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Quantum spin ladders of non-Abelian anyons
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Quantum ladder models, consisting of coupled chains, form intriguing systems bridging one and two
dimensions and have been well studied in the context of quantum magnets and fermionic systems. Here we
consider ladder systems made of more exotic quantum mechanical degrees of freedom, so-called non-Abelian
anyons, which can be thought of as certain quantum deformations of ordinary SU(2) spins. Such non-Abelian
anyons occur as quasiparticle excitations in topological quantum fluids, including px + ipy superconductors,
certain fractional quantum Hall states, and rotating Bose-Einstein condensates. Here we use a combination of
exact diagonalization and conformal field theory to determine the phase diagrams of ladders with up to four
chains. We discuss how phenomena familiar from ordinary SU(2) spin ladders are generalized in their anyonic
counterparts, such as gapless and gapped phases, odd and even effects with the ladder width, and elementary
“magnon” excitations. Other features are entirely due to the topological nature of the anyonic degrees of freedom.
In general, two-dimensional systems of interacting localized non-Abelian anyons are anyonic generalizations of
two-dimensional quantum magnets.
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I. INTRODUCTION

Quantum antiferromagnets and, more generally, electronic
systems are notoriously known to behave fundamentally
differently in one and two spatial dimensions. In one spatial
dimension quantum fluctuations are enhanced and often give
rise to critical properties such as algebraic spin (or charge)
correlations.1 In contrast, in two spatial dimensions one
frequently finds quantum ground states (GSs) with long-range
order, which often originate from the spontaneous breaking
of a continuous symmetry. The archetypal example of the
latter are Heisenberg antiferromagnets on bipartite lattices,2

where the Néel GS arises from the spontaneous breaking
of the SU(2) spin symmetry and the resulting zero-energy
Goldstrone modes are spin-wave excitations, also called
magnons. Quantum ladder systems, consisting of a finite
number W of coupled one-dimensional (1D) systems, form
a bridge between between these two limits, and the evolution
of quantum GSs in the dimensional crossover of increasing
ladder width has been well studied in the context of itinerant
bosonic and fermionic systems3 as well as quantum spin
ladders.4 A variety of remarkable crossover effects have been
observed, such as the celebrated even/odd effect in quantum
spin-1/2 Heisenberg ladders, where gapless GSs are found for
all odd width W , while ladder systems with an even number
of legs exhibit a spin gap.4 Surely, this effect has also been
experimentally observed for actual materials realizing almost
perfect two- and three-leg S = 1/2 antiferromagnetic (AFM)
ladders when performing careful magnetic susceptibility
measurements.5

In this paper, we consider systems of more exotic quantum
mechanical degrees of freedom, so-called non-Abelian anyons,
which have attracted considerable interest in the descrip-
tion of non-Abelian vortices in unconventional px + ipy

superconductors,6 quasiholes in certain fractional quantum
Hall states,7–9 excitations in certain heterostructures involving

a unique class of materials, so-called topological insulators,10

or vortices in rotating Bose-Einstein condensates,11 and in
theoretical proposals for inherently fault tolerant quantum
computing schemes.12 Since we are interested in their col-
lective quantum GSs in two spatial dimensions, we follow a
route similar to the above-mentioned studies of SU(2) quantum
antiferromagnets and study ladder systems of interacting
anyonic degrees of freedom.

Formally, non-Abelian anyons can be described by so-
called su(2)k Chern-Simons theories, which correspond to
certain quantum deformations13 of SU(2). In these theories, the
non-Abelian degrees of freedoms are captured by “generalized
angular momenta” j , which for a given su(2)k theory, are
constrained to the first k + 1 representations of SU(2),

j = 0,
1

2
,1,

3

2
, . . . ,

k

2
.

Similar to the coupling of ordinary angular momenta, two
non-Abelian degrees of freedom can be “fused” into multiple
states with total angular momenta (or spin),

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2|
+ 1 ⊕ · · · ⊕ min(j1 + j2,k − j1 − j2),

where again the “cutoff” k of the deformation enters. The
occurrence of multiple fusion channels on the right-hand
side of the above equation is what intrinsically gives rise
to a macroscopic degeneracy of states for a set of multiple
non-Abelian anyons, i.e., the degeneracy grows exponentially
with the number of anyons. This macroscopic degeneracy is
the hallmark of non-Abelian statistics.

In this paper we consider the fundamental case of non-
Abelian anyons with generalized angular momentum j = 1/2,
which obey the fusion rule 1/2 ⊗ 1/2 = 0 ⊕ 1 reminiscent of
two ordinary spin-1/2’s coupling into a singlet or triplet. As
the Heisenberg Hamiltonian for ordinary spins, interactions
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between the anyons energetically split the two fusion out-
comes, which in the case of ordinary SU(2) spins is captured
by the familiar Heisenberg Hamiltonian,

H =
∑
i,j

Jij
�Si · �Sj (1)

= 1

2

∑
i,j

Jij [(�Si + �Sj )2 − �S2
i − �S2

j ] (2)

= −
∑
i,j

Jij�
0
i,j + const, (3)

which can be viewed as a sum of pairwise projectors �0
i,j

onto the singlet state. Similarly, we can define an “anyonic
Heisenberg Hamiltonian” that for a pair of non-Abelian anyons
with generalized angular momentum j = 1/2 projects onto
the j = 0 (singlet) fusion channel, thus taking the same form
as Eq. (3) of the Hamiltonian above. In analogy to ordinary
SU(2) spins we refer to positive couplings (projecting onto the
generalized j = 0 state) as antiferromagnetic (AFM), while
negative couplings (projecting onto the generalized j = 1
state) are ferromagnetic (FM).

It has recently been shown that similar to their SU(2)
counterparts chains of interacting non-Abelian anyons can
exhibit a variety of collective GSs, including stable gapless
phases14–17 and exotic infinite-randomness fixed points.18–20

In this paper, we aim at understanding two-dimensional GSs
of interacting non-Abelian anyons and—following a similar
route as in the case of the above-mentioned studies of SU(2)
quantum antiferromagnets—we consider systems of coupled
chains forming W -leg ladders. Employing extensive numerical
simulations combined with a conformal field theory analysis,
we investigate phase diagrams of W -leg ladder with up to
W = 4 legs, which allows us to infer some conclusions also for
the two-dimensional (2D) limit of W → ∞. We mostly focus
on the case of su(2)k with k = 3 as a representative example
and in particular all numerical simulations are performed for
this case. We will return to the more general case of arbitrary
level k > 3 in Sec. VI.

