labeled by its Schlifli symbol and shown along
one of its high-symmetry directions. To highlight important features of the lattice structures, we colored certain bonds/sites: Counterclockwise
rotating spirals are marked in orange, while clockwise-rotating ones are blue. For (10,3)b and c, we visualized the different directions of the

zigzag bonds using different colors.

literature) that carries index (10,3)a. Beyond their elementary
loop length, the prototypical lattices of Table II distinguish
themselves by the number of sites in the unit cell (varying

TABLE II. Overview of three-dimensional honeycomb lattices
with tricoordinated sites. The first column gives the Schlifli symbol
(p, c¢) indicating the length of the elementary loop p (polygonality)
and coordination ¢ = 3 followed by a letter. For each lattice, we
provide the number of sites in the unit cell (second column) along
with its basic symmetry properties (third and fourth column) and
its space group information (last two columns). Further details on
the lattice vectors in real and momentum space are provided in
Appendix A.

Sites in  Inversion Space group

Lattice unitcell symmetry Nonsymmorphic symbol  No.
(10,3)a 4 chiral v 14,32 214
(10,3)b 4 v v Fddd 70
(10,3)c 6 chiral v P3,12 151
(10,3)d 8 v v Pnna 52

9,3)a 12 v R3m 166
(8,3)a 6 chiral v P6,22 180
(8,3)b 6 v R3m 166
(8,3)c 8 v v P63;/mmc 194
(8,3)n 16 v 14/mmm 139

between 4 and 16) and their fundamental lattice symmetries
as indicated in the table. Detailed information on all lattices,
including their unit cells, lattice and reciprocal lattice vectors
is provided in the Appendix.

III. NODAL-LINE SEMIMETALS

Probably the most striking topological band structure phe-
nomenon in the three-dimensional honeycomb systems that
we consider is the occurrence of Dirac nodal-line semimetals
for various lattice geometries. As illustrated in Fig. 1 we find
multiple scenarios with varying numbers of nodal lines and
mutual geometries. In the following we will discuss various
aspects of these nodal-line band structures. We will first con-
centrate on the elementary symmetry mechanism that leads to
the formation of these nodal lines in the (nearest-neighbor)
tight-binding Hamiltonian, see Appendix C, and establish
that for all but one case it is a combination of time-reversal
and inversion symmetry that is at play. The one exception
is lattice (10,3)c for which a simple sublattice symmetry
suffices. In fact, sublattice symmetry is a crucial symmetry
for all lattices as it ensures particle-hole symmetry which in
turn pins the nodal line(s) to the Fermi energy. However, if
the system is not perfectly particle-hole symmetric (e.g., upon
breaking the sublattice symmetry or by moving away from
half filling) the nodal line structure will (at least partially)
move away from the Fermi energy. We briefly discuss this
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instability, which every electronic system clearly exhibits as
a sublattice-symmetry breaking next-nearest-neighbor hop-
ping is not symmetry forbidden. We then move to a char-
acterization of the so-called drumhead surface states which
accompany the bulk nodal lines and reflect their nontrivial
topological character.

Finally, we turn to a discussion of topological bulk phe-
nomena. First, upon applying an external magnetic field one
can stabilize flat bands in the bulk that show a characteristic
«/n Landau level quantization. Last but not least, we will
turn to the effect of spin-orbit coupling on the nodal-line
semimetals and show that it typically induces a bulk gap and
leads to the formation of topological insulators.

A. Symmetry protection

In order to discuss the symmetry mechanism that leads to
the formation of nodal lines in our family of three-dimensional
honeycomb models, the relevant symmetries are time-reversal
symmetry 7', inversion symmetry P, sublattice symmetry S,
and combinations thereof. Let us first describe the effect of
each symmetry individually.

Time-reversal symmetry. Time-reversal symmetry (TRS) is
an antiunitary symmetry, which squares to —1. It relates the
energy of an eigenstate with spin-z component o and momen-
tum k to that of a state with spin —o and momentum —k.

Inversion symmetry. All but three of the lattices we consider
here are inversion symmetric (see Table II). Inversion symme-
try is a unitary symmetry, which (like time-reversal symmetry)
relates energies at k and —k to each other. Consequently, the
combination of inversion and time reversal—in the following
denoted by PT—is an antiunitary symmetry that leaves the
momentum invariant. Thus, it is a symmetry that is obeyed in
the full Brillouin zone. As pointed out in Ref. [21], PT can
be used to define a Z, topological invariant that can protect
nodal lines.

Sublattice symmetry. With the exception of (9,3)a, all the
lattices at hand are bipartite. Therefore, as long as we only
consider nearest-neighbor hopping, the resulting Hamilto-
nian is symmetric under sublattice symmetry. Depending on
the lattice details, sublattice symmetry may be implemented
in two distinct ways in momentum space: For the lattices
(10,3)b, (10,3)c, (10,3)d, (8,3)c, and (8,3)n, both the lattice
and the sublattice share the same translation vectors, as illus-
trated in the example of Fig. 3(a). Consequently, one obtains
the usual relation,

E(k) = —E(k),

namely that for each energy £ at momentum k there has to be
an energy —E at the same momentum k. In this realization,
the sublattice symmetry imposes the same constraints on the
momentum space Hamiltonian as chiral symmetry (i.e., the
combination of particle-hole and time-reversal symmetry),
which can be used to define a Z, topological invariant that
in itself can protect nodal lines [22]. Consequently, the five
lattices (10,3)b, (10,3)c, (10,3)d, (8,3)c, and (8,3)n indeed
exhibit nodal lines as discussed in the following.

