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Transmon qubits arise from the quantization of nonlinear resonators, systems that are prone to the buildup of
strong, possibly even chaotic, fluctuations. One may wonder to what extent fast gate operations, which involve
the transient population of states outside the computational subspace, can be affected by such instabilities. We
here consider the eigenphases and -states of the time evolution operators describing a universal gate set, and
analyze them by methodology otherwise applied in the context of many-body physics. Specifically, we discuss
their spectral statistic, the distribution of time dependent level curvatures, and state occupations in- and outside
the computational subspace. We observe that fast entangling gates, operating at speeds close to the so-called
quantum speed limit, contain transient regimes where the dynamics indeed becomes partially chaotic. We find
that for these gates even small variations of Hamiltonian or control parameters lead to large gate errors and
speculate on the consequences for the practical implementation of quantum control.

I. INTRODUCTION

Coupled superconducting circuits are one of the leading
platforms in quantum information science [1, 2]. In this archi-
tecture, the nonlinearity of Josephson junctions serves to sep-
arate an energetically low-lying qubit subspace from a higher-
lying state space whose presence is often ignored. The restric-
tion to the computational subspace rests on the assumption
that the energy stored in the initial state remains decentral-
ized, and higher excited states of individual ‘qubits’ are not
accessed. This condition is, however, not necessarily satis-
fied. For example, the tunneling bridges in arrays of super-
conducting qubits imply the presence of residual qubit-qubit
couplings which can be made algebraically, but never expo-
nentially, small in the detuning from the resonator frequen-
cies. Depending on the choice of couplings and detunings
inherent to a given qubit architecture, this may compromise
the stationarity of spatially ‘delocalized’ states and lead to
strong fluctuations in the qubit register due to energetically
high-lying single-particle excitations [3].

When operating superconducting circuits beyond merely
storing information, population of energy levels outside of the
computational subspace is rather common. It occurs whenever
fast manipulation of qubits is required, be it for gate opera-
tion [4] or qubit reset [5]. Fast device operation is desirable in
view of optimal clock speeds but also to combat decoherence.
The shortest possible time in which a given task can be carried
out is referred to as the quantum speed limit (QSL) [6]. When
implementing quantum gates, the QSL is fundamentally deter-
mined by the size of the effective time-dependent qubit-qubit
couplings. This is because the couplings are needed to gen-
erate entanglement — or, in the case of local rotation gates,
undo undesired entanglement that is due to the residual cou-
plings. Then, population of higher lying levels during the gate
operation can easily be brought back to the computational sub-
space at the end of the gate by suitably tailored pulses [7]. On
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this basis, one may assume that the anharmonicity defining
the energetic separation of the computational subspace from
the higher lying state space does not limit the operation time
for quantum gates.

In this paper we point out the existence of an independent
second mechanism potentially impeding the stability of gates
at fast operation times: from the perspective of (classical)
nonlinear dynamics, the time evolution of coupled transmons
takes place in a twilight zone between integrable dynamics re-
alized in the limit of weak inter-transmon coupling and strong,
possibly even chaotic fluctuations at larger couplings [8, 9].
Quantum mechanically, this ambiguity shows in the structure
of transmon array many-body spectra which generically show
statistical signatures of both integrability (evidenced by Pois-
son statistics) and chaos (Wigner-Dyson statistics) [3]. From
the same perspective, a transmon gate is a driven protocol
transiently exciting a subsystem of qubits close to the ones
targeted by the gate operation. The faster a gate operation, the
higher the chances that it connects to semiclassically unstable
sectors of the state space [8].

The full information on a gate operation is encoded in the
instantaneous eigenvalues and –states of the unitary operator
U(t) implementing it. This operator is subject to external
time dependence, imposed via optimal control [10] to real-
ize an intended map in the computational state, but transiently
acting in the larger space of high-lying states. In this paper,
we will apply methodology borrowed from quantum nonlin-
ear dynamics and many-body localization theory to explore
its properties, and hint at potential stability issues. To be spe-
cific, we consider a universal gate set on the smallest possible
structure comprising two transmon qubits coupled via an in-
termediate cavity [7], see Fig. 1(a). We will analyze statisti-
cal properties of the instantaneous eigenspectra of the corre-
sponding operators, and compare to the extreme limiting dis-
tributions integrable/Poisson vs. chaotic/Wigner-Dyson. We
will also analyze the distribution of the curvatures of the time-
dependent levels as a signature whose relevance in the con-
text of many-body localization theory has been the subject of
recent research [11]. At the same time, they are of applied
relevance since the curvature of nearby levels determines the
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state distribution in a driven protocol. We will discuss the
transient distribution of spectral weight during the protocol
in states outside the computational subspace. Since the non-
computational space will be harder to control under condi-
tions affected by traces of chaotic dynamics and/or uncertain-
ties due to device imperfections, its occupation on operation
must be a factor entering the overall stability of the gate. To
assess the cumulative effect of these structures, we will, fi-
nally, consider gate errors caused by variations in the model
Hamiltonian or the parameters used for the control protocol.

A key result of our analysis will be that traces of nonlinear
and even chaotic dynamics are visible in the operators imple-
menting fast gates. At the same time, they present no princi-
pal obstruction to high gate fidelities. The reason is the finite
dimensionality of the effective Hilbert space subject to con-
trol. While classical chaotic time evolution is unpredictable
by definition, projection onto a finite dimensional quantum
Hilbert space leads to a more tame dynamics, which can be
optimized towards a desired output. Crucially, however, non-
linearity correlates with a high sensitivity of gate fidelities to
just very small modifications in the Hamiltonian parameters.
A systematic study of these effects and their applied impact on
the quantum control of fast gate operations will be the subject
of followup research.