While in this paper we detail the physics of interacting
non-Abelian anyons mostly in terms of (deformed) quantum
spins—a notion more familiar to the field of low-dimensional
quantum magnetism—we have put forward another perspec-
tive on the physics of interacting anyons in the context of
certain fractional quantum Hall states in a recent article.21

There we have made a connection between the collective states
of (anyonic) excitations in non-Abelian quantum Hall liquids
and the physics of moving on a non-Abelian quantum Hall
plateau.

The remainder of this paper is structured as follows: We
will start with a detailed derivation of the microscopic models
analyzed in this paper in Sec. II. This is followed by a
discussion of the phase diagrams of the various ladder models
starting from the strong rung-coupling limit in Sec. III and
continuing with the weak rung-coupling limit in Sec. IV. We
will then turn to the peculiar role of boundary conditions and
the occurrence of gapless modes at open boundaries for these
anyonic ladder models in Sec. V. We round off the paper by a
discussion of the two-dimensional limit of these ladder models

FIG. 1. (Color online) Three coupled chains of interacting anyons
(indicated by the filled circles). The interaction along (Jleg) and
perpendicular (Jrung) to the chains are indicated by the ellipses.

in Sec. VII and generalization to su(2)k theories with k > 3 in
Sec. VI.

II. THE MICROSCOPIC LADDER MODEL

In this section we will give a definition of the microscopic
W -leg ladder models for so-called su(2)3 Fibonacci anyons.
We will keep our discussion short but self-contained, as an
extended derivation of general microscopic Hamiltonians has
been given in Ref. 22. We will emphasize in the following
those aspects that are not covered in Ref. 22. For a given
W -leg ladder we denote the strength of the interactions as
Jleg and Jrung for the coupling along and perpendicular to the
chains, respectively, as illustrated in Fig. 1. Parametrizing these
couplings as Jleg = cos θ and Jrung = sin θ we will map out the
parameter space on a unit circle as shown in Fig. 2.

Our numerical analysis of these ladder systems is based
on exact diagonalization using the Lanczos algorithm, which
provides us with the low-energy spectra of finite systems with
extent W × L, where L is the length of the ladder in the chain
direction and W is the width of the ladder in the rung direction.

FIG. 2. (Color online) Representation of the parameter space
of the model on a circle. The couplings Jrung and Jleg can be
either positive (AFM) or negative (FM). The different phases in
each of the quadrants labeled by Jrung–Jleg are given in Table I.
The (gray) squares at π/4 correspond to isotropic couplings
|Jrung/Jleg| = 1. The (orange) stars mark the parameters in the
vicinity of the strong-coupling limit |Jrung| � |Jleg| used in this
work, namely, θ = {3π/7,4π/7,10π/7,11π/7} labeled from 1 to 4,
respectively.
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In our exact diagonaliztion studies, we have been able to
analyze systems of size 2 × L (L = 8,12,15,16,18,20,21),
3 × L (L = 6,8,9,10,12) and 4 × L (L = 4,6,8).

A. The basis states

To describe the basis states of a set of N localized
(interacting) su(2)3 anyons we consider a fusion path, as
shown in Fig. 3(a). The basis of the many-anyon Hilbert space
corresponds to all admissible labelings |x1,x2, . . .〉 of the links
in this fusion path with labels xi corresponding to generalized
angular momenta of su(2)3. These labelings must satisfy the
constraints of the fusion rules at each vertex of this fusion path.
For su(2)3 these fusion rules are

0 ⊗ α = α, 1/2 ⊗ 1/2 = 0 ⊕ 1, 1/2 ⊗ 1 = 1/2 ⊕ 3/2,

1/2 ⊗ 3/2 = 1, 1 ⊗ 1 = 0 ⊕ 1, 1 ⊗ 3/2 = 1/2, (4)

3/2 ⊗ 3/2 = 0,

where α ⊗ β = β ⊗ α. These fusion rules (4) reveal an
automorphism α → α̂ = 3/2 − α, allowing an identification
of 0 ↔ 3/2 and 1/2 ↔ 1 for su(2)3. Using the notation for the

FIG. 3. (Color online) (a) The fusion path connecting N Fi-
bonacci [su(2)3] anyons. Basis states correspond to all admissible
labelings of the edges xi with anyon charges 0 and 1/2 that satisfy
the fusion rules. (b) A nearest-neighbor coupling in a chain of anyons
can be calculated by using the F matrix to transform to a unique basis
in which the fusion product of the two anyons is one of the variables.
(c) Longer-range interactions first need to be mapped to nearest-
neighbor interaction by braiding anyons. (d) A Dehn twist, giving an
additional phase factor is needed if the interaction winds around the
torus. For su(2)3 the phase is ψx = 0 for x = 0 and ψx = −4π/5 for
x = 1/2.

FIG. 4. (Color online) Sketch of a typical ladder system of extent
4 × L (L = 6), where the dots indicate the location of τ anyons. The
fusion path C (dotted line) with labelings xi (or yi) is used define an
(arbitrary) ordering of the sites, which is used in the definition of the
basis states. The exchange couplings Jleg and Jrung are indicated.

Fibonacci theory, we write the identity 1 for the former and
the label τ for the latter, thus leading to the fusion rules

1 ⊗ 1 = 1, 1 ⊗ τ = τ, τ ⊗ τ = 1 ⊕ τ. (5)

For the labelings of the fusion path these rules then imply
that xi = 1 has to be followed by xi+1 = τ but xi = τ can be
followed by either xi+1 = 1 or xi+1 = τ . This constraint gives
an overall Hilbert space size to FN+1 + FN−1 ∼ φN (for large
N ) where F is the Fibonacci sequence and φ = (1 + √

5)/2,
the golden mean. Note that in comparison to ordinary SU(2)
spin-1/2 systems this Hilbert space has a reduced size.

