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The microscopic modeling of spin-orbit entangled j = 1/2 Mott insulators such as the layered hexagonal
iridates Na2IrO3 and Li2IrO3 has spurred an interest in the physics of Heisenberg-Kitaev models. Here we
explore the effect of lattice distortions on the formation of the collective spin-orbital states that include not only
conventionally ordered phases but also gapped and gapless spin-orbital liquids. In particular, we demonstrate
that in the presence of distortions, i.e., spatial anisotropies of the exchange couplings, conventionally ordered
states are formed through an order-by-disorder selection, which is not only sensitive to the type of exchange
anisotropy but also to the relative strength of the Heisenberg and Kitaev couplings. The spin-orbital liquid phases
of the Kitaev limit—a gapless phase in the vicinity of spatially isotropic couplings and a gapped Z2 phase for a
dominant spatial anisotropy of the exchange couplings—show vastly different sensitivities to the inclusion of a
Heisenberg exchange. While the gapless phase is remarkably stable, the gapped Z2 phase quickly breaks down in
what might be a rather unconventional phase transition driven by the simultaneous condensation of its elementary
excitations.
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I. INTRODUCTION

The intricate interplay of electronic correlations, spin-orbit
coupling, and crystal-field effects in 5d transition metal oxides
has led to the discovery of an intriguing variety of quantum
states of matter including Weyl semimetals, axion insulators,
or topological Mott insulators [1]. In the correlation-dominated
regime, unusual local moments such as spin-orbit entangled
degrees of freedom can form and whose collective behavior
gives rise to unconventional types of magnetism including
the formation of quadrupolar correlations or the emergence
of so-called spin liquid states [2]. On the materials side,
a particularly prolific group of compounds are the iridates,
whose electronic state can be either weakly conducting or
insulating. Common to all iridates is that the iridium ions
typically occur in an Ir4+ ionization state corresponding to a
5d5 electronic configuration. For the insulating compounds, a
particularly intriguing scenario is the formation of a so-called
j = 1/2 Mott insulator [3,4], in which a crystal field splitting
of the d orbitals into t2g and eg orbitals and a subsequent
spin-orbit entanglement leads to a Mott transition yielding
a completely filled j = 3/2 state and a half-filled j = 1/2
doublet. The microscopic exchange between these spin-orbit
entangled j = 1/2 local moments has been argued [5,6] to give
rise to interactions which combine a spinlike contribution in
form of an isotropic Heisenberg exchange with an orbital-like
contribution in form of a highly anisotropic exchange whose
easy axis depends on the spatial orientation of the exchange
path. Such orbital exchange interactions are well known from
the early work of Kugel and Khomskii [7] on quantum compass
models [8] to induce a high level of exchange frustration, i.e.,
they inhibit an ordering transition of the local moments that
cannot simultaneously align with all their nearest neighbors
due to the competing orientations of the respective easy axis.
This frustration mechanism is particularly effective in the so-
called Kitaev model [9], a honeycomb compass model where
the exchange easy axis points along the x, y, and z directions

for the three different bond orientations in the honeycomb
lattice, see Fig. 1(b). Its phase diagram parametrized in the
relative coupling strength of the three types of exchanges
exhibits two incarnations of spin liquid phases: an extended
gapless spin liquid phase around the point of equally strong
exchange interactions and gapped Z2 spin liquid phases if one
of the three coupling strengths dominates, see Fig. 1(c) for a
detailed phase diagram. On the materials side, the layered
iridates Na2IrO3 and Li2IrO3, which form j = 1/2 Mott
insulators with the iridium ions arranged on a hexagonal lattice
as illustrated in Fig. 1(a), have recently attracted considerable
attention as possible solid state incarnations [5,6,10–13] of the
Heisenberg-Kitaev model.1

In this manuscript, we inspect the role of distortions on
the collective spin-orbital state of the hexagonal Heisenberg-
Kitaev model away from the exactly solvable Kitaev limit.
The distortions are realized in the form of spatial anisotropies
of the strength of the exchange interactions, which are varied
on bonds along one of the three principal lattice directions
with respect to the other two. Our motivation to do so has
been twofold. First, early space group determinations of the
layered iridate Na2IrO3 using powder x-ray diffraction scans
[10] hinted at space group C2/c, in which the hexagonal lattice
formed by the Ir4+ ions is slightly distorted along one of its
three principal directions. However, more refined inelastic
neutron scattering [12] and single-crystal x-ray diffraction
measurements [13] later revealed that the correct space group
of Na2IrO3 is in fact space group C2/m and the hexagonal
lattice formed by the Ir4+ ions is an almost perfectly 120◦
symmetric honeycomb lattice. As we will show in this
manuscript, the collective spin-orbital states of these systems

1Generalizations of the Heisenberg-Kitaev model to lattice geome-
tries beyond the hexagonal lattice have recently been considered in
both two and three spatial dimensions [50–57] motivated in part by
the recent synthesis of three-dimensional honeycomb iridates [58,59].
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FIG. 1. (Color online) (a) Crystal structure of the layered iridates A2IrO3 with A = Na, Li. (b) Sketch of the microscopic interactions in
the Kitaev honeycomb model. (c) Phase diagram of the quantum Kitaev model.

