PRL 101, 050401 (2008)

PHYSICAL REVIEW LETTERS

week ending
1 AUGUST 2008
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We show that chains of interacting Fibonacci anyons can support a wide variety of collective ground
states ranging from extended critical, gapless phases to gapped phases with ground-state degeneracy and
quasiparticle excitations. In particular, we generalize the Majumdar-Ghosh Hamiltonian to anyonic
degrees of freedom by extending recently studied pairwise anyonic interactions to three-anyon exchanges.
The energetic competition between two- and three-anyon interactions leads to a rich phase diagram that
harbors multiple critical and gapped phases. For the critical phases and their higher symmetry end points
we numerically establish descriptions in terms of two-dimensional conformal field theories. A topological
symmetry protects the critical phases and determines the nature of gapped phases.
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Two-dimensional topological quantum liquids such as
the fractional quantum Hall (FQH) states harbor exotic
quasiparticle excitations which due to their unusual ex-
change statistics are referred to as anyons. Interchanging
two anyons may result in not only a fractional exchange
phase, but may also give rise to a unitary rotation of the
original wave function in a degenerate ground-state mani-
fold. This latter case of non-Abelian statistics is proposed
to be exploited in the context of topological quantum
computation [1,2]. Intense experimental efforts [3—5] are
currently under way to demonstrate the non-Abelian char-
acter of quasiparticle excitations in certain FQH states, as
proposed theoretically [6,7].

Given a set of several non-Abelian anyons we can ask
what kind of collective states are formed if these anyons
are interacting with each other. A first step in this direction
has recently been taken by studying chains of ‘‘Fibonacci
anyons’ with nearest-neighbor interactions [8]. Fibonacci
anyons represent the non-Abelian part of the quasiparticle
statistics in the k = 3 Z;-parafermion ‘“Read-Rezayi” state
[6], an effective theory for FQH liquids at filling fraction
v = 12/5 [9]. A single Fibonacci anyon carries a topologi-
cal charge 7. Two such anyons may combine (‘‘fuse’) so
the pair has charge 7 or has no charge, which is denoted 1.
This is analogous to two SU(2) spin-1/2’s combining to
either spin-1 or spin-zero total spin. A two-anyon interac-
tion assigns different energy to the two possible charges of
the pair, just as a Heisenberg exchange interaction does for
the two possible total values of spin of a pair of SU(2)
spin-1/2’s. For a chain of Fibonacci anyons with a uniform
pairwise nearest-neighbor interaction of either sign it has
been explicitly shown [8] that the Hamiltonian has a topo-
logical symmetry, which was predicted to stabilize one of
the gapless phases. In this Letter, we give a broader per-
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spective on possible collective phases of interacting
Fibonacci anyons and phase transitions between them.

The specific model we will focus on has, in addition to
the two-anyon term, an additional three-anyon interaction
both of which may arise from tunneling [10]. We find a rich
ground-state phase diagram that harbors multiple critical,
gapless, and gapped phases. The topological symmetry,
introduced in Ref. [8], that measures the topological flux
through a ring of Fibonacci anyons plays an essential role
in determining the nature of the observed phases and phase
transitions. In particular, we find that this topological
symmetry protects all the critical phases against spatially
uniform local perturbations. These extended critical phases
can be described in terms of 2D conformal field theories
(CFT) with central charges ¢ = 7/10 and ¢ = 4/5 and can
be, respectively, mapped exactly onto the tricritical Ising
and 3-state Potts critical points of the generalized hard
hexagon model [8,11]. At the phase transitions out of the
tricritical Ising phase into adjacent gapped phases the
system exhibits even higher symmetries which we identify
as tetracritical Ising and 3-state Potts critical points. This
demonstrates that these 2D classical models share an iden-
tical nonlocal symmetry which is the classical analog of
the topological symmetry in the 1D quantum chains. At the
transition into the gapped phases this topological symme-
try is spontaneously broken which results in a nontrivial
ground-state degeneracy in the gapped phases.