Our specific choice of a fusion path for the W -leg ladder
system is shown in Fig. 4. Using periodic boundary conditions
along the leg direction enables us to conveniently use the
translation symmetry of the system along the legs: The
Hamiltonian matrix can then be block-diagonalized into L

blocks labeled by the total momentum K = 2π n
L

of the
eigenstates. Hence, the Hilbert space (in each symmetry sector)
grows approximately as φN/L which is one of the limiting
factors of our simulations. To provide some examples, the
Hilbert spaces of the K = 0 sector for 2 × 21, 3 × 12 and
4 × 8 ladders are found to be of sizes 28 527 448, 2 782 659,
and 609 147, respectively.

B. The rung interactions

With our choice of fusion path the rung coupling Jrung

on ladders with open boundary conditions on the rungs
always connects neighboring anyons along the fusion path. To
calculate the interaction between two neighboring anyons as
in Fig. 3(b) we need to calculate their total spin by performing
a basis transformation using the F matrix, and then assign
energy −Jrung to the identity fusion channel and energy 0 to
the τ fusion channel. This basis transformation is illustrated
in Fig. 3.

Denoting the local basis states on the three
edges around the interaction as |xi−1,xi,xi+1〉 ∈
{|1,τ,1〉,|1,τ,τ 〉,|τ,τ,1〉,|τ,1,τ 〉,|τ,τ,τ 〉} and the
states after the F transformation as |xi−1,zi,xi+1〉 ∈
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{|1,1,1〉,|1,τ,τ 〉,|τ,τ,1〉,|τ,1,τ 〉,|τ,τ,τ 〉}, we can write the F

matrix as

Fi =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1/φ 1/

√
φ

0 0 0 1/
√

φ −1/φ

⎤
⎥⎥⎥⎦. (6)

Assigning an energy −1 to the identity zi = 1 and 0 to
zi = τ the local Hamiltonian is Hi = −FiPiFi , where Pi is

the projector onto the state with zi = 1. In the basis defined
above we get

Hi =

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −1/φ2 −1/φ3/2

0 0 0 −1/φ3/2 −1/φ

⎤
⎥⎥⎥⎥⎥⎦

. (7)

The rung Hamiltonian is obtained by multiplying this
matrix by Jrung and, for the term shown in Fig. 4 acts on
the local states |y1,y2,y3〉.

C. The leg interactions

Te leg couplings shown on Fig. 4, on the other hand, are longer-range interactions and requires “braiding” of anyons as illustrated
in Fig. 3(c). Let us first consider a next-nearest-neighbor interaction along a chain. To transform this into a nearest-neighbor
interaction we need to change the basis again, this time by braiding the two left anyons in a clockwise manner with a so-called
braid matrix Bi acting on the states |xi−1,xi,xi+1〉. Using the same basis as before this braid matrix can be written as

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e4iπ/5 0 0 0 0

0 e−3iπ/5 0 0 0

0 0 e−3iπ/5 0 0

0 0 0 1
φ2 e

4iπ/5 + 1
φ
e−3iπ/5 1

φ3/2 (e4iπ/5 − e−3iπ/5)

0 0 0 1
φ3/2 (e4iπ/5 − e−3iπ/5) 1

φ2 e
−3iπ/5 + 1

φ
e4iπ/5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

and the next-nearest-neighbor coupling then becomes
B

†
i Hi+1Bi .
Similarly, for the leg coupling, illustrated for a four-leg ladder

in Fig. 4, we need three braids and act on the whole sequence
|x1,x2,x3,x4,x5,x6〉 involving six bonds (in general, involving
2W−2 bonds for W chains) along the fusion path C according
to the linear transformation

H 1−6
leg = JlegB2 ⊗ B5 ⊗ B4 ⊗ H4 ⊗ B

†
4 ⊗ B

†
5 ⊗ B

†
2. (9)

FIG. 5. (Color online) A ladder system as in Fig. 4, but with
periodic boundary conditions, where an additional rung-coupling
term connects the two out legs (vertical red segments).

Similar formulas can easily be derived for any bond and any
width W .

It should be noticed that acting on any given initial state
|x1x2 · · · xLW 〉, each of the W · L leg couplings can potentially
generate up to 22W−1 resulting linear independent states since
each operator in (9) can generate up to two such states. This
exponentially growing number of resulting states should be
contrasted to the single state generated by a spin-flip operation
in the case of ordinary SU(2) spins. As a consequence,
this leads to denser and denser matrices for increasing W

in the anyonic ladder models, which limits the numerically
accessible system sizes for larger width W .

D. Periodic boundary conditions along the rungs

Closing these open boundaries along the rung direction is
done by adding additional couplings between the first and last
legs as shown in Fig. 5. To calculate the Hamiltonian matrix for
these couplings, one first has to again braid the two involved
anyons until they are nearest neighbors along the fusion path.
The subtlety with this term is that after the braidings we
do not end up with the usual nearest-neighbor term of Fig.
3(b), but with a coupling that twists once around the fusion
path as illustrated in Fig. 3(d). Untwisting this winding by a
2π rotation of the right anyon and all following ones by 2π

around the fusion path gives rise to a Dehn twist phase factor
exp(i
x),23 which is 1 for x = 1 but exp(−4iπ/5) for x = τ .
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TABLE I. The various phases of the Fibonacci ladders as a
function of the number of legs W. Each line corresponds to one
of the four quadrants of the parameter space shown in Fig. 2. In the
first column, the first (second) label refers to the rung (leg) coupling
Jrung (Jleg). Gapped phases are labeled by �. For the gapless phases
the value of the central charge of the low-energy CFT is indicated.

W→ 1 2 3 4 5 6

AFM-AFM 7/10 � 7/10 � 7/10 �

AFM-FM 4/5 � 4/5 � 4/5 �

FM-AFM 7/10 7/10 � 7/10 7/10 �

FM-FM 4/5 4/5 � 4/5 4/5 �

The Hamiltonian for this rung term acts on the local sites
x1,x2,x3,x4,x5 of Fig. 5 and reads

H̃ 1−5
rung = JrungB2 ⊗ B3 ⊗ T4 ⊗ H4 ⊗ T

†
4 ⊗ B

†
3 ⊗ B

†
2, (10)

where Ti is the (diagonal) 2 × 2 twist matrix,

Ti =
[

1 0

0 e−4iπ/5

]
, (11)

in the local {|1〉,|τ 〉} basis (for the variable xi).
Care must be taken in choosing a consistent convention for

the phase of (counter)clockwise braids and Dehn twists. An
inconsistent choice can easily be detected as it will cause a
broken translation symmetry along the rungs that can be seen
in, e.g., the local bond energies.