are nevertheless highly sensitive to small spatial anisotropies of
the exchange couplings, which experimentally can be probed
via external pressure measurements inducing small lattice
distortions and concurrent exchange anisotropies. Second, we
hoped to shed further light on the putative quantum critical
point in the undistorted Heisenberg-Kitaev model [6,14–16]
between a gapless spin-orbital liquid phase extending out
of the Kitaev limit and a conventionally ordered “stripy”
phase for the intermediate regime of roughly equally strong
Heisenberg and Kitaev couplings. Our analysis shows that
exchange coupling distortions are relevant perturbations in any
field theoretical description of such a quantum critical point,
which depending on their relative strength induce different
types of conventionally ordered states in an order-by-disorder
selection. This mechanism, which for an infinitesimally small
distortion selects a subset of the six possible stripy spin-
orbital orderings of the undistorted model, is at play for the
entire stripy phase of the Heisenberg-Kitaev model in the
intermediate coupling regime. In fact, the selection process
turns out to be subtly sensitive not only on the sign of the
distortion but also the relative coupling strength of Heisenberg
and Kitaev exchange, which leads to a total of four different
stripy-ordered phases in the phase diagram of the distorted
Heisenberg-Kitaev model.

We will start our discussion by first considering the classical
variant of the distorted Heisenberg-Kitaev model in Sec. II.
The phase diagram of the classical model already includes all
of the conventionally ordered phases found in its quantum
mechanical counterpart as well as its own variation of an
order-by-disorder selection of ordered states in the presence
of exchange coupling distortions. The entire phase diagram of
the classical model as well as its finite-temperature behavior
are discussed via extensive numerical simulations. We further
consider in detail the classical limit of the Kitaev model, which
in the absence of distortions is known to exhibit a classical spin
liquid state with Coulomb gas correlations [17]. We show that
the inclusion of exchange distortions leads to a break-down
of these power-law correlations and a partial lifting of the
residual entropy at zero-temperature, which is also reflected
in characteristic signatures of the low-temperature specific
heat behavior. We then turn to the quantum Heisenberg-Kitaev
model in Sec. III whose phase diagram we have determined via

extensive numerical simulations relying on the density matrix
renormalization group (DMRG) on finite two-dimensional
clusters. The quantum order-by-disorder selection is discussed
and found to be in perfect agreement with the numerical data.
Finally, we discuss the possibility of an exotic continuous
quantum phase transition, where the Heisenberg exchange
drives the system out of the gapped Z2 spin liquid phase of
the distorted Kitaev model into a stripy-ordered phase. Based
on perturbative arguments, we conjecture that this transition
might be driven by the simultaneous condensation of the
excitations of the Z2 spin liquid. We round off the manuscript
with a summary and outlook in Sec. IV.

II. CLASSICAL HEISENBERG-KITAEV MODEL

We start our discussion of the distorted Heisenberg-Kitaev
model by first considering its classical version. Its Hamiltonian
is given by

H = (1 − α)HHeisenberg − 2αHKitaev

=
∑
〈ij〉,γ

Jγ

[
(1 − α) SiSj − 2α S

γ

i S
γ

j

]
, (1)

where the spins S are classical O(3) Heisenberg spins and
the sums run over nearest-neighbor bonds 〈ij 〉 along the
three principal directions γ of the honeycomb lattice labeled
x, y, and z, see Fig. 1(b). The coupling constants 0 < Jγ

parameterize the overall strength of the couplings along these
three bonds, while the parameter 0 < α < 1 parameterizes
the relative strength of the Heisenberg and Kitaev exchange
with α = 0 corresponding to the Heisenberg limit and α = 1
corresponding to the Kitaev limit. Note that the Heisenberg
exchange is always antiferromagnetic, while the Kitaev ex-
change is always ferromagnetic. The choice of these coupling
signs is motivated by the microscopic modeling [6] of the
layered iridate compounds Na2IrO3 and Li2IrO3. To be even
more explicit, the Hamiltonian can be decomposed into three
types of bond terms, which read

Hx
ij = Jx

[
(1 − α)SiSj − (2α)Sx

i Sx
j

]
,

H
y

ij = Jy

[
(1 − α)SiSj − (2α)Sy

i S
y

j

]
,

Hz
ij = Jz

[
(1 − α)SiSj − (2α)Sz

i S
z
j

]
. (2)
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FIG. 2. (Color online) Low-temperature phase diagram of the Heisenberg-Kitaev model under variation of the relative strength α of the
Heisenberg and Kitaev couplings and the distortion Jz. For 0 < α < 1/3, we additionally show histograms of the Néel magnetization mN,
while the histograms for 1/3 < α < 1/2 and 1/2 < α < 1 display the stripy order parameter mS. In the undistorted case with Jz = 1, the
magnetization vector lies on one of the cubic axes, either in positive or negative direction, yielding a sixfold degeneracy. In the distorted models
with Jz ≷ 1 depending on α, there is either a twofold degeneracy with the magnetization pointing in ±z directions or a fourfold degeneracy
where the magnetization points in one of the ±x or ±y directions. The color coding is according to a normalization by highest density. Each
histogram has been measured in a single parallel-tempering simulation of a system of size L = 32. At α = 1/2 the model is O(3) symmetric
and hence we find no preferred directions of ordering in the mS-histograms (right-hand side).

The case of Jx = Jy = Jz corresponds to spatially isotropic
coupling strengths and the model reflects the C3 rotational
symmetry of the honeycomb lattice. We refer to this case as the
undistorted Heisenberg-Kitaev model. To consider the effect
of distortions, i.e., spatially anisotropic coupling strengths, we
will vary the relative strength of the Jz bond exchange while
keeping the other two coupling strengths equal, i.e., Jx = Jy .
We further use the convention that the overall coupling strength
is constant, i.e., Jx + Jy + Jz = 3, so that for varying 0 <

Jz < 3, we have Jx = Jy = (3 − Jz)/2.