The rest of the paper is organized as follows. We briefly
review the model and gate operations of Ref. [7] in Sec. II and
discuss our results in Sec. III. This includes the spectral anal-
ysis via the eigenphases of the time evolutions implementing
the gates in Sec. III A and the eigenphase curvature distribu-
tions in Sec. III B. We examine the populations of eigenstates
in Sec. III C, followed by a robustness analysis in Sec. III D
and conclude in Sec. IV. For completeness, we present the
(less conclusive) analysis of out-of-time-ordered correlators
(OTOCs) in Appendix A.

II. MODEL AND CONTROL PROTOCOLS

We will analyze two universal sets of gates, with Hadamard
and local phase gates as representative single-qubit operations
and the BGATE as entangling operation. The choice of the
latter was motivated by the fact that it yields the smallest de-
composition of an arbitrary two-qubit operation into gates of
a universal set [12]. (For full operability of the quantum hard-
ware, it is important to inspect a complete universal set, as this
requires the ability to both create and destroy entanglement.)
The gates we analyze have been derived using optimal control
theory for two transmon qubits with a joint transmission line
cavity subject to a microwave drive [7]. In a frame rotating
with the drive frequency ωd, the Hamiltonian reads

H(t) =

2∑
q=1

[
δqb

†
qbq +

αq

2
b†qb

†
qbqbq + g

(
b†qa+ bqa

†)]
+δca

†a+
1

2
E(t)a+ 1

2
E∗(t)a† , (1)

where bq and a are the annihilation operators for the qth
transmon and the cavity, respectively, δq = ωq − ωd and
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FIG. 1. Schematic overview of the transmon-cavity system con-
sisting of (a) two transmon qubits Q1,Q2 coupled via a joint transmis-
sion line cavity C. Gates are implemented by applying a fine-tuned
microwave drive with envelope E to the common cavity. (b) Example
of a fine-tuned drive tone, implementing an entangling BGATE with
a gate duration of 50 ns.

TABLE I. Parameters for the system illustrated in Fig. 1(a) consisting
of two transmons, Q1 and Q2, and a cavity C. Taken from Ref. [7].

frequency cavity C ωc/2π 6.2GHz
base frequency transmon Q1 ω1/2π 6.0GHz
base frequency transmon Q2 ω2/2π 5.9GHz
anharmonicity transmon Q1 α1/2π −290MHz
anharmonicity transmon Q2 α2/2π −310MHz
coupling between transmons and cavity g/2π 70MHz
driving frequency of cavity C ωd/2π 5.93GHz

δc = ωc − ωd the qubit and cavity detunings from the drive
frequency ωd, respectively, αq the qubit anharmonicities, and
g is the qubit-cavity coupling strength. E(t) denotes the time-
dependent amplitude of the cavity drive; it is the control knob
that is tuned to implement the desired qubit dynamics. Table I
provides an overview of all relevant parameters.

The quantum gates that we will analyze, operate in the
quasi-dispersive straddling qutrits (QuaDiSQ) regime where
multiple sources of entanglement interfere simultaneously. As
a result, the cavity cannot be adiabatically eliminated and
transmon levels outside the computational subspace are ex-
ploited for fast gate operation [7]. The Hilbert space is thus
the tensor product of the Hilbert spaces of the two transmons
and the cavity. Numerically, taking the local Hilbert space di-
mensions to be 5 for each of the transmons and 6 for the cavity,
resulting in a total Hilbert space dimension of 150, turned out
to be sufficient for convergence. Note that in the QuaDiSQ
regime, the computational states |00⟩ , |01⟩ , |10⟩ , |11⟩ are the
dressed basis states as they are eigenstates of the system in
the absence of the control field and thus do not change further
once the gate protocol is finished. In detail, |i1i2⟩ refers to
the eigenstate of H, cf. Eq. (1), with E(t) = 0, which has the
largest overlap with the bare Fock state |i1⟩⊗|i2⟩⊗|ic = 0⟩ =
|i1, i2, 0⟩Fock, where i1, i2 and ic label the excitations of the
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two transmons and the cavity.
The fasted possible universal set of gates uses gate dura-

tions of T = 50ns [7]. This limit is set by the local gates,
whereas the fastest entangling operation,

√
iSWAP, requires

only about 10 ns [7]. The fast gate operations come at the
expense of complex and spectrally broad pulse shapes E(t),
see Fig. 1(b) for an example. Increasing the gate durations
by a factor of two to T = 100 ns significantly reduces both
temporal and spectral complexity of the pulses [7].

III. RESULTS

Signatures of quantum chaos in transmon arrays have re-
cently been identified via an analysis of their spectral statistics
and deviations of their eigenstates from the localized states of
fully decoupled qubits [3, 8]. In the following, we investi-
gate whether the principles underlying these observations also
show in the dynamics of gate operations. To this end, the tools
applied in [3, 8] first need to be adapted to the analysis of ex-
ternally imposed time evolution.