A different implementation of sublattice symmetry is real-
ized for the lattices (10,3)a, (8,3)a, and (8,3)b. Considering a

(a) honeycomb lattice (b) square lattice

(c) (10,3)a lattice

FIG. 3. Illustration of the sublattice symmetry for different lat-
tices. Shown are the A and B sublattices (in white and black,
respectively) for the honeycomb, square, and (10,3)a hyperoctagon
lattices. While for the honeycomb lattice the two sublattices have the
same translation vectors as the original lattice, this does not hold for
the other two lattices as at least one of the original lattice translations
connects sites of different sublattice types. This leads to a nontrivial
translation in momentum space by half a reciprocal lattice vector,
denoted by a finite value of l?o (see main text).

single sublattice for one of these lattices, one finds that the
sublattice has different translation vectors than the original
lattice, i.e., at least one of the original lattice translations
connects sites of different sublattice types. This scenario is
illustrated in Figs. 3(b) and 3(c). As a consequence, to imple-
ment the sublattice symmetry for these lattices, one needs to
artificially enlarge the unit cell of the lattice. This results in a
nontrivial translation in momentum space by half a reciprocal
lattice vector, denoted by ko. As a consequence, sublattice
symmetry imposes [28] that

E(k) = —E(k + ko),

i.e., for each eigenstate with energy E at momentum k, there
has to be a corresponding one at the shifted momentum
k + ko with energy —E. This second realization of sublattice
symmetry does not readily allow us to define a Z, topological
invariant that in itself can protect nodal lines. Instead, we
find that these lattices generically exhibit an even number of
Fermi surfaces, with pairs shifted apart by a momentum kg as
discussed in Sec. IV.

Upon close inspection of all of the aforementioned sym-
metries for all lattices at hand, we find that in four cases—
lattices (10,3)b, (10,3)d, (8,3)c, and (8,3)n—the nodal lines
are protected by PT symmetry. In one case, lattice (10,3)c, it
is only sublattice symmetry S that protects the nodal line(s).
This is summarized in Table III above.

TABLE III. Overview of nodal-line semimetals. The first column
specifies the lattice, the second column provides the number of
nodal lines (NLs). The third column specifies the mutual nodal line
geometry, see also Fig. 1. The last column lists the combination of
symmetries that stabilize the nodal line(s), including time-reversal T,
inversion P, and sublattice S symmetries.

Lattice #NL NL geometry Symmetry
(10,3)b 1 PT
(10,3)c 1,3 separate lines S
(10,3)d 3 chain geometry PT
(8,3) 1 PT
(8,3)n 3,5 pairwise crossings PT
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In addition, for some lattices further symmetries are at
play. For lattice (10,3)d there is an additional glide symmetry,
which pins one of the nodal lines (marked in red in Fig. 1) to
the k, = 0 plane. For lattice (8,3)n, which exhibits three cross-
ing nodal lines (see Fig. 1), a mirror symmetry protects four
of the six crossing points, while a fourfold rotation symmetry
around the z axis protects the remaining two crossing points.
For the details of this mechanism, we refer the interested
reader to the discussion in Appendix D.

B. Longer-range interactions and particle-hole symmetry

As discussed above, sublattice symmetry is a crucial sym-
metry for the nodal-line semimetals occurring in our three-
dimensional honeycomb systems. If a system has both sub-
lattice and time-reversal symmetry, their product, denoted
by PS, keeps the momentum invariant [40] and defines an
effective particle-hole symmetry. This in turn ensures that the
nodal lines are located precisely at the Fermi energy (at half
filling).

However, sublattice symmetry is a rather fragile symme-
try for the electronic systems considered here. Longer-range
interactions (such as a next-nearest neighbor hopping), which
are not symmetry-forbidden interactions and as such will be
present in every realistic system, break sublattice symmetry
and thereby immediately destroy particle-hole symmetry as
well. For those lattice where the nodal lines are protected
by PT symmetry, the nodal lines will shift away from the
Fermi energy as a consequence. The result is a torroidal Fermi
surface centered around the original nodal lines. This is illus-
trated for lattice (10,3)b in Fig. 4 below. One can compensate
for this shift of the nodal line by introducing a chemical
potential and thereby recover the nodal line close to the Fermi
energy. (Note, however, that the Fermi line also generically
tilts in energy upon breaking sublattice symmetry.) For lat-
tice (10,3)c where the nodal line is protected by sublattice
symmetry the inclusion of longer-range interactions, e.g., a
next-nearest-neighbor hopping, has a seemingly similar effect
in that the resulting Fermi surface also exhibits a torroidal
geometry. However, when introducing a chemical potential to
compensate for this effect one finds, as illustrated in Fig. 4,
that the nodal line no longer exists anywhere in the energy
spectrum, but has gapped out up to twelve symmetry-related
Dirac points.

C. Drumhead surface states

The topological nature of a nodal-line semimetal manifests
itself most directly in the occurrence of so-called drum-
head surface states [6—8]. For the sake of completeness,
let us briefly recapitulate the elementary steps to see this
in the context of the 3D honeycomb systems considered
here.

Since all five lattices for which we find nodal lines exhibit
sublattice symmetry, their Hamiltonian can be written in the
off-diagonal form

R < 0 AWE’))
HE) = - ,
AK) 0

(10,3)b

toroidal
Fermi surface

Dirac node

FIG. 4. Toroidal Fermi surfaces for lattices (10,3)b and (10,3)c
upon inclusion of a (real) next-nearest-neighbor hopping (top row).
In the bottom row we introduce an additional chemical potential
that shifts the Fermi energy such that the effect of the next-nearest-
neighbor hopping is compensated. While for lattice (10,3)b the nodal
line can be recovered this way (see also the discussion in the main
text), a more complex situation arises for lattice (10,3)c where we
find six isolated Dirac nodes interlaced with small Fermi surface
pockets (encompassing another set of six Dirac points).

that is well known in the context of chiral symmetry classes
[41]. For such off-diagonal Hamiltonians one can define a
winding number

We = 1 yg dk Im(tr(A~'V A)) (1
27'[ C

for any closed path C in momentum space. In particular, one
can consider straight lines through the first Brillouin zone that
either pierce through the interior of the nodal line or pass by
them on the exterior. For any given nodal line, one of them
must carry a nontrivial winding number.

If one now considers the projection of the nodal line to the
surface Brillouin zone of a system in a slab geometry, one
will find a band of flat surface states (taking the shape of a
drumhead) for those momenta for which the corresponding
winding number (modulo 2) is nonzero. Examples for both
scenarios are shown in Fig. 5.