A. Phase diagram of the distorted HK model

A summary of the low-temperature ordered states of this
classical model is provided in the phase diagram of Fig. 2.
The model exhibits a number of conventionally ordered states
which we will discuss in the following.

We start by surveying the phases of the undistorted, C3

symmetric model for Jz = 1, see the center row of Fig. 2. At
α = 0, we have an antiferromagnetic Heisenberg interaction
stabilizing a Néel ordered phase with a staggered moment
pointing along an arbitrary direction. Including a small
(ferromagnetic) Kitaev interaction lowers the continuous O(3)
symmetry of the Heisenberg model to a set of discrete sym-
metries including (i) time reversal symmetry, (ii) a 2π/3 spin
rotation about the [111] spin axis along with C3 lattice rotations

about an arbitrary site, and (iii) an inversion symmetry around
any plaquette or bond center. Yet the Néel order survives.
Interestingly, the direction of the Néel staggered moment is
determined by a classical order-by-disorder mechanism, which
we will discuss in more detail in Sec. II B. Upon further
increasing the Kitaev exchange, the system will eventually
disfavor Néel order and undergo a first-order transition to an
alternate ordered state exhibiting “stripy” order. To see the
order of the resulting phase, fortunately, at α = 1/2 after an
appropriate change of spin variables the Hamiltonian reduces
again to an O(3) symmetric model, albeit a ferromagnetic
one [6].

We briefly describe the four-sublattice basis transformation.
Note that at α = 1/2, the spin-spin interactions between x, y,
and z spin components have equal magnitude but depending
on the bond type two interactions are antiferromagnetic and
one is ferromagnetic. This interaction can be transformed to a
fully ferromagnetic one upon a relative π rotation of the two
spins around the special axis. We denote the new spin variables
by S̃. Explicitly, to make this transformation on the full lattice
we define a 16 site supercell with sites of types 0,1,2,3 as
depicted in Fig. 3. The new spin variables S̃ are obtained by
a π rotation around x, y, or z for sites of type 1, 2, and 3,
respectively, and they are simply equal to S on sites of type 0.

After the four-sublattice basis transformation, the
Hamiltonian bond terms in the new spin variables
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FIG. 3. (Color online) 16 site supercell used to transform the
Hamiltonian at α = 1/2 to a O(3) symmetric ferromagnetic one.
Note that we use a smaller unit cell compared to Ref. [3].

read [6]

Hx
ij = Jx

[
(α − 1)S̃i S̃j + 2(1 − 2α)S̃x

i S̃x
j

]
,

H
y

ij = Jy

[
(α − 1)S̃i S̃j + 2(1 − 2α)S̃y

i S̃
y

j

]
,

Hz
ij = Jz

[
(α − 1)S̃i S̃j + 2(1 − 2α)S̃z

i S̃
z
j

]
. (3)

Thus we see that at α = 1/2 the system has O(3) symmetry.
The ground state is a ferromagnet in the S̃ variables. This
translates to the stripy phases of the original spins; see Fig. 4.
Similar to the Heisenberg point at α = 0, also at α = 1/2, the
direction of the ferromagnetic moment is arbitrary due to the
O(3) symmetry. But any finite deviation from α = 1/2 breaks
the continuous symmetry down to a discrete one and we expect
the ferromagnetic magnetization direction to be fixed at one
of few discrete possibilities. As will be seen in Sec. II B, this
happens by a classical order by disorder mechanism. The Néel
and stripy phases have direct analogs in the quantum case.
The most interesting quantum phase occurring for α → 1,
which is a spin liquid with gapless excitations in the form
of emergent Majorana fermions, does not have an immediate
classical analog. Instead, the system forms a classical spin
liquid state—a so-called Coulomb gas [17], which exists only

FIG. 4. (Color online) Illustration of the stripy x, y, and z phases
where the arrows indicate the spin alignment along the x, y, and z

spin directions.

in the Kitaev limit, i.e., α = 1, to which we will devote special
attention in Sec. II D.

We now consider a finite amount of distortion Jz �= 1.
Jz > 1 corresponds to strong dimers, while Jz < 1 corre-
sponds to dominating chains. As can be easily obtained by
calculating the energies of the various ordered states discussed,
the Néel ordered region splits up into one (Jz > 1) in which
spins are in the xy plane and another one (Jz < 1) at which
they point along the z direction. Also in the stripy phases,
spins either point along z for (α − 1/2)(Jz − 1) > 0, or they
lie in the xy plane for (α − 1/2)(Jz − 1) < 0. Note that from
pure energetics, the directions of the spins in the xy plane are
not fixed. Also here, the finite-temperature order by disorder
mechanism comes to play; see Sec. II B.

The paragraph above relies on a simple evaluation of the
energy per unit cell of states with perfect Néel or stripy order
in direction γ , where spins have the orientations ±êγ . For the
Néel states, we sum over Eq. (2) for the three bonds γ ′ of a
unit cell, where SiSj = −1, while the Kitaev term only gives

a contribution for the γ bond: S
γ ′
i S

γ ′
j = −δγ,γ ′ . For the stripy

states, we sum over Eq. (3) with S̃i S̃j = 1 and S̃
γ ′
i S̃

γ ′
j = δγ,γ ′ .