A. Kullback-Leibler divergence

A quantitative analysis of many-body spectra including
their cross-over from Wigner-Dyson to Poissonian statistics,
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FIG. 2. Spectral analysis of chaotic fluctuations in single-qubit
and two-qubit gates of two transmon qubits in the QuaDiSQ
regime [7]: The statistics of the relative eigenphase differences of the
time evolution, {Rn(t)}, cf. Eq. (2), are compared to Poisson (POI),
resp. Gaussian (GUE) statistics using the Kullback-Leibler (KL) di-
vergence (4) for gate durations of T = 50ns (left) and T = 100 ns
(right). Deviations from Poisson statistics, observed clearly in panels
(b), (c) and (e) and to a lesser extent in panels (a), (d) and (j), indicate
emergent quantum chaotic fluctuations.

i.e., from strongly correlated chaotic states to uncorrelated lo-
calized states is furnished by the Kullback-Leibler (KL) di-
vergence [3]. The simplest extension to analyze the gate dy-
namics would be to calculate the KL divergence for the in-
stantaneous eigenvalues of the Hamiltonian H(t), cf. Eq. (1).
However, this captures only time-local information. In con-
trast, the time evolution operator U(t) ∈ SU(N), with N the
Hilbert space dimension, contains information about the entire
dynamics up to time t. We therefore analyze the eigenphases
of U(t) rather than the eigenvalues of H(t).

The instantaneous eigenvalues of U(t), λ1(t), . . . , λN (t) ∈
C, are all of magnitude one and thus have a unique repre-
sentation, λn(t) = eiϕn(t), n = 1, . . . , N , in terms of their
eigenphases, ϕ1(t), . . . , ϕN (t) ∈ [−π, π). Without loss of
generality, we assume ϕ1(t) ≤ ϕ2(t) ≤ · · · ≤ ϕN (t) for
every time t [13] and define nearest neighbor differences as
∆ϕn(t) ≡ ϕn+1(t) − ϕn(t), n = 1, . . . , N − 1. The corre-
sponding relative differences are then given as [14]

rn(t) =
∆ϕn(t)

∆ϕn+1(t)
, Rn(t) = min

{
rn(t),

1

rn(t)

}
(2)

with n = 1, . . . , N−2. The definition of the Rn(t), in contrast
to that of the rn(t), ensures values within the interval [0, 1]
which is convenient for statistical analysis.

In the limiting cases of integrable, resp. chaotic dynamics,
the relative eigenphase differences {Rn(t)} are expected to
obey Poissonian, respectively Wigner-Dyson statistics. Up to
inessential corrections [15] [16], the corresponding distribu-
tions are given by

PPOI(R) =
2

(1 +R)2
, (3a)

PGUE(R) =
162

√
3

4π

(R+R2)2

(1 +R+R2)4
, (3b)

Only in limiting cases will the observed distribution Prel. of
{Rn(t)} be described by Eq. (3). Deviations from the limit-
ing cases PPOI or PGUE can be quantified using the Kullback-
Leibler (KL) divergence, in analogy to the spectral analysis of
the static qubit arrays [3]. The KL divergence as a distance
measure between two statistical distributions P1 and P2 , de-
fined over some probability space R, is given by [17]

DKL(P1|P2) =
∑
R∈R

P1(R) log

(
P1(R)

P2(R)

)
, (4)

where P1 and P2 are normalized such that
∑

R∈R P1(R) =∑
R∈R P2(R) = 1. In general DKL(P1|P2) ̸= DKL(P2|P1).

We therefore normalize the KL divergences individually such
that DKL(PGUE|PPOI) = 1 and DKL(PPOI|PGUE) = 1.
Since we expect the actual distribution Prel. to be a mix-
ture of PPOI and PGUE, this normalization is a convenient
way to ensure 0 ≤ DKL(Prel.|PPOI), DKL(Prel.|PGUE) ≤ 1.
When comparing the probability distribution Prel. of the rel-
ative eigenphase differences {Rn(t)} to Poisson (POI) statis-
tics, a non-zero KL divergence signals the emergence of sta-
tistical correlations. Conversely, chaotic fluctuations show in
the KL divergence to PGUE approaching zero.
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FIG. 3. Detailed spectral analysis of the entangling BGATE with T = 50ns. (a), (e): Kullback-Leibler divergences as in Fig. 2(e) with
the red dotted line indicating the gate time T . The data for t > T are obtained by time evolution with E(t) = 0. (b): Population outside the
computational subspace (green area) and percentage of U(t)-eigenstates {|Φn(t)⟩} with population pn(t) ≥ 1% for the initial state |00⟩, cf.
Eq. (9). (c), (d): Instantaneous eigenphases {ϕn(t)} of U(t) (blue lines) with their population pi(t) indicated by size and color of the dots.
(f)–(i): Probability distributions of the relative eigenphases {Rn(t)}, cf. Eq. (2), in the time intervals highlighted in gray in panels (a)–(e).
The ideal Poisson and Gaussian distributions are shown by blue and red lines. (j)–(m): Dimensionless level curvatures kn(t) for the intervals
analyzed in (f)–(i).
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Figure 2 shows the KL divergence for the probability distri-
bution of the {Rn(t)} when compared to ideal Poisson (POI)
or Wigner-Dyson (GUE) statistics. To evaluate Eq. (4), we ex-
tract P1 from the numerical data, whereas P2 follows one of
the ideal distributions. To gather enough statistical data, we
divide the entire time span into 250 intervals and collect all
Rn values from a fixed interval, yielding a single, joint dis-
tribution P joint