III. STRONG-COUPLING LIMIT AND PHASE DIAGRAMS

For SU(2) quantum spin ladders a single phase extends
from the weak to strong rung-coupling limit for any of the
four possible signs of the rung and leg couplings.4,24 The
generic phase diagram thus has at most four different phases.
For the su(2)3 anyonic ladder we observe the same behavior
and we will start to discuss the various phases starting from
the strong rung-coupling limit |Jrung| � |Jleg|. The results
discussed below are summarized in Table I. The total spin of an
isolated rung, which depends on the sign of the rung coupling
and on the rung length W , completely determines the nature
of the phase at finite Jleg and whether it is gapped or critical.
For antiferromagnetic Jrung (first two lines of Table I) we find
similar even/odd effects as in the SU(2) case. Even widths are
gapped while odd widths are critical and characterized by the
same conformal field theory (CFT) as the single chain. For
ferromagnetic Jrung and W = 3p (p an integer) the rungs form
singlets (labeled with the identity 1) and hence the ladders are
gapped. Otherwise, the rungs behave as “triplet” (τ ) states and
the low-energy physics is that of an (effective) critical chain
as shown in the two last lines of Table I.

A. Antiferromagnetic rung coupling

Let us first consider AFM rung coupling, where for an
isolated rung the GS has a total angular momentum j = 0
(state with label 1) for even width W and j = 1

2 (state with
label τ ) for odd width.

For even W , the GS at Jleg = 0 is a product of local 1 states
on the individual rungs. The elementary excitation is a local

0 π/6 π/3 π/2 2π/3 5π/6 π
momentum K
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0.8 0.8
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(K
)

θ =   π/4   (2 legs)
θ = 3π/4   (2 legs)
θ =   π/4   (4 legs)

2x20
2x21
4x8

FIG. 6. (Color online) Dispersion of a generalized “magnon”
excitation along the ladder direction for two-leg and four-leg ladders
and various couplings. The magnon excitation is created by flipping a
local label xi from 1 to τ , which can then propagate down the ladder.
Data is shown for 2 × 20 (and 2 × 21) ladders (open symbols) as well
as 4 × 8 ladder (closed symbols) and coupling parameters θ = π/4
(Jleg = Jrung = √

1/2) and θ = 3π/4 (Jleg = −Jrung = −√
1/2). The

solid lines are a guide to the eye, obtained from Fourier series fit to
the data. The arrows indicate extrapolations to the thermodynamic
limit as shown in Fig. 8.

triplet (τ ) excitation with a gap �0(W ) ∼ 1/W . For (weak)
leg coupling the elementary magnon excitation can hop to
one of its two neighboring rungs in first order in Jleg, giving
rise to a dispersion of width ∝|Jleg|. Typical such dispersions
(but for intermediate couplings) are shown in Fig. 6. The gap
decreases linearly as �0(W ) − α|Jleg| + O(J 2

leg). However,
this perturbative strong-coupling result for the gap is restricted
to a shrinking region ∼1/W around Jleg = 0 as W gets larger.
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(b) K = π(a) K = 0

FIG. 7. (Color online) Finite-size extrapolations of the energy
gaps of three-leg ladder systems for various couplings θ , with
ferromagnetic rung and antiferromagnetic leg couplings in the
(a) K = 0 and (b) K = π momentum sectors. Extrapolations to the
thermodynamic limit are obtained by fitting the numerical data to
the form �(L) � �(∞) + C

L
exp (−L/ξ ), where ξ is a correlation

length. In the K = 0 sector, the first excitation energy (open symbols)
extrapolates to zero (indicating that the GS is twofold degenerate
in the thermodynamic limit), while the extrapolation of the second
excitation energy (filled symbols) indicated a finite gap.
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For ordinary SU(2) ladders it has been argued that the gap
vanishes as exp (−cW ) for large enough W and any chain
coupling Jleg.24 We will return to the question whether a gap
can survive for anyonic systems in the limit W → ∞ below.

Away from the above-discussed limit, the gaps of the two-
and four-leg ladders can be obtained for intermediate couplings
by using Lanczos exact diagonalisations of clusters of different
lengths. Finite-size scalings (similar to the one shown in
Fig. 7 for a three-leg ladder to be discussed later) enable to
accurately estimate, in the thermodynamic limit, the gaps at
the minima of the dispersion (see, e.g., Fig. 6) of the excitation
spectrum. Results of the extrapolated gaps are summarized
in Fig. 8(a). Note that the minima of the dispersion occurs
at different momenta depending on the sign of Jleg, K = 0,
and π for antiferromagnetic Jleg > 0, K = 0, and 2π/3 for
ferromagnetic Jleg < 0. In the latter case, for sufficiently large
leg coupling, the minima at 2π/3 can disappear as shown in
Fig. 6

For odd width W , since the GS of a single AFM rung carries
angular momentum j = 1/2 (τ ), the low-energy effective
model for weakly coupled rungs is that of a single τ -anyon
chain. Indeed, as shown in Fig. 9 for a three-leg ladder we find
that the low-energy spectrum is gapless and can be described
by a CFT identical to the one of a single chain.14 In particular,
we find that the lowest energies (per rung) en scale as

en(L) � e∞ + πu

(
− c

12
+ 2hn

)
1

L2
, (12)

where L is the length of the ladder, u is a zero-mode
velocity, and 2hn and c are the conformal weights (or scaling
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FIG. 8. (Color online) Extrapolated values �(L → ∞) of the
gaps at the two crystal momenta K = 0 and K = K0 corresponding
to the zero-energy modes of the single chains. �(∞) is plotted as a
function of coupling parameter θ , i.e., θ ∈ [0,π ] for two- and four-leg
ladders with AFM rung coupling (a) and θ ∈ [−π,0] for a three-leg
ladder with FM rung coupling (b). For AFM (FM) leg coupling,
K0 = π (K0 = 2π/3) and clusters up to 2 × 20 (2 × 21), 3 × 12
(3 × 12), and 4 × 8 have been used. �(∞) is deduced by fitting
the data as �(L) � �(∞) + C

L
exp (−L/ξ ), where ξ is a correlation

length.
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FIG. 9. (Color online) Finite-size scaling of 3 × L (three-leg)
ladders of sizes up to L = 12, with AFM rung coupling and
with both AFM (top) and FM (bottom) leg couplings. The lowest
eigenenergies per rung (symbols) are plotted vs 1/L2. The right-hand
and left-hand panels correspond to two different crystal momenta, the
ones characterizing the zero-energy modes of a single chain. The θ

values (indicated on the plot) correspond to the strong rung couplings
|Jrung/Jleg| ∼ 4.38 labeled as “1” and “2” in Fig. 2. CFT scalings are
shown: (i) A linear fit of the GS energy (labeled by “0”) accurately
provides the overall energy scale (i.e., the velocity); and (ii) all other
straight lines are expected CFT scalings using the conformal weights
2hn and the central charge c indicated on the plots [see Eq. (12) in
the text].

dimensions) and central charge of the CFT. Depending on the
sign of the leg coupling these gapless theories are those of the
tricritical Ising model (c = 7/10) or three-state Potts model
(c = 4/5) for AFM and FM couplings, respectively.