Thus we find

ENéelz γ = −Jγ (1 − 3α) −
∑
γ ′ �=γ

Jγ ′(1 − α),

Estripy γ = Jγ (1 − 3α) +
∑
γ ′ �=γ

Jγ ′ (α − 1). (4)

Also the Néel-stripy phase transition lines can be found by
equating energies. From

ENéel z = Estripy z, (5)

we obtain α = 1/3, giving the line boundary between Néel
and stripy for Jz < 1. By comparing

ENéel xy = Estripy xy, (6)

we also obtain α = 1/3, giving the line boundary between
Néel and stripy phases for Jz > 1. As a result there is a straight
vertical line at α = 1/3 marking the Néel-stripy transition in
the low-temperature phase diagram of Fig. 2.

In Secs. II B and II C, we show that for Jz �= 1 the stripy-
ordered phases have different discrete symmetries left and right
of the α = 1/2 line in Fig. 2. Consequently, this line marks
first-order transitions for both Jz > 1 and Jz < 1. As outlined
in Sec. II C, we numerically obtain the finite-temperature phase
diagram shown in Fig. 5.

B. Order by disorder and effective Ginzburg-Landau theory

At α = 1/2, the magnetization points along an arbitrary
direction due to the O(3) symmetry explicitly apparent in
Eq. (3) (we refer to the S̃ variables in terms of which
the Hamiltonian is ferromagnetic). At finite deviations from
this symmetric point, one expects the Kitaev anisotropic
interactions to stabilize a discrete set of orientations of the
magnetization. However, as Eq. (4) shows, on the mean-field
level, all uniform ferromagnetic states in the O(3) order
parameter manifold remain degenerate for Jz = 1. Similarly,
the mean-field energy in the stripy xy phases is still invariant
under continuous rotations in this plane. Along the same lines,
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FIG. 5. (Color online) Finite-temperature phase diagrams for
(a) Jz > 1, (b) Jz = 1, and (c) Jz < 1. We estimate the temperature
of transition to the ordered phase by the intersection point of
order parameter Binder cumulant plots QN

2 (T ) for α < 1/3 and
QS

2(T ) for α > 1/3 averaged over multiple pairs of lattice sizes
L. See Fig. 7, for example, data that went into this calculation.
The dashed lines at α = 0,1/2 indicate the parameterizations for
which the Heisenberg-Kitaev model is O(3) symmetric and as a
consequence of the Mermin-Wagner theorem is not expected to
display finite-temperature transitions in good agreement with our
numerical analysis. The degenerate dimer-covering states at α = 1
also do not undergo any phase transition for T > 0.

on the mean-field level, the order parameter in the Néel phase
for Jz � 1 is not determined.

As we will now see, the Heisenberg-Kitaev model provides
a simple example where Villain’s order by disorder mechanism
comes into play and restricts the order parameter to lie in a
subspace of the degenerate manifold. This mechanism requires
finite temperatures, where entropic contributions to the free
energy become effective. The formal procedure followed
below is to integrate out the leading thermal fluctuations, and
see that for certain directions of the ordered moment those
fluctuations are softer and can further lower the free energy.

We shall consider explicitly the stripy region in terms of
the S̃ variables. We introduce a slowly varying ferromagnetic
order parameter field 〈S̃i〉 → M(r) of unit length

[Mx(r)]2 + [My(r)]2 + [Mz(r)]2 = 1 (7)

and define gradients along the directions of the three bonds,
∇ûγ

= ûγ · ∇, (γ = x,y,z), where ∇ = (∂x,∂y), with unit

vectors ûz = ŷ and ûx,y = ∓
√

3
2 x̂ − 1

2 ŷ. We set the length of
these bonds to unity such that the hexagon area is Ahex =
33/2/2 and the area of the Brilloiuin zone is ABZ = 4π/

√
3.

Expanding the spin-spin interaction Eq. (3) up to second
order in gradients, we obtain the continuum Hamiltonian
H = ∫

d2r
Ahex

H[M], with

H[M] =
∑

γ

Jγ

2
[(1 − α)(∇ûγ

M)2 + 2(2α − 1)(∇ûγ
Mγ )2].

(8)
For simplicity, we focus on the case Jx = Jy = Jz = J .

We now consider the partition function of the continuum
model Eq. (8),

Z =
∫

DM(r)e−H[M(r)]/T . (9)

We proceed by describing the magnetization M(r) in terms of
fluctuations corresponding to two Goldstone modes π1(r) and
π2(r) around a uniform magnetization ê,

M(r) = ê
√

1 − π̄2(r) +
∑
a=1,2

êaπa(r). (10)

Here, π̄ =
√

π2
1 (r) + π2

2 (r), and the set of unit vectors
{ê1,ê2,ê} forms an orthonormal basis. This allows to rewrite
the partition function as

Z =
∫

Dê
∫

Dπa(r)e−H[ê,πa (r)]/T =
∫

Dêe−Heff [ê]/T , (11)

hence introducing an effective Hamiltonian of ê by integrating
over the fluctuations,

e−Heff [ê]/T =
∫

Dπa(r)e−H[ê,πa (r)]/T . (12)

In Appendix A, we compute Heff[ê] explicitly by expanding
H[ê,πa(r)] up to quadratic order in the fluctuations πa(r). Up
to a constant and up to quadratic order in 2α − 1, we obtain
the symmetry allowed anisotropic term

Heff

NT
= −2

3
(2α − 1)2 [(êx)4 + (êy)4 + (êz)4]. (13)
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FIG. 6. (Color online) L = 4 example of the finite lattices used in
our Monte Carlo simulations, where opposing boundaries are periodic
as indicated. The numbers show the division into the sublattices used
in the definition of the order parameter mS in Eq. (14), which matches
the supercell in Fig. 3.