rel. for each interval. For these joint distributions,
we then calculate the Kullback-Leibler divergences and dis-
play them in Fig. 2 at the respective interval midpoint. While
the KL divergence with respect to the Poisson distribution
DKL(Prel.|PPOI) vanishes almost everywhere for the slower
set of gates (right column of Fig. 2), the gates at the quantum
speed limit in the left column of Fig. 2 show chaotic fluctua-
tions. When inspecting the different gates, the Hadamard gate
on the first qubit and the local phase gate on the second qubit
seem much less prone to signatures of chaos. This can be at-
tributed to the much weaker driving that is used to implement
these gates with peak amplitudes of at most 200 MHz com-
pared to 300 MHz for the other three gates in the left column
of Fig. 2 [7]. Note that these amplitudes are of a similar order
of magnitude as the anharmonicities, cf. Table I.

We examine one of the fast gates with chaotic fluctuations
in the dynamics, the BGATE, more closely in Fig. 3. Panel (c)
shows the eigenphases ϕn(t) of the time-evolution operator
U(t) for the corresponding dynamics as blue lines. Due to
their high density, they appear as a blue area. Figure 3(d)
therefore provides a blow-up of the first 5 ns of the dynamics.
This time frame is particularly interesting because it shows
the transition from straight lines and line crossings for all
ϕn(t) into a regime where avoided crossings between lines
start to become more frequent. This transition starts roughly
at t ≈ 1 ns. Moreover, the dynamics within the first 5 ns
also shows chaotic behavior, namely in the time frame be-
tween 3 ns and 4 ns. The emerging many-body nonlinear be-
havior is witnessed by the KL divergence of the eigenphases
ϕn(t), cf. Eq. (2), as shown in Fig. 3(a) for the total proto-
col and a blow-up of the first 5 ns in Fig. 3(e). While up to
t ≈ 3 ns, the KL divergence shows an almost perfect match
with an ideal POI statistics, evidencing non-chaotic behavior,
it diverges from POI statistics and shows a larger match with
GUE statistics, signalling chaotic behavior, between 3 ns and
4 ns. Figure 3(f)–(i) shows the actual distribution Prel. at four
representative times. In panel (f), avoided crossings do not yet
play a role and an almost perfect match of Prel. with ideal POI
statistics, shown as blue line, is observed. Figure 3(g) and (i)
are evaluated at times before and after the chaotic regime be-
tween 3 ns and 4 ns, respectively. In both cases, similarities
of Prel. to POI statistics dominate. In contrast, the statistics in
Fig. 3(h) is evaluated within the chaotic 3 − 4 ns time frame
and shows a stronger match with GUE statistics, displayed in
red in panels (f)–(i).

It is interesting to see in Fig. 3 that after 4 ns the dynamics
becomes less chaotic again. Such emergence and disappear-
ance of chaos occurs several times over the entire protocol
duration and can also be observed for the other fast gates in
Fig. 2, for which the KL divergences indicate chaotic behav-
ior. Remarkably, the (re)emergence of chaotic behavior does

not have any negative impact on the gate errors, as the lat-
ter are identically small for both the fast and slow protocols
in Fig. 2. The optimized control field seems to navigate the
computational basis states safely through the chaotic regions.

There are two points to note about the calculations pre-
sented in Fig. 3. First, similar to Fig. 2, we calculate the KL
divergence within time slices [τi, τi+1) which are of length
0.1 ns in Fig. 3(a) and (e). Second, we calculate it using all
eigenphases ϕn(t), i.e., all blue lines, and not just the fraction
of eigenphases ϕn(t) for which the corresponding eigenstate
|Φn(t)⟩ of U(t) shows a significant overlap with the time-
evolved computational states |00⟩ , |01⟩ , |10⟩ , |11⟩. We will
discuss the latter in more detail in Sec. III C but note at this
stage, that the color code in Fig. 3(c) and (d) shows how the
computational basis states ‘evolve’ from initial to final time
exemplarily for |00⟩. Larger and darker (smaller and brighter)
dots indicate that the time-evolved state |Ψ00(t)⟩ = U(t) |00⟩
has a larger (smaller) overlap with the eigenstate |Φn(t)⟩ to
which the blue line corresponds. A condensed version of
this is shown as purple line in Fig. 3(b), presenting the frac-
tion of eigenstates {|Φn(t)⟩} that have at least an absolute-
squared overlap of 1% with the time-evolved state |Ψ00(t)⟩.
This is an indicator of how local/non-local the time-evolved
state |Ψ00(t)⟩ becomes when expanded via the instantaneous
eigenstates {|Φn(t)⟩}. In addition, the green area in Fig. 3(b)
indicates the fraction of population that is outside of the com-
putational subspace.