D. Landau level quantization and bulk flat bands

The nodal line band structure can give rise to another topo-
logical phenomenon—the formation of nearly dispersionless
bands upon applying an external magnetic field parallel to the
plane of the nodal line [10]. These bulk flat bands exhibit a
Landau level quantization with an energy spacing that grows
like \/n with the level index 7. This square-root scaling traces
back to the linear Dirac dispersion perpendicular to the nodal
line and is familiar from the physics of graphene [42]. In the
following, we briefly showcase how these generic features
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(10,3)b (10,3)c (8,3)n

O

FIG. 5. Drumhead surface states for the nodal-line semimetals
of lattices (10,3)b, (10,3)c, and (8,3)n. The bottom row shows the
surface Brillouin zones along the projection used above.

of nodal-line semimetals manifest themselves in our three-
dimensional honeycomb systems. Working directly with the
microscopic model system (in lieu of a continuum approx-
imation [10]) we will focus our discussion on the (10,3)b
hyperhoneycomb lattice.

We consider a magnetic field [43] applied in the plane of
the nodal line, e.g., along the X direction with the nodal line
lying in the (k,, ky) plane [44]. Upon applying the magnetic
field almost dispersionless flat bands evolve in the middle
of the spectrum and widen with increasing field strength, as
can be seen in the upper panel of Fig. 6, which shows the
bulk energy dispersion along the k, direction perpendicular to
the nodal plane. In fact, the nodal line tilts upon applying a
magnetic field away from the k. -k, plane and acquires a finite

_B=0.001

energy F

—b,/2 r b,/2 —b,/2 r b,/2 —b,/2 T b,/2
momentum & momentum & momentum &

energy £

—by /2 r
momentum k&

by /2 —by /2 r by /2 —b, /2

momentum E— AE,

b, /2
momentum E— AE,

FIG. 6. Formation of Landau levels in the bulk energy spectrum
for (10,3)b for a magnetic field applied in plane of the nodal line. The
different panels show varying magnetic field strength B. The top row
shows the dispersion along the &, direction perpendicular to the nodal
plane. The bottom row shows the dispersion along the &, direction.
The field dependent offset Ak, chosen such that the latter dispersion
traverses the nodal line.

0.08 -
0.06
&
>
2 0.04
Q
C
[}
0.02 4
0.00 L4 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14
index n

FIG. 7. Spacing of Landau levels in the energy spectrum for the
(10,3)b hyperhoneycomb lattice. Green line is a square root fit to the
first 14 data points.

extent also along the k, direction. It is precisely within this k.
region that the nearly dispersionless bands develop. These flat
bands constitute Landau levels whose separation is plotted in
Fig. 7, clearly revealing the /n growth with the Landau level
index n expected for a linear Dirac dispersion [45]. The lower
panel in Fig. 6 shows the dispersion along the k, direction
revealing the flat bands precisely in the k, region inside the
nodal line.

Each Landau level is fourfold degenerate, up to a very
small Zeeman splitting of the order of 10~ for the magnetic
field strengths considered here. This fourfold degeneracy can
be explained by realizing that the system effectively sees,
for any momentum within the nodal line, two twofold de-
generate Dirac nodes (one from each side of the nodal line),
similar to the physics of a graphene bilayer as nicely shown
in Ref. [10].

Finally, let us note that the Landau levels are not to be
confused with the flat surface bands discussed earlier. In fact,
the Landau levels discussed here are pure bulk features. This
can be verified by plotting the spatial localization of their
wave function as illustrated in Fig. 8, where the squared am-
plitude of the wave function (evaluated for a momentum in the
middle of the Landau level) is plotted against the y position
for a slab geometry. As can be seen, the wave function of the
lowest Landau level (n = 0) is clearly localized in the middle
of the slab. Going to higher Landau levels, one observes a
spreading towards the edges of the slab with significant weight
remaining in the bulk.

0.03
— n=0
— n=1
g 2
— =
2 0.02  p=4
= n=
1S — n=8
©
°
o
© 0.01
>
o
(]
0.00 =" - ‘\‘*
1 64 128 192 256

unit cell index along y-direction

FIG. 8. Squared amplitude of the wave function for the Landau
levels for a slab geometry of the (10,3)b hyperhoneycomb lattice with
open boundaries along the y direction.
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@ (b)

1 nodal line strong TI

3 nodal lines weak TI

FIG. 9. Schematic phase diagram for (a) the pure tight-binding
model and (b) in the presence of spin-orbit coupling (A = 0.1).
Generically, we find that around the isotropic coupling point (¢, =
t, = t;) there is an extended semimetallic phase (indicated by the
orange shading), whereas in the regimes where one of the three
coupling strengths dominates one finds gapped, band insulators
(indicated by the light blue shading). The actual data shown here
is for lattice (10,3)c, which in the absence of spin-orbit coupling
exhibits two distinct semimetallic phases with one or three nodal
lines, respectively. In the presence of spin-orbit coupling two topo-
logical insulator phases emerge that can be classified as strong/weak
topological insulators as indicated.

E. Spin-orbit coupling and topological insulators

Probably the most dramatic effect destabilizing the nodal-
line band structures in the three-dimensional honeycomb sys-
tems at hand is the inclusion of spin-orbit coupling. We find
that in the presence of spin-orbit coupling (implemented via
a complex next-nearest-neighbor hopping analogous to the
work of Kane and Mele [11], see also Appendix C), all nodal-
line semimetals generically gap out into topological insulators
(TTIs). This is illustrated in the exemplary phase diagram for

energy E

By by btb b r T by by+b b r T b bit+h b T
2 T2 7 2 T2 7

2 2 2 2 2

momentum k momentum k momentum k

by V3

e

e a8
v v

FIG. 10. Strong topological insulator for (10,3)c in the presence
of spin-orbit coupling (A = 0.1) with topological indices 1;(001).
The top row shows the surface energy spectrum along the high-
symmetry path connecting the time-reversal invariant momenta
(TRIMs). The colored bands indicate surface bands crossing the
Fermi energy (with the yellow/red band corresponding to a band
on the top/bottom surface). The bottom row shows the change of
the time-reversal polarization for different paths between TRIMs
(indicated by the blue dots at the corner of the squares).

bt

o,

FIG. 11. Kaleidoscope of topological phases for lattice (8,3)c in
the presence of spin-orbit coupling (A = 0.03).

lattice (10,3)c, which is shown in Fig. 9. Interestingly, for all
systems considered here the arising topological insulator is in
fact a strong topological insulator [which for some systems is
flanked by a second parameter regime of a weak topological
insulator as is the case for the phase diagram of lattice (10,3)c
in Fig. 9]. A precise characterization of the TIs via their
topological indices [14] is given in the overview Table I. For
the example system (10,3)c the calculation of the topologi-
cal indices via the surface energy spectrum is illustrated in
Fig. 10, with further details provided in Appendix B.