This is the main result of this section. Its negative sign restricts
the magnetization in the stripy phase to lie along one of
the cubic axes. This term is quadratic in α − 1/2, implying
the same conclusion for both sides of the point α = 1/2 in the
phase diagram at Jz = 1. Similarly, in the stripy xy phases,
by the same argument, the magnetization is restricted to either
the x or y cubic axes. On the classical level the Néel ordered
phase has an equivalent description as the ferromagnet, and
our order by disorder calculation implies that the Néel order
parameter is restricted to point along one of the cubic axes.

C. Numerical results

Our analysis of the classical Heisenberg-Kitaev model is
complemented by an extensive finite-temperature Monte Carlo
study. In our simulations, the classical spins Si are situated on
the vertices of hexagon-shaped clusters with periodic boundary
conditions, which realize the C3 symmetry of the honeycomb
lattice and allow to observe unbiasedly all possible orientations
in the stripy phases; see Fig. 6. A cluster with a side length of
L plaquettes contains N = 6L2 sites.

We apply the standard Metropolis algorithm [18,19] with
two different types of proposed moves. In one lattice sweep,
we first perform local updates of each individual spin, where
the new orientation is chosen from an angular region around
the old orientation, which has been tuned in such a way during
thermalization that acceptance ratios of 50% are maintained
at all temperatures. In a second stage, we then propose 3N

“bond-flip” moves. In one of these moves, we choose a random
pair of nearest-neighbor sites together with their associated
bond-direction 〈i,j 〉γ . Then for the spins at both sites we
reverse the sign of the spin-component linked via that bond in
the Kitaev interaction: S

γ

i → −S
γ

i and S
γ

j → −S
γ

j , whereas
the other components are not modified. While the bond-flip
update would not be ergodic on its own, in combination

with the single-spin update it greatly accelerates simulation
dynamics in the stripy phases, vastly facilitating equilibration.

To further improve ergodicity, we combine these canonical
updates with a parallel-tempering scheme [20,21]. Here we
simulate multiple replicas of the spin system concurrently at
different temperatures and exchange configurations between
them in a controlled manner that satisfies detailed balance. In
this way, short autocorrelation times at high temperatures can
be exploited to easily overcome free energy barriers at low
temperatures, and we can reach all relevant regions of phase
space in a single simulation regardless of initial conditions.

We measure two vector order parameters to distinguish
between different antiferromagnetic spin alignments:

mN = 1

N

(∑
i∈a

Si −
∑
i∈b

Si

)
and

mS = 1

2N

(∑
i∈0

Si +
∑
i∈1

Si −
∑
i∈2

Si +
∑
i∈3

Si

)
. (14)

Here, a and b stand for the two sublattices of the honeycomb
lattice, while the four honeycomb sublattices formed by the
sites of the different types of the supercell of Fig. 3 are denoted
by 0, 1, 2, and 3. Figure 6 shows how these sublattices are
assigned in our finite lattices. |mN| = 1 corresponds to perfect
Néel order, while |mS| = 1 is realized for perfect stripy order.
The preferred orientations of the magnetization vectors mN

and mS reflect which ordering directions are possible in the
different Néel and stripy phases. In Eq. (14),we have chosen an
asymmetric definition of the order parameter mS, where one
of the sublattice magnetizations is counted negative and three
are counted positive. With this definition mS is simultaneously
an order parameter for the stripy x, y, and z phases on the
same lattice.2 By measuring histograms of the components of
mN and mS, we were able to verify the analytical arguments
of Sec. II B. We obtain planar representations of mN and mS

by mapping the three Cartesian basis vectors to the complex
plane as in êx → exp(7iπ/6), êy → exp(11iπ/6), and êz →
exp(iπ/2) and show the resulting histograms as insets in the
phase diagram of Fig. 2. Both the carefully chosen shape of the
finite lattices and the parallel-tempering algorithm are essential
tools allowing us to fully explore configuration space in our
simulations as reflected in these histograms.

Recently, Price and Perkins [22,23] studied the undistorted,
C3-symmetric classical Heisenberg-Kitaev model at finite
temperature. Following their analysis, we study the Binder
cumulants of the absolute valued order parameters,

QN
2 = 1 − 1

3

〈
m4

N

〉
〈
m2

N

〉2 and QS
2 = 1 − 1

3

〈
m4

S

〉
〈
m2

S

〉2 , (15)

in order to pinpoint the precise temperature of the transitions
into the ordered phases. At criticality, their values depend only
weakly on the system size. Hence the intersection point of

2Note that Refs. [22,23] use an alternative definition of the stripy-
order parameter, which is specified on a choice of sublattices different
from ours.
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QN
2 (T ) or QS

2(T ) curves evaluated for different L gives a good
estimate of the critical temperature.

Interestingly, Price and Perkins found that for α �= 0,1/2,1,
the entrance to the ordered phases (Néel or stripy) from
the high-temperature paramagnetic phase undergoes two con-
secutive phase transitions, via a small sliver of a critical
Kosterlitz-Thouless phase. In this intermediate phase, the
effective model is a six-state clock model, corresponding to
the six possible stripy or Néel phases, where an effective U(1)
symmetry emerges. However, for the distorted model there are
only two or four degenerate stripy or Néel phases. In this case,
the intermediate U(1) symmetric phase is not expected [24]
and no evidence of it is found in our numerical analysis.