In the following, we seek further measures that allow to dis-
criminate between chaotic and non-chaotic regimes in the dy-
namics but are – ideally – more directly linked to the gate per-
formance. This is a limitation of the KL divergences inspected
so far which have been evaluated for the statistics of all the
eigenstates {|Φn(t)⟩}, respectively eigenphases ϕn(t), of the
time-evolution operator U(t). While it is able to discrimi-
nate between chaotic and non-chaotic regimes in the overall
time-evolution, it is a state-independent metric and thus does
not contain any information about the dynamics of the actual
computational states |00⟩ , |01⟩ , |10⟩ , |11⟩ for which the con-
trol field, and thus U(t), have been optimized. To this end,
a common approach is to use out-of-time-ordered correlators
(OTOCs) [18]. However, we do not find OTOCs to be reli-
able indicators of chaotic regimes, cf. Appendix A, in line
with findings for bosons in a double well [19]. In contrast,
a measure that is sensitive to the evolution of the computa-
tional basis states and can be a good indicator of chaos, is to
analyze the population dynamics as we do in Sec. III C. Be-
fore that, we briefly discuss the curvature distributions of the
eigenphases (sharing the weakness of state-insensitivity with
the KL divergence) as an indicator of non-linear dynamics in
the next section.

B. Curvature distributions

Beyond the statistics of eigenphases, the structure of
avoided crossings can be another indicator of nonlinear dy-
namics. Consider the evolution of two nearby phases ϕn(t)
and ϕm(t). If they are statistically uncorrelated, they may
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cross, and a glance at Fig. 3 shows that this is the generic
situation in the early stages of the time evolution. Correla-
tions, on the other hand, lead to effective phase repulsion, and
to an overall more ‘curvy’ pattern of phase evolutions. To
quantify this structure, we consider the curvature κn of the
eigenphases,

κn(t) =
d2ϕn (t)

dt2
. (5)

As with the level spacings, the curvatures follow distinct
distributions in the limiting cases of localization and chaos.
Specifically, it was shown that [20–22]

PPOI(k) =
NPOI

(1 + k2)
, (6a)

PGUE(k) =
NGUE

(1 + k2)
2 , (6b)

where NPOI and NGUE are normalization constants and k
scales the curvature κ by the average level spacing ∆ and the
variance of the distribution of the velocities ∂tϕn [21, 22] ,

kn =
κn∆(ϕn)

2πVar (∂tϕn)
. (7)

Both, ∆ and Var(. . .), are calculated for small intervals
around the target phase ϕn. For large k, the distributions of
Eq. (6) give a power-law behavior,

P (k → ∞) ∝ ∥k∥−β̃
, (8)

with β̃ = 2 for the Poisson case and β̃ = 4 for the GUE
case [11, 20, 22].

Indeed, analysis of the eigenphase curvatures corroborates
the occurrence of chaotic fluctuations indicated by the statis-
tical analysis of the eigenphase differences in Fig. 3(j)–(m):
Noting the double-logarithmic scale, it is clear that small cur-
vatures are prevalent for regular dynamics in Fig. 3(j), (k),
and, to a lesser extent (m), whereas larger curvatures have sig-
nificantly more weight in the region of nonlinear behavior, cf.
Fig. 3(l).

To make the correspondence between the eigenphase statis-
tics and the occurence of nonlinear/integrable dynamics more
quantitative, we choose 30 equally-spaced t segments of
length 0.5 ns and calculate the curvature of the eigenphases
in each of these intervals. The resulting distributions of the
curvatures are shown in Fig. 4, where the color coding cor-
responds to the KL divergence D(P |PPOI) of the eigenphase
spacing, calculated for the same time interval. The most im-
portant message that this figure conveys is that, from the per-
spective of curvatures, there are traces of nonlinear GUE-like
dynamics for all, but the initial time intervals. Despite the fact
that our spectrum exhibits only 150 levels, the curvature statis-
tics shows general similarity to pure GUE-behavior (inset of
Fig. 4) exhibiting a plateau of constant probabilities for small
curvatures k ≲ 1 followed by a crossover to polynomial decay
of probabilities in the high curvature regime above. While our
numerical data does not exhibit a perfectly flat plateau, it does

10−4 10−3 10−2 10−1 100 101 102
10−7

10−1

105

curvature k

de
ns

ity

4

2
10−4 102

10−7

101

k

de
ns

ity GUE
4

0.12

0.34

0.56D
K

L
( P

|P
PO

I)

FIG. 4. Curvature statistics for the instantaneous eigenphases of the
unitary operator U implementing the BGATE. The main panel shows
a histogram of the curvature distribution where the color-coding in-
dicates the KL divergence for the eigenphase spacing. In the high
curvature regime the solid lines indicate the expected polynomial fits
to the data, consistent with the GUE-like behavior (shown in the in-
set) of a power-law decay with exponent β̃ = 4 for all but the very
first time interval which is consistent with Poisson-like behavior and
an exponent of β̃ = 2.

show the more defining power-law decay for large curvatures,
reproducing the GUE exponent of β̃ = 4 for all but the initial
time interval. The latter instead follows a POI-like behavior
with exponent β̃ = 2.

We thus find that analysis of the curvatures allows the iso-
lation of a subset of states for which the predictions of ran-
dom matrix theory apply. Remarkably, this subset of states
can comprise only a small portion of Hilbert space. In such
cases, the KL divergence has difficulty to indicate the onset
of chaotic fluctuations, due to the low weight of the affected
states in the sum over all states, cf. Eq. (4). In contrast,
“sorting” the evolutions according to their curvature allows
for identifying the avoided crossings that are a defining hall-
mark of the chaotic fluctuations.

C. Occupation dynamics

In this section, we turn from the analysis of the time-
dependent spectra to the analysis of states. More precisely,
we introduce and discuss several measures that are based on
the population dynamics and show which of those are sensi-
tive regarding the observed non-integrability of the dynamics.