While most nodal-line systems exhibit a relatively simple
phase diagram in the presence of spin-orbit coupling, similar
to the one shown for lattice (10,3)c in Fig. 9, there is one
exception, lattice (8,3)c, where the inclusion of spin-orbit cou-
pling leads to a kaleidoscope of different topological phases
as illustrated in Fig. 11. Each line separating two TI phases
in Fig. 11 corresponds to a closing of a gap at a single time-
reversal invariant momentum (TRIM). Since this can change
only one cone on the surface, the number of cones switches
from even to odd or vice versa, so that every line separates a
weak from a strong TI.

Lattices (8,3)c and (8,3)n exhibit another feature occurring
in the presence of spin-orbit coupling (besides the formation
of a strong TI)—the emergence of Dirac nodes in the spectrum
for some parameter regime. For lattice (8,3)n, which exhibits
three crossing nodal lines in the absence of spin-orbit cou-
pling, the Dirac nodes emerge precisely at the crossing points
(while the remaining nodal lines gap out). The bulk energy
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FIG. 12. Spectral features for (8,3)n in the presence of spin-
orbit coupling (A = 0.03). (a) Bulk energy spectrum along a high-
symmetry path with Dirac node highlighted by the red circle. (b) 3D
energy spectrum around the Dirac node.
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spectrum of lattice (8,3)n is illustrated, along a high-symmetry
path, in Fig. 12.

IV. TOPOLOGICAL METALS

For the family of three-dimensional honeycomb models
at the heart of this paper there are—besides the ones that
give rise to nodal-line semimetals—a number of instances
that form metals exhibiting ordinary two-dimensional Fermi
surfaces, see the overview of Table I. However, even in this
seemingly conventional scenario, it turns out that topology is
again at play and the metals are best characterized as Weyl met-
als or Dirac metals with a distinct topological feature (such as
Weyl or Dirac cones) encompassed by the Fermi surfaces. As
such the Fermi surfaces are characterized by a topologically
invariant (such as a Chern number), which again leads to the
formation of distinct surface features such as Fermi arcs. We
will concentrate our discussion on these topological features
in the following, after providing some elementary symmetry
considerations that motivate the formation of Fermi surfaces
in the first place.

A. Symmetry considerations

For the 3D honeycomb systems at hand, we find a metallic
behavior for the lattices (10,3)a, (9,3)a, (8,3)a, and (8,3)b as
summarized in Table I. The formation of a metal in all these
lattices is closely connected to the way sublattice symmetry
and inversion are implemented in these lattices.

For the sublattice symmetry there are three cases to dis-
tinguish: (i) it might be entirely absent, as is the case for the
nonbipartite lattice (9,3)a, (ii) it is implemented with an ad-
ditional translation in momentum space (see Sec. Il A), such
as for the lattices (10,3)a, (8,3)a, and (8,3)b of interest here,
or (iii) its presence does not require an additional translation
in momentum space. The last case is precisely the scenario
needed for the formation of nodal lines as discussed in the
previous section, while the first two cases naturally lead to the
formation of Fermi surfaces as discussed in the following.

Considering inversion symmetry, there are only two possi-
ble cases for the lattices at hand—a lattice either breaks inver-
sion symmetry and is chiral or not, see the overview of lattice
properties in Table II. If the underlying lattice is inversion
symmetric, as is the case for lattices (9,3)a and (8,3)b, then
the combination of time-reversal and inversion symmetry,
PT, leaves the Hamiltonian invariant and we would naively
expect that the system should show nodal line physics. Indeed,

(b) (¢)
' BN

< >
A

T N H r N H
momentum &

looking at the band structure, one finds that for both lattices
the two bands in the middle of the energy spectrum touch
along a closed line, which is protected by PT. However, due
to the absence (or nontrivial implementation) of sublattice
symmetry, the system is not particle-hole symmetric. Conse-
quently, the nodal line(s) do not lie at constant energy (but
are tilted) and are not pinned to the Fermi energy. As such
the systems generically exhibit Fermi surfaces surrounding
the nodal line(s). For the two chiral lattices at hand, lattices
(10,3)a and (8,3)a, there is no symmetry protecting nodal lines
in the first place, and one would expect these systems to form
conventional Fermi surfaces.

B. Hidden Weyl/Dirac nodes

Weyl and Dirac semimetals have recently attracted much
attention due to their unique combination of bulk and surface
properties [S]. It was already noted early on [1] that band
touchings at isolated points in the three-dimensional Brillouin
zone can occur frequently and are in fact stable objects. The
origin of this stability was later traced back to a topological
invariant, the Chern number, that associates an integer charge
with each one of them [4]. Charge conservation immediately
implies that these so-called Weyl nodes cannot be removed
individually, but only in pairs with opposite charge [46,47].
In order for the system to show semimetallic behavior, one
needs additional symmetries that pin the energy of at least one
pair of Weyl nodes to the Fermi energy. However, even in the
absence of such symmetries, the system can show interesting
features, particularly when the Weyl nodes are ‘hidden’ within
Fermi surfaces and thereby lend their topological properties
to the metallic state. Such systems are referred to as Weyl
metals. Similarly, a Dirac node—the composition of two Weyl
nodes—can be encompassed by a Fermi surface giving rise
to what can analogously be referred to as Dirac metal (as
opposed to the commonly discussed Dirac semimetals). It
turns out that these latter scenarios are at play for some of
the 3D honeycomb systems considered here.