We apply standard multiple histogram reweighting tech-
niques [25,26] to the temperature-sorted observable time series
in combination with numerical minimization routines [27] to
find the intersection points for systems of different sizes up to
L = 128. Statistical uncertainties are estimated by performing
the entire analysis on jackknife resampled data sets [28]. Plots
of Binder cumulants close to their crossing points are given in
Fig. 7 for several parameter sets. We average over the results
for different values of L to estimate the transition temperatures
T ∗ shown in Fig. 5.

For the symmetric case Jz = 1, our approach resolves the
lower of the two transition temperatures of the analysis of
Ref. [23]. For the distorted model, only a single transition is
expected as argued above. We associate this transition with the
crossing point of the Binder cumulant curves of different sizes
as shown in the examples in Fig. 7.

D. Emergent magnetostatics in the Kitaev limit

Before concluding our discussion of the classical
Heisenberg-Kitaev model, we will briefly discuss the physics
of the Kitaev limit (α = 1). While its quantum mechanical
counterpart is well known as a paradigmatic, exactly solvable
spin model harboring various spin liquid ground states, the
classical Kitaev model certainly deserves some attention as
well. In its undistorted form (Jx = Jy = Jz = 1), it is one of
the simplest, analytically tractable classical spin models that
evades a thermal phase transition and harbors a classical spin
liquid state, which at zero temperature exhibits an extensive
degeneracy and pair correlations decaying with a characteristic
power law [17]. These zero-temperature features can be
traced back to an effective description in terms of emergent
magnetostatics—an example of a so-called Coulomb gas [29].
We will briefly review the arguments showing the origin
of this emergent spin liquid in the classical Kitaev model
in the following with a more detailed and self-consistent
account being given in Appendix B. We then discuss the
effect of finite distortions, which lead to a (partial) lifting
of the zero-temperature degeneracy and a break-down of the
Coulomb correlations. However, characteristic remnants of
the Coulomb description remain as signatures in the low-
temperature specific heat as we detail in the subsequent section.

As noted earlier, the undistorted classical Kitaev model
incorporates a high level of exchange frustration with each
spin being subject to competing magnetic exchanges that
equally favor alignment along one of the three orthogonal
axes of a classical O(3) Heisenberg spin. As one approaches
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FIG. 7. (Color online) Binder cumulant curves of the order pa-
rameter evaluated over T for various system sizes L close to their
crossing, which gives an estimate of the transition temperature for
several example parameter sets. Shown are the cumulant of mS for
the transitions to (a) the stripy z and (b) the stripy xyz phases as
well as (c) the cumulant of mN for the transition to the Néel z phase.
Symbols with error bars are single temperature data, while continuous
lines are interpolated by multiple histogram reweighting.

the zero-temperature limit of this model, it is easy to see [17]
that the total energy of the system can be minimized by spin
configurations where spins align in a pairwise fashion along
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FIG. 8. (Color online) A zero-temperature configuration of the C3 symmetric Kitaev model is a generic dimer covering state, to which we
can associate a divergence-free field.

one of the three easy axes of the magnetic exchange, i.e., the
one favored by the bond between the two spins forming a
pair. An example of such a spin configuration is illustrated
in Fig. 8(a). Since every spin is part of precisely one such
aligned pair, we can identify each pair of aligned spins with a
“dimer.” As a consequence, any such energy minimizing spin
configuration can be mapped to a hardcore dimer covering of
the honeycomb lattice as illustrated in Fig. 8(b) where every
site (spin) is part of precisely one dimer. This mapping allows
two immediate conclusions. First, it is well known since the
early work of Wannier [30], Kasteleyn [31], and Elser [32]
that the number of dimer coverings on the hexagonal lattice
grows exponentially in the system size and as thus we can
immediately estimate the zero-temperature degeneracy of the
spin model. Second, it has long been appreciated [29] that
the hard-core dimer constraint on a bipartite lattice allows
a mapping of any dimer covering to a divergence-free field
configuration, which is schematically illustrated in Fig. 8(c).
It is precisely this description of the zero-temperature spin
configurations in terms of a divergence-free magnetic field
that allows to draw the connection to an emergent Coulomb gas
description. The latter is well known to give rise to power-law
correlations, which translated back to the original spin model
are pair correlations of the form

〈(
Sz

i

)2 · (Sz
i+r

)2〉 ∝ 1

r2
.

For a detailed and self-consistent description of the Coulomb
gas formulation of the zero-temperature classical Kitaev
model, we refer the reader to Appendix B.

When introducing distortions of the exchange couplings,
the extensive degeneracy of zero-temperature states is im-
mediately lifted. For Jz > 1, two spin configurations are
singled out where spins align along the z direction again
in a pairwise fashion—with both states being mapped to an
identical dimer covering as illustrated on the left-hand side in
Fig. 9. As a consequence, the spin liquid physics disappears
entirely and the system undergoes a conventional Z2 symmetry
breaking thermal phase transition into one of the two states.
For Jz < 1, a different picture emerges. While the extensive
zero-temperature degeneracy is still lifted, the system retains
a subextensive degeneracy down to zero temperature where
the spins align in pair-wise fashion along the zigzag chains

spanned by the x and y bonds as illustrated on the right-hand
side in Fig. 9. The consequence of this lifting again is the
loss of Coulomb correlations, but the system still evades a
conventional ordering transition down to zero temperature with
characteristic features arising for instance in the specific heat
as discussed in the next section.

1. Specific heat and zero modes

One characteristic feature of the extensive manifold of zero-
temperature spin configurations is that it gives rise to certain
soft fluctuations called zero modes. Following the pioneering
work of Chalker et al. [33], we show in the remainder of
this section that these zero modes reduce the specific heat in
its T → 0 limit in a universal way—a characteristic signature
that as we show can easily be tracked by numerical simulations
of the classical spin model.