Two-anyon interactions.—For a uniform chain of
Fibonacci anyons the Hamiltonian introduced in Ref. [8]
energetically favors one or the other of the possible fusion
products of two neighboring 7-particles which, by the
fusion rule 7 X 7 =1+ 7, can be either a 1 or a 7. The
energy of the former is lower for a coupling that is termed
“antiferromagnetic” (AFM), in analogy to the familiar
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SU(2) spins-chains, while that of the latter is lower with a
coupling termed ‘‘ferromagnetic’’ (FM). The underlying
Hilbert space is spanned by an orthonormal basis of states,
each state corresponding to one possible labeling of the
chain [8] of repeated fusions with 7. Each site along this
chain of fusions has either a 1 or a 7, with a constraint
forbidding two adjacent 1’s.

By performing a sequence of local basis transformations
and projection onto one of the two fusion channels for each
pair of neighboring anyons, the resulting two-anyon inter-
action Hamiltonian can be written as a sum of local 3-site
operators H = J,> ;H} which take the explicit form (i
denotes the first in a triple of adjacent sites)

Hé = _?171 - (»biz?fl‘r - ¢71PTTT
— ¢32(|r17Xr77| + He), (1)

where P, projects onto the state |a), e.g. P, = |171) X
(171] and ¢ = (1 + +/5)/2 is the golden ratio [8].

Here we want to explore a larger space of models than
that given by this uniform chain with only nearest-neighbor
two-anyon interactions. One way is to let the strength J, of
the interaction alternate along the chain, as illustrated in
Fig. 1(a). Two chains can be coupled to form a two-leg
ladder. Another way is to add a spatially-uniform three-
anyon interaction, as indicated in Fig. 1(b), which because
of its rich phase diagram, we discuss in the following.

Majumdar-Ghosh chain.—Three SU(2) spin-1/2’s can
combine to a total spin 3/2 or 1/2. For a uniform SU(2)
spin-1/2 chain, Majumdar and Ghosh (MG) showed that
an AFM coupling (favoring total spin 1/2) for each set of
three neighboring spins gives rise to a gapped phase with
the two possible dimer coverings being the exact ground
states [12]. In the same spirit we have asked what possible
phases can be stabilized by a spatially uniform three-
particle interaction term in our anyonic generalization of
the SU(2) Heisenberg model, i.e., a term that energetically
favors each set of three adjacent Fibonacci anyons to fuse
together [10] into either a 1 or a 7, as illustrated in
Fig. 1(b). Like the pairwise interaction term such a three-
particle interaction term respects both the translational and
topological symmetries. We find that the energetic com-
petition between such two- and three-anyon interactions
gives rise to the rich ground-state phase diagram shown in
Fig. 2, which we discuss in some detail in the following.
Similar to the derivation for the pairwise interaction term
(1) we can obtain a local form H = J3Z,»H§ of the three-
anyon interaction term by a sequence of basis transforma-
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FIG. 1 (color online). Illustration of (a) the alternating chain
and (b) the generalized Majumdar-Ghosh chain with a three-
anyon interaction term. Shaded enclosures indicate the fusion
products that are energetically biased by the Hamiltonian.

tions and projections which then takes the explicit form of
a 4-site interaction between consecutive labels along the
chain of fusions

Hé = ?T]Tl + ?1717 + TTTT] + ?]TTT + 2¢72TTTTT
+ ¢71(TTITT + ?TTIT) - ¢72(|TTIT><TITT| + HC)
+ ¢ 52 (|r1rrrrrT| + |7l + Hel), (2)

where the site i denotes the first position in each “quad” of
sites. The full Hamiltonian with competing fusion terms
then becomes Hj, ;, = 3 (JoH} + J3HY), where we pa-
rameterize the couplings by the angle 6 as J, = cosf and
J3 = sinf. We study periodic chains of L anyons.

The phase diagram of this model, shown in Fig. 2,
exhibits two critical phases that contain the two exactly
solvable points (6§ = 0, 7). These extended critical phases
can be described by 2D conformal field theories and are
thereby related to 2D classical critical points to which an
exact mapping was established at the two solvable points
[8]. For AFM pair interaction (J, > 0) this is the tricritical
Ising model (¢ = 7/10), while for FM pair interaction
(J, <0) it is the critical point of the 3-state Potts model
(c = 4/5). In particular, we note that the critical phases
found at the exactly solvable points are stable upon intro-
ducing a small three-anyon fusion term. While the J;-term
respects both translational and topological symmetries, all
translational invariant operators with scaling dimension
<2 at the exactly solvable points are found to break the

tan 6 = ¢/2
critical 3-state Potts

3-state Potts c=4/5 with S,-symmetry

c=4/5

. incommensurate
ex‘lgt phase O exact
solution o . solution
tricritical Ising
c=7/10