Specifically, this is the case for lattices (10,3)a and (8,3)a
whose spectral features (for the spinless case) are summarized
in Figs. 13 and 14, respectively. Both lattices exhibit a single
pair of Weyl nodes with one Weyl node located above/below
the Fermi energy (as required by sublattice symmetry). The
case of lattice (10,3)a is particularly interesting as the Weyl
node is located at the intersection of three crossing bands,
two forming the actual Weyl cone and the third forming a
flat band, see Figs. 13(b) and 13(c). This scenario can only

- @

FIG. 13. Overview of the spectral features for the (10,3)a hyperoctagon lattice. (a) Fermi surfaces around the I' and H points in the
Brillouin zone. (b) Bulk energy spectrum along the high-symmetry path indicated in (e). (c) Spin-1 Weyl point (below the Fermi surface) at
the T" point. (d) Surface spectrum with Fermi arcs for the surface Brillouin zone indicated in (e).
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FIG. 14. Overview of the spectral features for lattice (8,3)a. (a) Fermi surfaces around the M and L points in the Brillouin zone. (b) Bulk
energy spectrum along the high-symmetry path indicated in (e). (c) Weyl point (below the Fermi surface) close to the M point. (d) Surface

spectrum with Fermi arcs for the surface Brillouin zone indicated in (e).

play out at certain high-symmetry points in the Brillouin zone
[48] and is referred to as spin-1 Weyl node [27,48-52]. An
additional consequence of this spin-1 scenario comes in the
form of a higher integer Chern number of £2 associated with
these Weyl nodes in the bulk and a pair of Fermi arcs on the
surface, indicated by the blue lines in Fig. 13(d).

For lattice (8,3)a a more conventional scenario is found.
The two Fermi surfaces around the M and L points each
encompass two Weyl nodes [of which only one is shown along
the high-symmetry path in Fig. 14(b)]. As such the Fermi
surfaces again carry a total Chern number of 2 and the
surface energy spectrum shows two Fermi arcs, as shown in
Fig. 14(d).

Finally, we briefly mention the two remaining lattices
(9,3)a and (8,3)b, which both exhibit Fermi surfaces that
enclose nodal lines (instead of Weyl nodes). But as such these
Fermi surfaces are not endowed with any topological features
(since the nodal lines in our models do not exhibit a nontrivial
spherical Chern number [20]).

C. Spin-orbit coupling

In the absence of spin-orbit coupling all spectral features
discussed above are spin degenerate. The inclusion of spin-
orbit coupling will immediately lift this spin degeneracy and
the spin-degenerate Dirac cones will split into pairs of Weyl

N
Vi
S

r P N H r N
momentum &

(a)

1

energy E
o

A slightly more subtle mechanism is at play for the
hyperoctagon lattice (10,3)a where part of the degeneracy
remains even in the presence of spin-orbit coupling (SOC).
Nonsymmorphic lattice symmetries, in particular a twofold
screw symmetry, pin the gapless modes to the high-symmetry
points I and H, so that the only allowed splitting is in energy.
We find that SOC splits the original sixfold degenerate band
touching, to a twofold (with charge 1) and a fourfold (with
charge £3) touching, as shown in Figs. 15(b) and 15(c). This
degeneracy could be split further by also considering a break-
ing of the nonsymmorphic lattice symmetries. Figure 15(d)
shows the effect of breaking the twofold screw symmetry (in
the absence of SOC), which is found to break the charge 4
Dirac node into two charge 2 Dirac nodes. The remaining spin
degeneracy can then be destroyed by introducing SOC.

With increasing spin-orbit coupling the Dirac nodes en-
compassed by the Fermi surfaces move within the Brillouin
zone. This reorganization of topological charges becomes
most apparent in the surface spectrum, illustrated in Fig. 16.
As can be seen in the evolution of these spectra, the Chern
numbers associated with the individual Fermi surfaces change
sign and the associated Fermi arcs flip their orientation.

V. SUMMARY

Probably the most revealing result of our approach to sys-
tematically classify the band structures of three-dimensional

FIG. 15. Effect of spin-orbit coupling on the spin-1 Weyl node of the hyperoctagon lattice (10,3)a. (a) Band structure in the ab-
sence/presence of spin-orbit coupling (gray/black lines). (b) The sixfold degeneracy of the spin-1 Weyl node at the I" point is lifted in the
presence of spin-orbit coupling to a twofold and a fourfold band touching as shown in (c). (d) Breaking the twofold screw symmetry (in the
absence of spin-orbit coupling), splits the original (charge 4) Weyl node into two (charge 2) Weyl nodes (marked by the yellow circles), which
remain spin degenerate.
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=0.05

SIS

FIG. 16. Evolution of surface states for the (10,3)a hyperoctagon
lattice for varying strength of the spin-orbit coupling A. All spectra
exhibit puddles, which originate from the projection of the Fermi
surface onto the surface Brillouin zone. They are color coded to
reflect the Chern number associated with the Weyl nodes encom-
passed by the respective Fermi surface. In addition, the surface
spectrum exhibits a pair of Fermi arcs (colored in blue) that reflect
the connection of the hidden Weyl nodes. With increasing spin-orbit
coupling the Weyl nodes reorganize underneath the Fermi surface
and the Chern numbers associated with the Fermi surfaces change.

A=01

honeycomb systems is the formation of topological features
in almost all instances, as summarized in Table I. Amongst
these topological band structures, an expansive family of
Dirac nodal-line semimetals stands out. Depending on the
underlying lattice geometry, these systems exhibit nodal lines
forming a variety of mutual geometries, as summarized in
Fig. 1. They share many well understood common features
such as the protection by PT symmetry (with one exception),
the formation of drumhead surface states, and a 1/ Landau
level quantization of bulk flat bands in the presence of an
applied magnetic field. Other common features whose origin
is less clear include the formation of an odd number of nodal
lines for all lattice geometries and what appears to be the
generic formation of a strong topological insulator in the
presence of spin-orbit coupling. Besides the formation of
nodal-line semimetals we have discussed two instances of
Weyl metals, topological metals in which (multiple) Weyl
nodes are enclosed by the Fermi surface enriching these
systems with a nontrivial bulk Chern number and Fermi arc
surface states.

The current investigation of electronic band structures
complements our recent work on classifying the band struc-
tures of real Majorana fermions relevant to the physics of
gapless spin liquids in three-dimensional Kitaev models [28]
defined for the same set of elementary tricoordinated lattices.
Interestingly, there are a number of instances where the band
structures of real and complex fermions differ substantially,
see the comparison in Table I. For certain lattice geometries,
the Majorana fermions form Weyl semimetals [53] in lieu
of conventional (Fermi surface) metals in the corresponding
electronic system. The deeper reason for this discrepancy is
found in the way projective symmetries and in particular time-
reversal symmetry act on the Majorana fermions in contrast to
ordinary complex fermions as discussed in detail in Ref. [28].