To start our discussion of the analytical arguments, we
consider fluctuations around a given dimer covering or spin
configuration, respectively. Each spin i belonging to a dimer
on a γ bond gives rise to possible fluctuations in the two
directions orthogonal to γ . For example, for a spin belonging
to a z dimer and pointing along +z, we write

Si = (
εx
i ,ε

y

i ,

√
1 − εx

i
2 − ε

y

i

2)
. (16)

The fluctuations in the x and y directions influence also the z

component due to the unit constraint |Si | = 1.
Let D denote the set of dimerized bonds. For 〈i,j 〉 ∈ D and

assuming for simplicity that this is a z type bond, the Kitaev

FIG. 9. (Color online) (Left) The preferable dimer covering state
for dominating Jz. (Right) Typical dimer covering states for Jx =
Jy > Jz.
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spin-spin interaction reads

−JzS
z
i S

z
j

∣∣
〈i,j〉∈D = −Jz

√
1 − εx

i
2 − ε

y

i

2
√

1 − εx
j

2 − ε
y

j

2

= −Jz + Jz

2

(
εx
i

2 + ε
y

i

2 + εx
j

2 + ε
y

j

2)
+O(ε4). (17)

We see that up to quadratic order, fluctuations do not interact
across dimerized bonds (no εiεj coupling terms for 〈i,j 〉 ∈ D).
On the other hand, for a nondimerized bond γ [see Fig. 8(b)]
the Kitaev interaction reads

−Jγ S
γ

i S
γ

j

∣∣
〈i,j〉/∈D = −Jγ ε

γ

i ε
γ

j . (18)

Thus, expanding the Hamiltonian in ε to quadratic order, the
fluctuation corrections consist of decoupled terms, which live
on the nondimerized bonds and read

H (2) =
∑

〈i,j〉γ /∈D
h
(
ε

γ

i ,ε
γ

j

)
, (19)

where

h
(
ε

γ

i ,ε
γ

j

) = −Jγ ε
γ

i ε
γ

j + 1
2

(
Jγi

ε
γ

i

2 + Jγj
ε

γ

j

2)
. (20)

Interestingly, for Jx = Jy = Jz,

h
(
ε

γ

i ,ε
γ

j

) = −Jz

2

(
ε

γ

i − ε
γ

j

)2
. (21)

This implies the existence of a zero mode: (εγ

i + ε
γ

j ) does not
appear in H (2). This zero mode has been identified [34] to be
a sliding degree of freedom of the dimer covering states. For
low enough temperatures, fluctuations become small and the
partition function becomes

Z ∼=
∫

D({ε})e− H (2)({ε})
T . (22)

For any quadratic eigenmode ε, with energy E = c2ε
2, the

contribution to the specific heat then becomes

Cv = d

dT

∫
dε(c2ε

2)e− c2ε2

T∫
dεe− c2ε2

T

=
∫

dxx2e−x2∫
dxe−x2 = 1

2
, (23)

independent of the coefficient c2. However, in our system, we
have to further consider the contributions of the zero modes.
For those modes, we need to go to quartic order, i.e., E = c4ε

4,
for which the contribution to the specific heat can be estimated
to be

Cv = d

dT

∫
dε(c4ε

4)e− c4ε4

T∫
dεe− c4ε4

T

=
∫

dxx4e−x4∫
dxe−x4 = 1

4
, (24)

again independent of the coefficient c4. In a standard state
without zero modes (such as a ferromagnetic state), we would
have two quadratic modes (εx

i and ε
y

i ) per spin. This would
give the zero temperature value of the specific heat per spin:

Cferro
v (T → 0) = 1

2 + 1
2 = 1. (25)

However, in the Coulomb phase of the classical Kitaev model,
we have only one zero mode for each quadratic mode, hence

CJz=1
v (T → 0) = 1

2 + 1
4 = 3

4 . (26)
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FIG. 10. (Color online) Low-temperature behavior of the specific
heat per spin Cv(T ) in the classical Kitaev model with different
distortions. Shown are Monte Carlo results obtained at temperatures
T � 1/2000 demonstrating that in the limit of T → 0, one finds
CJz=1

v → 3/4, CJz>1
v → 1 and CJz<1

v → 7/8. The data have been
obtained for systems of side length L = 16.

We now consider the effect of a finite distortion, i.e., Jz �=
Jx = Jy , which splits the degeneracy of the various dimer
covering states. For Jz > Jx = Jy , namely Jz > 1, the dimer
covering with only z dimers has the lowest energy (see Fig. 9).

At the same time, fluctuations around this state are
described by Eq. (19), which can be written as

h
(
ε

γ

i ,ε
γ

j

) = 3(Jz − 1)

8

(
ε

γ

i + ε
γ

j

)2 + Jz + 3

8

(
ε

γ

i − ε
γ

j

)2
.

(27)

For Jz > 1, the two coefficients in this equation are positive,
leaving no zero modes. Hence

CJz>1
v (T → 0) = 1

2 + 1
2 = 1. (28)

For Jz < Jx = Jy , the dimers cover x or y bonds in the
ground state (see Fig. 9). Now consider fluctuations around
these 1D covering states. The Hamiltonian for the fluctuations
is the same as Eq. (19), but now there are two types of
nondimerized bonds. For 〈i,j 〉γ /∈ D with γ = x or y, h has
the form of Eq. (21), implying a zero mode. But for 〈i,j 〉γ /∈ D
with γ = z, the Hamiltonian h has the form of Eq. (27), imply-
ing no zero mode. As a result the specific heat per spin becomes

CJz<1
v (T → 0) = 1

2

(
1
2 + 1

4

)+ 1
2

(
1
2 + 1

2

) = 7
8 . (29)

Our Monte Carlo calculations, summarized in Fig. 10, nicely
reproduce these fractions and are thus able to pinpoint the
different constraints on the dimer covering states underlying
the Coulomb gas.