As a first step, we consider the time occupation of the time-
evolved computational basis states |00⟩ , |01⟩ , |10⟩ , |11⟩. The
question is whether traces of the non-integrability we ob-
served in the time-dependent spectra are visible in the occupa-
tion of computational states. Figure 5 (a) shows that this is not
the case. Tracing the occupation of a state initialized as |00⟩
over the first 5 ns — an interval which we saw contains re-
gions of regular and non-integrability in the window between
3 ns to 4 ns — we observe no signatures of irregularity in the
occupation of states.

The occupation of single particle states close to the ground
state thus does not respond to transient instabilities in the sys-
tem. We may therefore rule out the plain occupation dynamics
as a good indicator of non-integrability. However, one may
speculate that the occupation of higher lying states may be a
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FIG. 5. Occupation dynamics. (a) Occupation dynamics for
|Ψ(t)⟩ = U(t) |00⟩ during the first 5 ns of the BGATE. The
three panels show the instantaneous, bare level occupations for
ρ1/2/c(t) = tr2,c/1,c/1,2{|Ψ(t)⟩ ⟨Ψ(t)|} of the two transmons (with
five levels per transmon) and the cavity (with six levels), respectively.
(b) The conditional population dynamics, cf. Eq. (12), for the same
state.

more sensitive indicator. A first question to be asked is how
much of the total spectral weight carried by an evolving state
actually lies outside the logical subspace. To answer it, we
define

psub(t) =
1

4

∑
{|Ψin⟩}

〈
Ψin

∣∣U†(t)ΠsubU(t)
∣∣Ψin

〉
,

Πsub =
∑

{|Ψin⟩}
|Ψin⟩ ⟨Ψin| ,

where |Ψin⟩ ∈ {|00⟩ , |01⟩ , |10⟩ , |11⟩}. Here, Πsub is the
projector onto the logical subspace and psub the time depen-
dent probability that a state initialized as a computational state
stays inside this space.

Figure 3(b) shows the population outside of the logical sub-
space, 1 − psub(t), for the BGATE and the initial state |00⟩.
At most times this figure hovers around 10-20%, again show-
ing no noticeable changes during the irregular time window.
We conclude that the cumulative weight sitting in the non-
computational state likewise is blind to dynamical instability.
We thus zoom in to the next level of resolution and monitor
the occupation of individual “many-body” eigenstates Φn(t)
of the full evolution operator U(t). With an initial state as
before, |Ψin⟩ ∈ {|00⟩ , |01⟩ , |10⟩ , |11⟩}, we define the proba-
bilities

pn(t) = |⟨Φn(t) |U(t) |Ψin⟩|2 , (9)

normalized as
∑

n pn = 1. The color coding in Fig. 3 (c)
and (d) shows the distribution of these weights over the eigen-
phases ϕn of the first 150 states of the system. In this repre-
sentation, blue color is used to indicate the bare eigenphases,
while a combined color coding from dark purple to light or-
ange and dot size coding from larger to smaller dots indicates
larger to smaller state occupation. This visual data indeed
shows a massive fragmentation of the evolving state over a
high dimensional subspace during intervals where the spec-
tral analysis flags non-integrability (via the KL divergence).
Outside these regions, the spectral weight remains concen-
trated on a few states in and outside the computational sub-
space. However, while the correlation of state fragmentation
and non-integrability is a generic phenomenon, we have also
observed milder forms of transient state spreading in gate pro-
tocols without chaotic instabilities, such as the slower opera-
tions shown in Fig. 2(f)–(j).

While the above data may serve as a visual indicator for dy-
namical signatures of non-integrability, it contains too much
information to be quantitatively useful. The simplest way to
condense it is to track the time dependent fraction M/N of the
number of levels, M , whose occupation probability exceeds a
given threshold p:

Pp(t) =
1

N

N∑
n=1

Θ(pn(t)− p), (10)

where Θ is the Heaviside step function. The purple line in
Fig. 3(b) corresponds to Pp(t) for p = 1% and thus reflects
the spreading/contracting of the colored dots in Fig. 3(c). We
observe that this figure, too, is relatively non-expressive in
that it is qualitatively similar to the total occupation of the
out-of-computational subspace 1 − Psub, hinting at a limited
usefulness of Eq. (10).

A more meaningful quantity is obtained by the projection
of exact instantaneous eigenstates Φn onto select occupa-
tion eigenstates, |i1, i2, ic⟩Fock, weighted with the occupation
probabilities pn computed according to Eq. (9),

Pi1,i2,ic(t) =
∑
n

pn(t) |⟨Φn(t) | i1, i2, ic⟩Fock|
2
, (11)

Note that Eq. (11) is quartic in the states {|Φn(t)⟩}. (A
squared amplitude is hiding in pn.) We read these fourth mo-
ments of wave functions as a sum over conditional probabili-
ties, where the first factor pn states the representation of state
Φn in the actual time evolved initial state, and the second its
probability to be found in the Fock space state |i1, i2, ic⟩Fock.
These quantities can be further reduced to yield, say, the rep-
resentation of the first transmon’s states as

Pi1(t) =

N2−1∑
i2=0

Nc−1∑
ic=0

Pi1,i2,ic(t) , (12)

Fig. 5 (b) shows how this data efficiently detects the instabil-
ity in the high lying sector of Hilbert space during the interval
between 3 and 4 ns. In this way, it represents a good compro-
mise between the bare occupation probabilities of the low ly-
ing states, which are blind to the presence of unstable regimes
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(Fig. 5 (b)), and the excessive data carried by the full set of
amplitudes {Φn}.