Beyond electronic and Majorana band structures, the emer-
gence of nodal lines have long been discussed in the context
of superconductors [54] and more recently also in magnetic
systems with nontrivial magnon bands [55]. Likely, the 3D
honeycomb lattices studied in the present work will also
reveal nontrivial band structure phenomena for these alternate

systems, but we will leave it to future studies to explore
this.

In the realm of materials synthesis, we hope that our work
provides inspiration to explore candidate materials that could
realize one of the 3D honeycomb systems discussed here.
Some of these structures have already been synthesized in 5d
Mott insulators, such as the (10,3)b hyperhoneycomb lattice in
the iridate LiyIrO3 [33,34], and investigated for their unusual
magnetism. In the context of these Kitaev materials [56], other
possible routes to synthesize 3D honeycomb systems have
been proposed, including the use of metal-organic frameworks
[35]. To explore the semimetals discussed in the current paper,
the most natural starting point probably is to turn to three-
dimensional graphene/carbon networks, some of which are
already known to exhibit nodal-line semimetals [30]. The
relatively simple structures discussed here (with only a few
sites in their unit cell compared to several tens or hundreds
for some of the more complex networks) are hopefully within
experimental reach, like the recent realization of a (10,3)a K4
carbon structure [31,32].
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APPENDIX A: TRICOORDINATED
LATTICE GEOMETRIES

To make the paper at hand fully self-contained, we provide
in the following the details of all the tricoordinated lattices
discussed in the main text. In particular, we provide the lattice
vectors and their corresponding reciprocal lattice vectors, as
well as the positions of the lattice sites within the unit cell.
Details on the symmetry group for all lattices can be found in
Table II.

1. (10,3)a

The lattice vectors of the chiral hyperoctagon or (10,3)a
lattice are given by

a; =(1,0,0),

m= (b4 d

@ =(313-3)

and their corresponding reciprocal lattice vectors are

b] = 27-[(13 _11 0)3
b; =27(0,1, 1).

b2 = 27.[(01 17 _l)a

This lattice has four sites per unit cell that are located at

rp=¢(1,1,1),
r; =33, 1, -1,

r=3(53,-1
ry=5(7,3,1).
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FIG. 17. Left: Visualization of the nodal line of the deformed
hyperhoneycomb lattice in the rectangular Brillouin zone. Right:
The deformed hyperhoneycomb lattice with enlarged unit cell and
orthogonal lattice vectors. Of the eight plaquettes per unit cell, only
two enclose a magnetic flux (for B = Byé,), which we marked in
orange and blue.

2. (10,3)b

The (10,3)b or hyperhoneycomb lattice has, in its original
realization, the translation vectors

a; = (_17 1’ _2)7
a; = (2.4.,0).

a = (_1’ 192)7

Their corresponding reciprocal lattice vectors are given by
bi=2m(= L5 —d). By=2n(— L L),
by =27 (3, £,0).
This lattice has also four sites per unit cell that are located at
r; =(0,0,0),
r; = (1,1,0),

rn=(1,21)
ry=(2,3,1).

In order to include a magnetic field and still retain two good
quantum numbers in reciprocal space, it is convenient to de-
form the hyperhoneycomb lattice. First we use that the angle
between the two different zigzag chains in a; and a, direction
can be chosen arbitrarily. Thus to simplify the calculation we
set them to be orthogonal, as, e.g., done in Ref. [26]. By
doubling the unit cell in the z direction, we can furthermore
set a3 to be orthogonal to the first two lattice vectors, a; and
a,. The price we pay is that there are now eight sites per unit
cell. Solving the tight-binding model on the (deformed) hy-
perhoneycomb lattice, we find that the BZ is now rectangular
and the nodal line is located in the k, = O plane, as shown on
the left of Fig. 17. This deformation also ensures that upon
applying a magnetic field in the x direction—i.e., B = Byé,
with vector potential given by A = Byyé,—only two of the
eight plaquettes per unit cell enclose a magnetic flux. These
are shown on the right side of Fig. 17, marked in orange and
blue. For more details on the plaquettes per unit cell for the
hyperhoneycomb lattice, we refer the reader to the discussion
in Ref. [28]. For the deformed lattice, the lattice vectors
become

a; = (v/3,0,0), a,=(0,+3,0),

a3 =(0,0,0),

and the reciprOcal lattiCe vectors
b —271( 1 OO) b3_271< 1 )
— —, 0, s ( ’, —_—, 0 s

1
b =2n (O, 0, 8)

The eight sites within the unit cell are localized at

(V3 V35 (V3 V31
r; = T,—T,—Z, 4 = 77—4,—4
(V3 V31 (V3 V35

sl a) s \a s

[ V33T (V3 V311

r; = —T,T,Z, rg = —T,T,Z

3. (10,3)c

The (10,3)c lattice is closely related to the hyperhoney-
comb lattice, except that its zigzag chains run along three
different directions that are 120° rotated against each other
(see Fig. 2). Its lattice vectors are given by

1\/50)’

:1 = —_— —
a; =(1,0,0), a (2,2,

343
a; = (0, 0, —f>,
21

and the corresponding reciprocal lattice vectors are
b, = 27r<1, L 0), b, = 271(0, i0>
V3 V3
b; =2n <0, 0, i)
33

This lattice has six sites per unit cell, which are located at

1 1
= _(v/3.1,2), =——(3+3,1,8
r 4f3<f ) 1 4ﬁ(f )

1 1
rs=——(23,4,14), r4=——@3V3,1,4
3 4ﬁ( ) 4 4J§( )

1 1

rs = ——(2v3,4,10), rs=——(v/3,1,16).

5 4\/3( ) 6 4\/5( )
4. (10,3)d

The inversion-symmetric (10,3)d lattice is closely related
to the chiral hyperoctagon (10,3)a lattice, except that the
rotation of the ‘square’ spirals is alternating as shown in
Fig. 2. Its lattice vectors can be chosen as

a; :(17_190)5 32:(171v0)7
a3 =(0,0,1)
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with the reciprocal lattice vectors given by

bl :n(lv_l»o)v b2=n(11170)7
b; =7(0,0,2).