The anyonic ladders with AFM rung coupling thus behave
similarly to their SU(2) analogs with even/odd widths giving
rise to gapped and/or gapless physics as summarized in the
first two lines of Table I.

B. Ferromagnetic rung coupling

Next, we move to the case of a ferromagnetic rung coupling,
where we find major differences between the anyonic ladders
and their SU(2) counterparts. For ordinary SU(2) ladders
of even width W , the strong coupling rungs form a total
integer spin and the effective low-energy model (for weak leg
coupling) is a Haldane Heisenberg chain,25 which is gapped
for AFM leg coupling. For odd width W the ladders remain
gapless for either sign of the leg coupling, since each rung
forms a spin-1/2 state.

In contrast to the even/odd effect for ordinary SU(2) spins
ladders, for anyonic ladders, we find different phases and
periodicities of 3 in W for k = 3. Ladders with W = 3p

(p an integer) and ferromagnetic Jrung are gapped, since
each rung forms a singlet (1) state similar to the even
width ladders in the AFM case. As an example, we show
in Fig. 8(b) the gap of a three-leg ladder obtained from
finite-size scalings, examples of which are shown in Fig. 7.
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FIG. 10. (Color online) Finite-size scaling of 2 × L (two-leg)
ladders with FM rung coupling, with both FM (top) and AFM
(bottom) leg couplings and with up to 2 × 21 and 2 × 20 sites,
respectively. The θ values (indicated on the plot) correspond to the
strong rung couplings |Jrung/Jleg| ∼ 4.38 labeled as “3” and “4” in
Fig. 2. Same notations and same analysis as in Fig. 9.

Alternatively, the low-energy effective model of ladders with
widths that are not multiples of 3 is again that of a single τ

chain and thus gapless as illustrated in Fig. 10 for a two-leg
ladder. One might naively expect that the two-leg ladder
is again a gapped Haldane chain, since two FM coupled
j = 1/2 momenta form a total j = 1 momentum. However,
as noted in the Introduction, in su(2)k theories with odd
level k, one can identify momentum j with momentum
k/2 − j by fusing it with the Abelian momentum-k/2 particle.
For su(2)3 this implies that momentum j = 1 behaves as
momentum j = 1/2 (τ ). We find that this gapless phase
extends all the way up to weak rung coupling.

We summarize our results in the phase diagrams of
Fig. 11(a) for two-leg and four-leg ladders, and of Fig. 11(b)
for three-leg ladders.

Jrung

Jleg
c = 4/5 c = 7/10

gapped

Jrung

Jleg

c = 4/5 c = 7/10

gapped

(a) 2-leg ladder, 4-leg ladder (b) 3-leg ladder

FIG. 11. (Color online) Phase diagrams of the two-leg and four-
leg ladders (a) and of the three-leg ladders (b) vs the couplings Jleg =
cos θ and Jrung = sin θ . The central charge of the gapless phases is
indicated.

IV. DECOUPLED CHAINS

We now turn to a discussion of the limit where the rung
coupling between the individual legs of the ladder vanishes.
In contrast to the case of conventional SU(2) spin ladders, we
find that the anyonic ladder system does not decompose into
independent chains in this limit of vanishing rung coupling,
i.e., Jrung = 0. In particular, we find that the energy spectrum
in this limit is not given by the free tensor product of the
energy spectra of individual chains, but rather turns out to
be a certain subset thereof. In the following, we describe
a set of “topological gluing conditions” that constrain the
energy spectrum to this subset of the free tensor product. We
closely follow the analytical arguments, which we developed
in Refs. 16 and 21 in a so-called “liquids picture,” where we
identify the collective gapless modes of the quasi-1D anyon
chains (or ladders) with edge states at the spatial interface
between two distinct topological quantum liquids—for an
illustration see, e.g., Fig. 2 of Ref. 16. This liquids picture
provides a set of analytical rules which allow to obtain the
spectrum of these decoupled anyon chains, which in the
remainder of this section we compare with numerical results
for two-leg and three-leg ladder systems. We find perfect
agreement of the two approaches.

Let us briefly describe the analytical spectrum of the
decoupled chains (Jrung = 0 limit), based on the results
obtained in Ref. 16 (see Fig. 2 of that reference). At each
interface between two topological (or Hall) liquids there is
an edge [see Fig. 2(b) of Ref. 16]. The key tool developed
in Ref. 16 was that each chain can be viewed as “filled”
with a new topological (or Hall) liquid so that the right-
and left- moving gapless degrees of freedom of each chain
arise from the juxtaposition of two topological liquids. The
field theory describing each of these edges arises from the
familiar Goddard-Kent-Olive (GKO) coset construction26 of
CFT. Consider for example two decoupled chains. Thus, there
are five liquids, and four edges. For, say, AF interactions
between the anyons, the spectrum of these four edges in the
“topological sector” of “topological charge” j1 takes on the
form (following the rules developed in Ref. 16, and using
the notation of the same article)

(ψL)j1
j2

(ψR)
j ′

1
j2

(ψL)
j ′

1

j ′
2

(ψR)j1

j ′
2
.