To summarize, we have found two state population-based
measures, Eqs. (9) and (12), that are sensitive to the non-
integrability of the dynamics. Unfortunately, both of them
require the diagonalization of U(t) and their computation will
therefore become difficult for larger systems. In contrast, the
analyses based solely upon the occupation dynamics, i.e., both
level or subspace occupations, show no correlation with the
observed irregularities. This suggests that such irregularities
might be easily overseen if only the occupation dynamics is
analyzed.

D. Robustness

Above we have characterized the time evolution of the gate
in terms of various complementary pieces of information. We
have used the KL divergence, the many-body state occupancy
characterizing the high-lying sectors of Hilbert space, and the
weighted probabilities Eq. (12) correlating this information
with the occupation of low-lying states. All types of data indi-
cate transient and recurrent regimes of instability in the time
evolution. The white elephant in the room now is the question
how these findings will reflect in the performance of the gate.

We first note that all gate protocols investigated here ex-
hibit remarkably low gate errors [7], despite the complexity
of their time-evolution. From the perspective of quantum op-
timal control, the low errors are actually not that surprising:
In a finite-dimensional Hilbert space, it is sufficient to know
the exact Hamiltonian that governs the system’s dynamics in
order to derive high-fidelity control solutions. However, the
assumption of precisely knowing the Hamiltonian is not real-
istic. For superconducting qubits, in particular, system param-
eters are typically not very accurately known and moreover
tend to drift over time. A realistic theoretical description must
account for at least a small level of uncertainty. Similar uncer-
tainties apply also to the control fields, due to inaccuracies in
the generating hardware. We therefore now seek to quantify
the robustness of the analyzed gate protocols. In particular,
we would like to know whether the dynamics complexity ob-
served above diminishes the robustness of the gate.

We therefore focus on the fast BGATE protocol where sig-
natures of chaotic behavior have been most apparent. The
working assumption is that small deviations in the Hamilto-
nian, or in control parameters may cause large deviations, i.e.,
large gate errors, in the output. In detail, we assume a constant
deviation of parameters from their values for which the control
field has been optimized for. We consider three scenarios: (i)
a constant deviation of the transmon and cavity frequencies, in
Eq. (1) reflected by deviations in δ1, δ2, δc, (ii) a deviation in
the transmon-cavity coupling strength g and (iii) a deviation
in the field amplitude E(t).

Figure 6 shows the robustness analysis for these scenarios,
quantified by the (generalized) gate error. We define the latter
in terms of the local invariants functional [23] which measures
how much the entangling content of the realized gate deviates
from the entangling content of the BGATE. In other words,
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FIG. 6. Gate error for the fast BGATE with T = 50ns as a func-
tion of deviations in the Hamiltonian parameters. The horizontal
lines indicates the gate error in the absence of any deviations.

the generalized gate error is insensitive to single-qubit rota-
tions because these are typically easy to correct for, and its use
as the figure of merit is less stringent than the standard gate er-
ror. Despite this relaxed definition of gate error, the BGATE
shows high levels of sensitivity in all considered scenarios.
For the detunings δ1, δ2, δc, positive deviations on the order
of 1%, which amount to actual deviations between 0.3 MHz
and 3 MHz, are found to lead to an increase of one order of
magnitude in the (generalized) gate error. This increases to
three orders of magnitude when the deviation reaches 10%.
For negative deviations, the error first drops before reaching a
plateau where any deviation from −2% to −10% results in a
one order of magnitude error increase. The error increase as
a function of positive vs negative deviation is reversed, when
considering deviations in the coupling strength g and the field
amplitude E : Negative deviations of −1% in both parameters
(corresponding to changes of 0.7 MHz, resp. 1 MHz in g and
E) increase the error by one order of magnitude, shooting up
to three orders of magnitude for deviations of −10%. In con-
trast, the gate error drops for positive deviations of up to 1% in
g and E . The drop for too large values of g (“positive devia-
tions”) is readily rationalized since a stronger coupling may
be beneficial for generating the desired entangling content,
which is what is measured by the generalized error. Analo-
gously, negative deviations in g rapidly lead to an increased
gate error as weaker couplings g do not allow the build-up of
enough entanglement within the same time — especially for
gate protocols at the quantum speed limit as analyzed here.
This also explains why, out of the three parameters investi-
gated, the sensitivity of the generalized gate error is largest
for the deviations in the coupling.

The lack of robustness in the fast BGATE may be ex-
pectable for a gate showing signatures of chaotic dynamics.
We note, however, that the gates of Ref. [7] have not been op-
timized to be robust against parameter fluctuations. Indeed,
for a two-element model system where chaotic behavior has
also been observed, the situation was found to be controllable
[24]. It may therefore be premature to conclude that signa-
tures of chaos in the gate dynamics categorically hamper gate
robustness. At the same time, it is probably safe to say the
fragmentation of spectral weight over the complex structure
of the non-computational Hilbert space transiently observed
during the fast protocols investigated here will not be benefi-
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cial to gate robustness. It will be interesting to find out under
which conditions robust fast gates can be defined nonetheless,
or whether optimization may identify protocols avoiding the
emergence of strong fluctuations in the spectra and states of
U(t). To this end, one needs to include robustness as a de-
sired gate property when carrying out the gate optimization
which is possible by means of ensemble optimization [25] at
a somewhat increased numerical cost.