The (10,3)d lattice has eight sites per unit cell that are located

at
r=3(a,b1), 1r=730,a+b2)
r;=j(=a,b,3), rs=30,—a+b4)
rs=1(0,a—b,3), r5=1(—a,—b,2)
r;=40,—a—b.1), r5=1@a —b4),

where we used the same conventions,

a=4-2V2m b=2,
as in Ref. [29].

5. (9,3)a

The (9,3)a lattice is the only example of the lattices at hand
that is not bipartite. In its most symmetric form, its lattice

vectors are given by
a = %(—a +b+c¢), a= %(—a —2b+o),
a;=1Qa+b+o),

where

J3

—,O), ¢c=(0,0,a)

1
=(1,0,0), b={—=,
a=( ) ( 7'

with

64+ V3) 5 V3 933

1+2v3 T 1423 S 32

The corresponding reciprocal lattice vectors then become
b, =2n( -1, P 1 b, =27(0 2 |
=T Y= | =i s T T = |
1= A a 2 5 a
b; =27 1 L1
=2r(1l, —,—).
3 A a

It has twelve sites per unit cell which are located at
ry=6ra, rp=258,a+3,b+ %c
r; =48,(a+b), ry=35a+28b-— ;e
rs =6¢b, 1s=—0,a+3,b+ ﬁ
r; =—0ra, rg=—25,a—3,b— ll—zc
ro=—38;(a+b), rjH=—8a—25b+ 5c
rip=—38sb, rp=38a—8b— e

A simpler but also less symmetric version of the lattice can be

found in Ref. [28].

6. (8,3)a

The (8,3)a lattice is a chiral lattice. For all computations
shown in this paper, we use the version where all triangular
spirals are rotating clockwise [57], as in Ref. [28]. Its lattice
vectors are given by

a = (1705 0)5 a = (__ 770

S

and its reciprocal lattice vectors by

| 2
by=27(1.—.0). by=27(0.-.0).
: ( /3 ) ? < /3 )

b; =2n (O 0, 5[)

The lattice has six sites per unit cell at positions

1 V3 3 V3 242
ri=|=.—0), ==, —, —
2’10 557 5

(13ff> rz(zﬁﬁ

r3= A 9 _’ _7_
100 10 ° 5 555
2f 1 343 242
=10,—,0 re=\—"77%,——>,—7— |-
1071 5

7. (8,3)b

The (8,3)b lattice is closely related to the (8,3)a lattice,
except that it is inversion symmetric with alternating rotation
directions of the triangular spirals, see Fig. 2. Its lattice
translation vectors are given by

(11 V2 (o L 22
“=\22a55) 2\ A54A)

6
m=@&é}

and the corresponding reciprocal lattice vectors are

b, =27(2,0,0), by, =27(—1,/3,0),

by = 2n (o, _%, %)
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It also has six sites per unit cell at positions

11 V2
ry = TAh . — _ — rn = =
T3 e TS

o5
ol
SNS—

3011 42 1 2 22
= —— |, r=o = ™ : N\_/\

107 10v/3 543 5 53 53 I & bih & I T b hih & I T & hih & T

( 3 3\/§ %) (2 1 2) momentum k momentum % momentum k
r5= TAY 1~ = | r6= = = P

100 10 ~ 5 5 3 3 L] + h + b +

8. (8,3)c ™ -ﬂ_ T -Il_ T -Il_
The lattice vectors of the inversion-symmetric (8,3)c lattice r r r
are chosen as

a; =(1,0,0), a2=< ! ﬁO),

2
2
a3 = 0, 0, g

and the reciprocal lattice vectors become

1 2
b;=2n{1,—,0), by =270, —,0],
: ( 3 ) ? ( V3 )

5
b; =2n (O, 0, —>.
2

It has eight sites per unit cell that are located at
1 4 1 0 1 1
rn=\——- —7%= =) I = s T = T
: 575310 7 V3 10

B (11 3
3= 4 = 2510\/5710

]

3 7 3
10" 1037 10)°

9. (8,3)n

The (8,3)n lattice is again an inversion-symmetric lattice.

Using
a=(1,0,0), b=(0,1,0), ¢=(0,0,0)

oA B2 !
T2+ v2 2032 O

we can express the lattice translation vectors as
aj=a, a=b, az=1i@+b+c)

while the corresponding reciprocal lattice vectors become

1 1
b, :27{(1,0,——), b2=2n<0,1,——),
a o

2
b; =2n (O, 0, —).
o

vV \J

energy F

r by I’ b r b
2

FIG. 18. Surface energy spectra along high-symmetry paths for
the strong topological insulator 1; (000) for (10,3)b at the isotropic
pointt, =t, =t, = 1/3 withA =0.1.

This lattice has a rather large unit cell consisting of 16 sites
that are located at

ri=xa+(§—x)b+
rn=(1-x)a+(3—x)b+ic
r;=(3+x)a+1b+(3
rs=(—-x)a+(}+x)b+jc
rs=xa+ (3 +x)b+ je

re=(3—x)a+ib+(3-2)c
r, = (1 —x)b+zc

rs = xb + zc

energy E

{
I b bhtb b r T by b3+b b r T b bitbh b N
2 2 2 X 2 ) 2 2 2

momentum & momentum & momentum
d o | Y

O I E I S R
r r r

T

by b;
2 g z

FIG. 19. Surface energy spectra along high-symmetry paths for
the strong topological insulator 1;(000) for (10,3)d at the isotropic
point with & = 0.03.
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FIG. 20. Surface energy spectra along high-symmetry paths for
the strong topological insulator 1;(000) for (9,3)a att, = 0.475,¢, =
ty, = 0.2625, and A = 0.03.

x)a+ (1—x)b+ ic
(3+x)b+ (3 —2)e
ry=(3—x)a+ (1 —x)b+jc

1
re=(3+
1
r3=sza+
r;s = xa+ zc¢

rig= (1 —x)a+zc.

It has a fourfold rotation symmetry around the z axis, as well
as several mirror symmetries.