Here j1 denotes the topological charge which is “ejected”
from the four-edge system to infinity through the surrounding
(“parent”) topological liquid [compare again Fig. 2(b) of
Ref. 16]. The left (holomorphic) and right (antiholomorphic)
conformal weights of this state are

hL = �
j1
j2

+ 0 + �
j ′

1

j ′
2
+ 0, (13)

hR = 0 + �
j ′

1
j2

+ 0 + �
j1

j ′
2
, (14)

respectively, where �
j1
j2

= [1 + j2(j2 + 1)/(k + 1) − j1(j1 +
1)/(k + 2)] is the conformal weight of the primary field (ψL)j1

j2

in the GKO coset su(2)k−1 × su(2)1/su(2)k . Considering for
simplicity k = odd, we can choose j1 and j ′

1 to run over
integer values 0,1, . . . ,(k − 1)/2 and j2,j

′
2 run over values

0,1/2,1, . . . ,(k − 1)/2. We are only interested in fields with
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FIG. 12. (Color online) Finite-size scaling of the lowest eigenen-
ergies (normalized per rung) of a two-leg ladder with Jrung = 0
and Jleg = ±1 (decoupled chains) vs 1/L2. The right-hand and
left-hand panels correspond to two different crystal momenta, the
ones characterizing the zero-energy modes of a single chain. Same
procedure and notations as Figs. 9 and 10.

hL = hR , so that the scaling dimension is x(j1; j2; j ′
1; j ′

2; j1) =
2hL.

We now compare the above analytical spectrum with
numerical spectra for decoupled chains. Finite-size scaling of
the low-energy spectrum (similar to the procedure employed in
the previous section) enables us to assign conformal weights to
each energy level, analogous to the case of the two-leg su(2)3

ladder in Fig. 12. As before, an accurate fit of the GS energy per
site versus 1/L2 fixes the overall energy scale. The (allowed)
combinations 2hL = 2h1 + 2h2 corresponding to the sum of
two conformal weights, each arising from a single edge state
[compare Eq. (13)], can then be read off from the slopes
of the lowest excited states versus 1/L2. These numerical
results as well as those for three decoupled legs (scaling not
shown here), and for both FM and AFM (intraleg) couplings,
are summarized in Table II. The quantum numbers (and
degeneracies) obtained numerically are in perfect agreement
with those obtained from the above analytical analysis.

V. EFFECTS OF BOUNDARY CONDITIONS

A characteristic feature of a topological phase is that it is
sensitive to the topology of the underlying manifold,27 which
is reflected in a nontrivial GS degeneracy and the occurrence
of gapless edge modes for open boundaries. In this section,
we will investigate the sensitivity of the anyon ladder systems
to these latter effects of changing boundary conditions. So
far we considered anyon ladder systems with open boundary
conditions along the rung direction and periodic boundary
conditions along the leg directions, resulting in the topology
of an annulus. Following the arguments in Refs. 16 and 21
we interpret the observation of gapless states in the energy
spectrum as the appearance of gapless edge modes at the open
boundary conditions. As a consequence, we expect the energy
spectrum to gap out as we remove the gapless edge states by
gluing together the open boundaries of the annulus to yield a
torus geometry. As detailed in Sec. II D this topology change is
accomplished by adding a rung coupling between the two outer
legs of the ladder (and introducing the correct Dehn twist).

TABLE II. Scaling dimensions for two (top) and three (bottom) decoupled chains with AFM (θ = 0) and FM (θ = π ) leg couplings,
for the two crystal momenta corresponding to the respective zero-energy modes of a single chain. Listed here are the numerically observed
conformal operators in the subset of the free-tensor product of energy states for W individual chains, corresponding to CFTs with central
charge c = W × 7

10 (c = W × 4
5 ) for AFM (FM) coupling. For the Ising theory (c = 7/10), we use the common identification of operators

with conformal weights, i.e., I → 0, ε → 1/5, ε′ → 6/5, ε ′′ → 3, σ → 3/40, σ ′ → 7/8. For the three-state Potts model (c = 4/5) this
identification becomes I → 0, ε → 4/5, σ1,2 → 2/15, ψ1,2 → 4/3. For the case of two chains we also list the topological symmetry sector,
i.e., the eigenvalue of the topological symmetry operator, for all energies.

Two-leg ladder
θ = 0 Top. θ = 0 Top. θ = π Top. θ = π Top.
K = 0 sector K = π sector K = 0 sector K = 2π/3 sector

I 0 σ + ε ( 1
2 , 1

2 ) I 0 σ + σ 1
2

σ + σ 1
2 I + σ ′ 0 σ + σ 1

2 σ + ε ( 1
2 , 1

2 )
ε + ε 1

2 σ + ε ′ ( 1
2 , 1

2 ) I + ε (0, 1
2 ) I + ψ (0,0)

σ + σ ′ (0, 1
2 ) σ ′ + ε ′ (0, 1

2 ) σ + ψ (0,0, 1
2 , 1

2 ) σ + ψ (0,0, 1
2 , 1

2 )
I + ε ′ (0, 1

2 ) ε + ε 1
2 ε + ψ (0, 1

2 )
ε + ε ′ ( 1

2 , 1
2 )