IV. CONCLUSIONS AND OUTLOOK

We have applied diagnostics of many-body theory – spec-
tral statistics and statistics of many-body wavefunctions – to
analyze the dynamics of transmon qubits during gate opera-
tion. Our testbed have been two universal sets of gates for
transmons quasi-dispersively coupled to a cavity. The gates
were designed with optimal control theory [7], with one set
operating at the shortest possible duration, the so-called quan-
tum speed limit, whereas the slower gates execute in twice
that time. While a universal set only involves single-qubit and
two-qubit gates, an operation at the quantum speed limit ex-
cites significant amounts of population to excited levels out-
side of the computational subspace. Chaotic fluctuations, if
relevant, may therefore show an impact already for the com-
paratively small Hilbert spaces of the tripartite system.

All the gate operations that we have analyzed are carried out
by applying shaped microwave pulses to the cavity that jointly
couples to both qubits [7]. When applying spectral statistics
to gate dynamics, one has the options to either analyze the
instantaneous eigenvalues of the Hamiltonian or the eigen-
phases of the time-evolution operator. We have opted for the
latter because it captures time non-local information. We have
augmented the analysis of eigenphase differences with that of
eigenphase curvatures, as another indicator of non-integrable
dynamics in the time-dependent spectrum.

Both eigenphase and wavefunction statistics clearly display
signatures of emergent chaos in three out of the five gates
making up the fastest universal set. The remaining two gates
are implemented by weaker drives and thus characterized by
less population of higher excited levels. The weaker driving
is also at work for the gates operating with twice the duration.
These slow gates, too, barely show deviations from integrable
dynamics.

Analysis of the eigenphase curvatures has turned out to
be the most sensitive tool to diagnose signatures of non-
integrability, due to the ability to identify the subset of states
evolving through avoided crossings. More conventional mea-

sures, such as the KL divergence of the eigenphases or mea-
sures based on population dynamics, are hampered by an in-
discriminate average over state space.

For those gates that are prone to chaotic fluctuations, we
have made two key observations. (i) For most of the time,
the dynamics is neither fully integrable nor fully chaotic. (ii)
Time intervals where the statistics have a much larger match
with the chaotic limit are followed by time intervals where
integrable statistics are recovered. This suggests that the op-
timized pulses are able to steer the dynamics during a chaotic
sea without compromising the gate fidelity. One should keep
in mind, however, that quantum optimal control in general re-
quires precise knowledge of the Hamiltonian and coupling
to the external drive, an assumption that often is not justi-
fied, certainly not in the case of transmon qubits. Indeed,
when adding fluctuations to the parameters characterizing the
Hamiltonian, the gate error shoots up 1-2 orders of magnitude
already for fluctuations at the level of 1-2%.

This analysis raises the question whether there is a simple
connection between robustness and signatures of chaos. In
other words, do robust solutions require chaotic signatures
to be absent. The answer to this question is less obvious
than one might conjecture at first glance. The quantum speed
limit, for instance, does not impede implementation of energy-
efficient quantum gates [26]. Possibly, energy-efficient quan-
tum gates at the speed limit would be less prone to chaotic
fluctuations that the gates analyzed here. To answer this ques-
tion, one could, for example, repeat the gate optimization of
Ref. [7] with ensemble optimization to explicitly enforce ro-
bustness [25] or to include energy efficiency as an additional
time-dependent constraint [27].
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Appendix A: Out-of-time-ordered correlators (OTOCs)

Additionally, we check so-called out-of-time-ordered cor-
relators (OTOCs), which are a good measure for information
scrambling as well as quantum chaos [18]. Let V and W be
two Hermitian operators, the OTOC is given by

F (t) = Re
{〈

W†(t)V†W(t)V
〉
Ψ

}
, W(t) = U†(t)WU(t),

(A1)

which depends on the state |Ψ⟩ for which it is evaluated. If
V and W are also unitary, besides being Hermitian, and ful-
fill [V,W] = 0, we have F (0) = 1 for all |Ψ⟩ and a de-
viation like F (t) < 1 at later times t indicates information
scrambling between the two subspaces acted upon by V and
W. While in two-level systems a possible choice would be
V,W ∈ {σx, σy, σz} such that V and W are both Hermitian
and unitary. Unfortunately, this is note possible in our case
due to the larger Hilbert space. However, since unitarity of V
and W is not a requirement, we choose

V = b1 + b†1, W = b2 + b†2 (A2a)

and

V = b†1b1, W = b†2b2. (A2b)

Figure 7 shows the OTOCs for those two choices of W and
V for all four computational basis states |00⟩ , |01⟩ , |10⟩ , |11⟩
for the fast BGATE. The blue background area indicates the
KL divergence with respect to the POI statistics in order to
compare the course of the OTOCs to peaks in the KL diver-
gence indicating chaotic regions. We find the OTOCs to not
match the KL divergence, neither for the two choices of V and
W presented in Fig. 7 nor for other choices.
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FIG. 7. OTOCs for the fast BGATE with T = 50ns. The operators
are (a) V = b1 + b†1 and W = b2 + b†2 as well as (b) V = b†1b1
and W = b†2b2. The blue area in the background indicates the KL
divergence for the POI statistics from Fig. 2 (e) in arbitrary units.
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