APPENDIX B: TOPOLOGICAL INSULATOR
CLASSIFICATION

In three spatial dimensions, topological insulators (TIs) can
be classified [14] by four Z, topological indices vy; (vivov3).
The first index vy differentiates between strong (vo = 1) and
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>
2
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[
T b btb b I T & bkth b T T b bth b T
2 2 7 2 T I 2 2 2 2
momentum k& momentum & momentum k&
by by by |
2 2 2 1
.
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r T by r by
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FIG. 21. Surface energy spectra along high-symmetry paths for
the weak topological insulator 0;(101) for (8,3)b at 7, = 0.2, t, =
t,=04,and A =0.1.
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FIG. 22. Surface energy spectra along high-symmetry paths for
the strong topological insulator 1;(010) for (8,3)c at t, = 0.2, t, =
t, = 0.4, and A = 0.03.

weak (v9 = 0) topological insulators. Technically, it states
whether the T1 exhibits an odd (strong) or even (weak) number
of Dirac cones on the surface. As such, a strong TI enjoys a
higher level of topological protection, since in contrast to their
weak counterparts their surface Dirac cones cannot be gapped
out by simply merging pairs of Dirac cones. In more general
terms, a strong TI is an intrinsically three-dimensional topo-
logical state, while a weak TI can be seen as layered compos-
ite of two-dimensional topological states (such as the quantum
spin Hall states) [13—15]. The remaining indices (v;v,v3) are
the so-called weak indices, which further specify the positions
of the Dirac cones on the various surfaces of the TI.
Topologically protected Dirac cones on the surface of
a three-dimensional TI cannot appear at arbitrary momenta
in the surface Brillouin zone but are fixed to certain high-
symmetry points [13—15], i.e., the set of time-reversal invari-
ant momenta (TRIMs). These TRIMs can be found at linear
combinations of half reciprocal lattice vectors b;, i.e.,

1 -
A,m,z,,3=§Zn,»b,- with n; € {0, 1}.

The relevance of the TRIMs here is that they can be used
to calculate the topological indices vg; (viv2v3) mentioned
above. Specifically, we have

1

(_l)vo = 1_[ 811]7[2}13
nl,nz,n3=0
"= T Sunns
n#,:o,l
ni=1

where 6 = %1 is the time-reversal polarization (TRP) at the
TRIM defined by ny, n,, n3. To determine the indices, it is in
fact not necessary to calculate this time-reversal polarization
explicitly, but it suffices to determine its change between
two TRIMs. Following Ref. [14], the simplest way to do
so is to count the number of surface bands crossing the
Fermi energy between two TRIMs. If this number is odd, the
corresponding TRP changes sign, otherwise not. To determine
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FIG. 23. Surface energy spectra along high-symmetry paths for
the strong topological insulator 1;(001) for (8,3)n atz, = 0.51, ¢, =
t, =0.245,and A = 0.1.

the topological indices, it then suffices to calculate the TRP
change for a fixed path between two TRIMs to obtain the
weak topological indices and to calculate the product of TRP
changes on opposite paths to obtain the strong index.

In the following, we document the determination of topo-
logical indices for the topological insulators found in the var-
ious 3D honeycomb systems at the heart of the current study.
To do so, we provide an illustration of the surface energy spec-
tra, as shown in Figs. 18-23, along a high-symmetry path con-
necting the TRIMs and indicate the change of the TRP along
this path. The surface bands are marked in red or yellow, de-
pending on whether they are located at the upper or lower sur-
face. If the bands are degenerated they are marked in orange.

APPENDIX C: TIGHT-BINDING HAMILTONIAN

In the main text of our paper, we use the tight-binding
Hamiltonian

H = Ztij(cjaocj + H.c.)
(i,4)
+i Y Y vkmle](dy xdy) -G e;+ He)  (CD)
(i, 1

with

el o Fi:
d=("1), 6=|0 and d,=—9 . (C2)
i=\i ) o= i

ci,l o, ij

We generically allow the strength of the nearest-neighbor
hopping, #;;, to be anisotropic when mapping out the phase
diagram. The spin-orbit coupling term is implemented via a
complex next-nearest-neighbor hopping, similar to the imple-
mentation in Ref. [14].

APPENDIX D: EFFECT OF ADDITIONAL SYMMETRIES
ON NODAL LINE SEMIMETALS

1. (10,3)d
The glide symmetry in (10,3)d is implemented in k space
by

H(k,, ky, k) = UL H(ky, ky, —k.)Ug, (D1)

where Ug is a unitary matrix that depends on k. Thus, in
the k, = 0 plane, the Hamiltonian is invariant under the glide
symmetry and all its eigenstates can be labeled by their glide
eigenvalues. These turn out to be inverted at the I' point,
compared to the K point located at the edge of the Brillouin
zone, very similar to what was found in Ref. [29]. Thus, as
long as the glide symmetry remains intact, the nodal line in
the k, = 0 cannot be gapped out.

2. (8,3)n

The lattice (8,3)n exhibits several intersecting nodal lines
as depicted in Fig. 1. These remain stable even with
anisotropic coupling due to the protection by a mirror sym-
metry, implemented as

Hky, ky, k.) = U H (kg ky, —k2)Ung (D2)
and a fourfold rotation symmetry, implemented by
H(ky, ky, k) = Uy H(—ky, ke, k)Uroi.— (D3)

The mirror symmetry pins the red nodal line in Fig. 1 to the
k. = 0 plane, while the rotation symmetry pins the intersec-
tion points of the green and blue nodal line to the k, axis.

We can understand the stability of the intersection
points by first computing the winding numbers across an
intersection—for instance the one between the red and the
blue loop as shown in Fig. 24(a). We note that the winding
number changes sign across the intersection. Consequently,
the intersection can only be removed by splitting the nodal
lines in the two ways shown in Figs. 24(b) and 24(c), while
Fig. 24(d) is forbidden. On the other hand, the configurations
shown in Figs. 24(b) and 24(c) are not compatible with the
mirror symmetry mentioned above, because both require that
the red nodal line leaves the k, = 0 plane. Thus, as long
as mirror symmetry remains intact, there is no possibility to
remove any of the intersection points in the k, = 0 plane. The
intersection of the green and blue nodal line, on the other
hand, is protected by the fourfold rotation symmetry around

the z axis.

(a) (b) (c)
—1

- 1/\ [\Jrl

RO

forbidden

(d) ‘

allowed

FIG. 24. (a) Intersection of two nodal lines in (8,3)n with cor-
responding winding numbers. There are only two splittings of the
intersection that are compatible with the winding numbers, shown in
(b) and (c), while the one in (d) is forbidden.
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