σ ′ + σ ′ 0
Three-leg ladder

θ = 0 θ = 0 θ = π θ = π

K = 0 K = π K = 0 K = 2π/3

I σ + σ + σ 0 σ + σ + σ

σ + σ + ε ε + ε + σ I + σ + σ I + σ + ε

ε + ε + ε I + I + σ ′ I + I + ε I + I + ψ

I + σ + σ ′ σ + σ + ε
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As an example system we consider a four-leg ladder with
FM rung coupling Jrung < 0. In the case of open boundary
conditions along the rung direction, we find clear signatures
for gapless edge modes at these open boundaries: First, the
energy spectrum is gapless in the thermodynamic limit as
shown in Fig. 13. The energy eigenvalues again agree well
with the expected conformal weights, both in the strong and
intermediate coupling regimes shown in Figs. 13(c) and 13(a),
respectively. Second, correlations of the bond-energy operator
decrease significantly slower between two bonds located on
the two outer legs than on the inner legs as shown in Fig. 14.
In addition, the bond-bond energy correlations on the rungs in
both the two outer rows and the inner row of the four-leg ladder
decay more rapidly that their leg counterparts. We interpret
these differences as evidence for a gapless edge mode being
located at the open boundaries of the ladder system and the
presence of a gap in the bulk.
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FIG. 13. (Color online) Low-energy excitations of four-leg lad-
ders with open boundary conditions. The GS energy (K=0) is used
as energy reference. FM (AFM) rung (leg) coupling are considered,
i.e., giving rise to the c = 7/10 phase of Fig. 11(a): Moderately
strong rung coupling, |Jrung|/Jleg| ∼ 1.73 (θ = 5π/3), and strong
rung coupling, |Jrung|/Jleg ∼ 4.38 (θ = 11π/7), are shown. (a), (c)
Low-energy spectra of a 4 × 8 ladder vs momentum along the ladder.
(b), (d) Finite-size scalings of the low-energy levels for the two
cases shown in (a) and (c). Fits to c = 7/10 CFT invariant spectra
are provided: Expected levels corresponding to primary (secondary)
fields of the CFT are shown by red boxes (blue circles). The overall
energy scale of the CFT is set by adjusting the position of the
K = 0, 2h = 1/5 state to the corresponding energy level of the 4 × 8
cluster.
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FIG. 14. (Color online) Bond-energy correlations in a 4 × 8
ladder with open boundary conditions (OBC) along the rungs (i.e.,
with two inner and two outer eight-site legs) as a function of the
distance between two (parallel) bonds along the leg direction or
across the ladder. The bonds are oriented simultaneously along the
rungs (rung-rung correlator) or along the legs (leg-leg correlator). The
disconnected part has been subtracted and the data are normalized
with regard to the zero-distance autocorrelation. Data are shown for
Jrung < 0 and Jleg > 0, i.e., in the c = 7/10 phase of Fig. 11(a).
(a) Isotropic couplings, |Jrung|/Jleg = 1 (θ = 7π/4); (b) strong rung
coupling, |Jrung|/Jleg ∼ 4.38 (θ = 11π/7).

The occurrence of the bulk gap of this anyon ladder system
becomes even more evident when we consider the energy
spectrum as we close the open boundary conditions, thereby
removing the gapless (edge) modes. In Fig. 15 we show
such clearly gapped energy spectra for periodic boundary
conditions (in the intermediate coupling regime θ = 5π/3 and
θ = 7π/4). This observation should be contrasted with our
results for open boundary conditions and the same coupling
parameters: As shown in Figs. 13(a) and 13(b), for the same
coupling parameter θ = 5π/3 the energy spectrum in the
case of open boundary conditions nicely matches the gapless
spectrum of a CFT.

Furthermore, the gapped energy spectrum for periodic
boundary conditions, as illustrated in Fig. 15, also reveals
the occurrence of an unusual, nontrivial GS degeneracy for
the anyonic ladder system. For example, in the case of FM
rung coupling Jrung < 0 and AFM leg coupling Jleg > 0, we
observe three GSs (by changing the initial conditions of the
Lanczos exact diagonalization procedure, we have checked
that each of these levels corresponds indeed to a single energy
eigenstate) (one at momentum 0 and two at momentum π )
separated from the rest of the energy spectrum by a gap of
order O(1) in the exchange coupling strength, which become
degenerate in the thermodynamic limit. Evidence for the latter
is provided in the finite-size scaling plots of Figs. 15(b) and
15(d). It is important to notice that such a GS degeneracy
is not due to a spontaneous dimerization along the ladder
direction (or to any other spontaneous translation symmetry
breaking). Indeed, in the case of a spontaneous dimerization,
the expected GS degeneracy would be a multiple of two (de-
pending on whether the system breaks translational invariance
along both ladder directions) instead of three for the anyon
ladder.
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FIG. 15. (Color online) Low-energy excitations of four-leg lad-
ders with periodic boundary conditions. The GS energy (K=0) is
used as energy reference. (a), (c) Spectra of a 4 × 8 ladder for values
of θ corresponding to FM (AFM) rung (leg) coupling. Isotropic
couplings, |Jrung|/Jleg = 1 (θ = 7π/4), and moderately strong rung
coupling, |Jrung|/Jleg ∼ 1.73 (θ = 5π/3), are shown. (b), (d) Finite-
size scalings of the low-energy levels for the two cases shown in (a)
and (c) revealing threefold degenerate GSs and a finite gap.

Further evidence for a uniform anyon GS is provided by
inspection of the correlations of the energy (rung or leg) bond
operators shown in Fig. 17 for the same periodic anyon ladder.
While for a dimerized system (period-2) oscillations of these
correlations survive at arbitrarily large separations between the
bonds (the amplitude is the square of the order parameter for
infinite separation), our data show in contrast a rapid vanishing
of those oscillations with distance.

Similarly, we have also checked that the spectrum of a
4 × 6 ladder with both ferromagnetic rung and leg couplings,
Jrung < 0 and Jleg < 0, is fully consistent with (i) a c = 4/5
CFT invariant spectrum when open boundaries are used, most
evidently seen for strong rung coupling in Fig. 16(a) and
(ii) a gapped spectrum and a threefold degenerate GS with
momenta 0 and ±2π/3 is found when using periodic boundary
conditions (i.e., removing the edges), most evidently seen for
isotropic couplings in Fig. 16(b). Again, this degeneracy is
not connected to translation symmetry breaking but rather is a
signature of a new (uniform) topological liquid. This behavior
of the anyon ladder systems should be contrasted to the case of
conventional SU(2) spin ladders. First, SU(2) spin ladders with
an even number of legs always exhibit a gap (apart for the case
of simultaneous FM rung and leg couplings for which the GS
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FIG. 16. (Color online) Low-energy excitations of 4 × 6 ladders
with FM rung and leg couplings. The GS energy (K = 0) is used as
energy reference. (a) Open boundary condition (in the rung direction).
The data are obtained for strong rung coupling, Jrung/Jleg ∼ 4.38
(θ = 10π/7). A fit to a c = 4/5 CFT invariant spectrum is shown:
Expected levels corresponding to primary (secondary) fields of the
CFT are represented by red boxes (blue circles) and the overall energy
scale is set by adjusting the position of the K = 0, 2h = 4/5 energy
level. (b) Periodic boundary condition (in the rung direction). The
data are obtained for isotropic couplings, Jrung/Jleg = 1 (θ = 5π/4).
A large gap is seen above three quasidegenerate levels.

is a trivial fully polarized ferromagnet). Second, ladders with
an odd number of legs are always gapless if open boundary
conditions are used along the rung direction. When periodic
boundary conditions along the rung direction are used to form
so-called spin tubes28 with an odd number of legs, dimerization
in the leg direction generically sets in if the rung exchange
coupling is AFM.