0=3m/2 tetracritical Ising
Majumdar-Ghosh ¢=4/5

FIG. 2 (color online). The phase diagram of our anyonic
Majumdar-Ghosh chain on the circle parameterized by 6, with
pairwise fusion term J, = cosf and three-particle fusion term
J; = sinf. Besides extended critical phases around the exactly
solvable points (6 = 0, 7r) that can be mapped to the tricritical
Ising model and the 3-state Potts model, there are two gapped
phases (gray filled). The phase transitions (red circles) out of the
tricritical Ising phase exhibit higher symmetries and are both
described by CFTs with central charge 4/5. In the gapped phases
exact ground states are known at the positions marked by the
stars. In the lower left quadrant a small sliver of an incommen-
surate phase occurs and a phase which has Z, symmetry. These
latter two phases also appear to be critical.
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topological symmetry [8]. This shows that the topological
symmetry protects the gaplessness in the vicinity of these
points, somewhat analogously to the much-discussed no-
tion that a topological symmetry protects a ground-state
degeneracy in a gapped topological phase in 2D space.
For large three-particle interactions these critical phases
eventually give way to other phases, such as the two
distinct gapped phases indicated by the gray shaded arcs
in the phase diagram. Remarkably, the transition to the
gapped phase from the tricritical Ising phase when both
interaction terms are AFM apparently has an “emergent”
S5 (3-state Potts) symmetry. Our numerical analysis shows
that this transition occurs at = 0.1767 and is described
by the parafermion CFT with central charge ¢ = 4/5,
indicative of an additional S;-symmetry at this point.
Figure 3 shows the rescaled energy spectrum at this critical
point whose (universal) low-energy part is in spectacular
agreement with the CFT predictions. Note the relevant
operator with zero momentum, zero flux, and scaling di-
mension 4/3, which breaks the S; symmetry. It is the
leading operator present in the Hamiltonian away from
this special point, and drives the system into either the
gapped or the tricritical Ising phase. In the gapped phase,
the topological symmetry is spontaneously broken and the
resulting ground state, which has zero total momentum, is
twofold degenerate in the thermodynamic limit. In the
tricritical Ising phase, the Z, sublattice-symmetry breaking
order parameter corresponds to a more relevant continuum
operator than the topological order parameter, while it is
the state corresponding to the Z, order parameter which
acquires a higher energy in the gapped phase, where only
the topological symmetry is broken. At the transition, both
order parameters are degenerate, see Fig. 3, and together
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FIG. 3 (color online). Energy spectrum at the S;-symmetric
point (8 = 0.1767) of the Majumdar-Ghosh chain. The energies
have been shifted and rescaled so that the two lowest eigenvalues
match the CFT scaling dimensions. The open boxes indicate the
positions of the primary fields of the parafermionic subset of the
c = 4/5 CFT; fields with topological flux 7 are marked. The
open circles give the positions of multiple descendant fields as
indicated.

they form the order parameter of a critical 3-state Potts
model with S3 symmetry.

In the case of FM three-particle interaction J; <0 the
transition at § = —0.4727 between tricritical Ising and
gapped phases is described in terms of CFT by the full ¢ =
4/5 minimal model representing [13] the tetracritical Ising
model. Again we have unambiguously identified the CFT
description of this critical endpoint by assigning the low-
energy states in the energy spectrum similar to Fig. 3
(shown in the auxiliary material [14]). In particular, the
topological symmetry forces the system onto the integrable
renormalization group trajectory [15] flowing into the
gapped phase or the tricritical Ising fixed point, driven
again by the relevant operator with dimension 4/3. This
operator belongs to the series of least relevant Ising
Z,-symmetric operators of scaling dimension 2(k +
1)/(k + 3) in the family of multicritical Z, Ginzburg-
Landau theories described by the conformal miminal mod-
els [16] (k = 3 for tetracritical Ising). The limit k — oo
corresponds to the ordinary SU(2) spin-1/2 chain, and in
this limit this operator becomes the marginal operator
driving the transition into the spontaneously dimerized
phase [17]. In analogy to the ordinary SU(2) spin-1/2
chain, at our tetracritical Ising transition into the gapped
phase translational symmetry is spontaneously broken; in
our case, however, spontaneous breaking of the topological
symmetry occurs in addition. As a consequence, we ob-
serve a four-fold ground-state degeneracy throughout this
gapped phase for chains with even length. The nature of
this gapped phase is best characterized at the point 8 =
377/2 that is the anyonic analog of the Majumdar-Ghosh
point of the spin-1/2 Heisenberg chain. At this point the
four ground states for even L take the exact form

|¢no-ﬂux> = |TxTTxTTxT~ . > + ¢_1|7'17'17'1 .. >

+ [lTTxTTxTTx .. > + d)illlTlTlT- . >], 3)

Y, —qux) = ¢ Hryrrrrr.. ) — |7l7l7l L)

+[p YNrryrrrr, . ) — 171717, )], ()

where 7, = ¢~ !|1) + ¢~ '/2|7) denotes a normalized su-
perposition of the states |1) and |7) on a single site. Note
these ground states have total momenta K = 0 or K = 7,
indicating the two-sublattice ordering. There are two states
at each momentum, one with a 7-flux and the other with-
out. Of course, we can instead make the simpler linear
combinations of these ground states that explicitly break
both the topological and sublattice symmetries: these four
states are |7, 77,77,7...), [717171...) and the equivalent
states under translation by one site. Note that the density of
I’s [which for these states is 1/(2¢?) and 1/2, respec-
tively] is a simple order parameter that reflects the topo-
logical symmetry breaking.

The low-energy excitations in the gapped phase around
the MG point are domain walls between the two-sublattice-
ordered ground states with a low density of 1’s—similar to
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FIG. 4 (color online). Schematic energy spectra in the gapped
phase for 0.19 = 6/ = 0.30. Below a continuum of scattering
states (gray shaded) a quasiparticle band forms. The plot com-
bines data with 24 = L = 36. Solid lines are a guide to the eye.

spinon states in the spin-1/2 MG chain. For chains of odd
L the periodic boundary conditions force the presence of
an odd number of such spinons or walls, and indeed we
observe a distinct single-spinon dispersion relation over
part of the Brillouin zone as shown in the auxiliary material
[14]. Explicitly evaluating the topological symmetry op-
erator [8] we find that these one-spinon states all have a
7-flux. For even length rings we observe a continuum of
two-spinon scattering states in the spectrum (shown in the
auxiliary material [14]).

At the S3-symmetric transition out of the tricritical Ising
phase (6 = 0.176m) the system spontaneously breaks only
the topological symmetry resulting in a twofold degenerate
ground state at total momentum K = 0 in the gapped
phase. With increasing coupling J3, away from the tran-
sition, an energy gap opens in the spectrum, with a distinct
quasiparticle dispersion forming below a continuum of
scattering states as shown in Fig. 4. Explicitly evaluating
the topological symmetry operator [8] we find that these
quasiparticle states all have a 7-flux. For small J3, the
lowest energy quasiparticle remains at momentum K =
7, with both the gap and the mass increasing with increas-
ing J5. Near 6 = 0.247 the gap reaches a maximum value
and the mass diverges. The minimum of the quasiparticle
dispersion bifurcates and continuously moves away from
K = ; see the lower panel in Fig. 4. Eventually, the two
minima approach the commensurate momenta K =

27r/3,47/3 and as these modes soften the system enters
the 3-state Potts critical phase at § = 0.31677.

Finally, we note that when both interaction terms are FM
the critical 3-state Potts phase gives way to a small sliver of
an incommensurate phase and then a phase with Z, sub-
lattice symmetry. All of these phases appear to be critical
or nearly critical. In the incommensurate phase, correla-
tions in the local density of 1’s oscillate with a spatial
period varying between 3 and 4 lattice spacings.

In conclusion, the anyonic quantum chains possess a
topological symmetry that forces their corresponding 2D
classical models onto a highly fine-tuned submanifold of
their respective phase diagrams. The competition of any-
onic exchange interactions allows one to move within this
manifold containing a plethora of both, (multi)critical
phases and various gapped phases with spontaneously
broken topological symmetry.
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