0 1 2 3 4
distance 

-0.4

-0.2

0

0.2

0.4

bo
nd

-e
ne

rg
y 

co
rr

el
at

io
ns

 

leg-leg
rung-rung

 4x8
PBC

  = 7 /4

FIG. 17. (Color online) Bond-energy correlations in a 4 × 8
ladder with periodic boundary conditions (PBC) along the rungs
as a function of the distance (in the leg direction) between two
(parallel) bonds. The bonds are oriented simultaneously along the
rungs (rung-rung correlator) or along the legs (leg-leg correlator).
The disconnected part has been subtracted and the data are normalized
with regard to the zero-distance autocorrelation. Data are shown for
Jrung < 0 and Jleg > 0, i.e., in the c = 7/10 phase of Fig. 11(a) and
for isotropic couplings, |Jrung|/Jleg = 1 (θ = 7π/4).
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TABLE III. GS angular momentum (i.e., total spin) of a single FM su(2)k rung as a function of its length W (first line) and k (first column).
The last line gives the GS total spin of FM Heisenberg SU(2) open chains of same lengths. When small Jleg is switched on, the corresponding
W -leg ladders can be mapped onto single gapless effective chains (at low energies) except for the cases (i) marked by boxes (Haldane effective
chains) or (ii) marked by “0” (i.e., when the GS of a single rung is a singlet). The vertical bars ‖ indicate the range W < k/2 (see text).

k \ W 1 2 3 4 5 6 7 8 9

3 1/2 ‖ 1/2 0 1/2 1/2 0 1/2 1/2 0

5 1/2 1 ‖ 1 1/2 0 1/2 1 1 1/2

7 1/2 1 3/2 ‖ 3/2 1 1/2 0 1/2 1

9 1/2 1 3/2 1 ‖ 2 3/2 1 1/2 0

... . . .

∞ 1/2 1 3/2 2 5/2 3 7/2 4 9/2

VI. su(2)k GENERALIZATIONS

We now turn to the question of how the characteristic
features of the W -leg ladder models found for the Fibonacci
theory su(2)3 are generalized when considering su(2)k theories
with k > 3. All these theories allow to define ladder models
built out of generalized angular momenta j = 1/2, similar to
the description given in Sec. II. For these more general theories
we can identify angular momentum j with angular momentum
k/2 − j with the highest possible allowed angular momentum
thus becoming (k − 1)/4 when k is odd.

Following the same route as taken for the Fibonacci theory,
we can access most features of their respective phase diagrams
by considering the strong rung-coupling limit as presented in
Sec. III. In particular, such an approach reveals the appearance
of gapped and gapless phases as a function of the ladder width
W and the level k. For AFM rung coupling Jrung > 0 we
find that the odd/even effect of su(2)3 occurs for all level
k. On the other hand, for FM rung coupling Jrung < 0 a more
refined picture emerges: If the ladder width W is a multiple
of the level k, i.e., W = 0 mod k, the total angular momentum
on a rung is j = 0 and we find gapped phases around this
strong rung-coupling limit. If the ladder width W is not a
multiple of the level k, i.e., W �= 0 mod k, then we still expect
gapped phases if the total angular momentum on a rung is
an integer (thus giving rise to generalized Haldane phases16).
Similarly, we expect that gapless phases are found for a total
angular momentum on a rung becoming a half-integer (and
W not a multiple of k). These results are summarized in
Table III.

This scenario also matches nicely the well-known behavior
of ordinary SU(2) ladder models, which we recover when
taking the limit of k → ∞ for the anyonic theories.

VII. APPROACHING THE 2D LIMIT

We conclude with a perspective on how to connect the
results obtained here for W -leg ladders to the thermodynamic
limit of 2D lattice configurations of non-Abelian anyons. The
strong rung-coupling limit, which was useful to discuss the
phases of W -leg ladders, turns out to be of little help in
understanding this 2D limit. The reason is that the gap of
an isolated rungs vanishes as 1/W with increasing width,

which restricts the applicability of the perturbative argument
around the strong rung-couling limit to a regime of couplings
Jleg/Jrung < O(1/W ), which also vanishes as W → ∞.

Instead we consider the following general symmetry ar-
gument: In contrast to their ordinary SU(2) counterpart, the
su(2)k anyonic theories lack a built-in continuous symmetry.
In the assumed absence of an emergent continuous symmetry
this reduces their ability to undergo a spontaneous symmetry
breaking transition—such as, in 2D, the formation of a Néel
state and its gapless Goldstone mode for ordinary SU(2)
quantum magnets. Therefore, one is naturally led to expect
gapped quantum GSs, such as topological quantum liquids,
in these anyonic systems. This raises the question of how
these two seemingly disjunct scenarios for SU(2) and su(2)k
can be reconciled when taking the k → ∞ limit of the anyonic
theories. Noting that the deformation of SU(2) used to describe
the anyonic systems explicitly breaks time-reversal symmetry,
we can think of 1/k as the strength of a symmetry breaking
field. As such we expect the bulk gap of the 2D anyonic
quantum GS to close as one approaches the SU(2) limit,
thereby smoothly connecting the topological quantum liquids
to the Néel state.

The formation of a gapped bulk liquid in the thermodynamic
limit is further backed by the liquids picture presented in
Ref. 21. There we have argued that the interactions between a
set of non-Abelian anyons arranged on a 2D lattice gives rise
to the nucleation of a unique bulk-gapped (i.e., topological)
quantum liquid within the parent liquid of which the anyons
are excitations of. At the spatial interface between these two
distinct, bulk-gapped phases gapless edge modes will form
whose precise character can be identified from the gapless
modes of 1D chains of anyons,16 which in turn allows for an
identification of the newly formed 2D bulk-gapped liquid.21

For the case that both the rung and leg couplings are AFM,
i.e., Jrung > 0 and Jleg > 0, this liquid is described by a
su(2)k−1 × su(2)1 Chern-Simons theory. On the other hand,
if both couplings are FM, i.e., Jrung < 0 and Jleg < 0, then this
liquid is described a U (1) Chern-Simons theory. The case of
mixed coupling signs remains open.

Anyonic generalizations of quantum magnets in the spirit of
the work presented here can be discussed in analogous fashion
for other anyonic theories (tensor categories) and for other
2D lattice geometries and interactions. We expect this to be a
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fruitful and broad field of research at the interface of quantum
magnetism and topological states of matter.
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