III. QUANTUM HEISENBERG-KITAEV MODEL

We now turn to a discussion of the quantum version of the
distorted Heisenberg-Kitaev model, i.e., we again consider the
Hamiltonian

H = (1 − α)HHeisenberg − 2αHKitaev

=
∑
〈ij〉,γ

Jγ

[
(1 − α) SiSj − 2α S

γ

i S
γ

j

]
, (30)
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where the spins Si are now quantum mechanical SU(2)
spin-1/2 degrees of freedom. [In our convention Si are repre-
sented by Pauli matrices (Sγ

i )2 = 1.] The exchange parameter
0 < α < 1 again interpolates between the antiferromagnetic
Heisenberg model (α = 0) and the ferromagnetic Kitaev
model (α = 1) and the distortion of the exchange couplings is
parametrized by 0 < Jz < 3 with the simultaneous conditions
that all three spin exchange couplings add up to a constant,
i.e., Jx + Jy + Jz = 3 and Jx = Jy . The case Jz = 1 then
corresponds to the undistorted situation where the spin
exchange along all three bonds has equal magnitude, i.e.,
Jx = Jy = Jz. The limit Jz = 3 (Jx = Jy = 0) corresponds
to decoupled dimers on the z bonds, while the opposite limit
of Jz = 0 (Jx = Jy = 3/2) corresponds to decoupled zigzag
chains along the x and y bonds.

When exploring the (α,Jz)-parameter space, we find that
the above model not only harbors quantum analogues of all
classically ordered states, but exhibits a number of additional
genuinely quantum states including a valence-bond solid and
two spin-orbital liquid phases, which both extend well beyond
the well-studied Kitaev limit of the quantum model. In fact, one
of the more interesting features of the extended phase diagram
of the quantum Heisenberg-Kitaev model is the possible
occurrence of unconventional continuous phase transitions

between these gapped and gapless spin-orbital liquid phases
and conventionally ordered states.

In the following, we will first discuss the general quantum
phase diagram of the distorted Heisenberg-Kitaev model and
the numerical simulations underlying its determination and
then focus our discussion on the possibly interesting quantum
critical behavior associated with the phase transition out of
one of the spin-orbital liquid phases.

A. Phase diagram of the quantum model

The phase diagram of the quantum Heisenberg-Kitaev
model in the presence of exchange distortions is summarized
in Fig. 11. Similar to the classical model, we find an extended
Néel ordered phase around the Heisenberg limit which upon
distorting the exchange interactions undergoes a quantum
order-by-disorder transition locking the spin orientation in the
ordered phases to the z (x or y) direction for Jz < 1 (Jz > 1),
respectively. For Jz � 1.35, the system undergoes a transition
into a valence-bond solid (VBS), which adiabatically connects
to the limit of isolated dimer singlets on the z bonds in the limit
Jz = 3 (and α < 1/2).

For α = 1/2, the quantum model exhibits an SU(2) sym-
metry that is again rooted in the observation that for this
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FIG. 11. (Color online) Ground-state phase diagram of the quantum Heisenberg-Kitaev model with regard to the relative strength α of the
Heisenberg and Kitaev couplings and the distortion Jz. The line Jz = 1 corresponds to the undistorted model, which for increasing coupling
parameter α shows a sequence of a Néel ordered antiferromagnet, a stripy-ordered ferromagnet, and a gapless spin liquid around the Kitaev
limit. For a finite distortion, the magnetically ordered states undergo a quantum order-by-disorder transition, which locks the spin orientation
in the ordered phases to the z (x or y) direction as indicated in the diagram. The quantum phase transitions between these various ordered
states are all first-order as indicated by the red solid lines in the phase diagram. For large distortions Jz � 1.35, the Néel antiferromagnet is
destabilized in favor of a valence-bond solid (VBS) state. Arguably, the most interesting phases in this phase diagram are an extended gapless
spin liquid around the undistorted Kitaev limit as well as a topologically ordered spin liquid for Jz > 3/2 around the Kitaev limit. The possibly
continuous phase transitions out of the gapped spin liquid phase is discussed in the main text.
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ratio of the Heisenberg and Kitaev couplings, the model
can be mapped via the four-sublattice basis transformation
illustrated in Fig. 3 to a ferromagnetic Heisenberg model. In
fact, such a mapping exists for all values of the distortion Jz,
i.e., the quantum model exhibits an entire SU(2) symmetric
line for α = 1/2. In the four-sublattice rotated basis, the
ground state of the quantum model is a simple ferromagnet
for α = 1/2, which transformed back into the original basis
becomes a “stripy ferromagnet” akin to the illustrations in
Fig. 4. In the undistorted case (Jz = 1), the ground state
is sixfold degenerate with the six possible stripy states of
Fig. 4 having equal weight in the ground state. This picture
changes immediately upon moving away from the α = 1/2
line and distorting the exchange couplings. Again, a quantum
order-by-disorder transition (detailed in Appendix C) selects
a subset of these six stripy states with four different phases
emerging around the undistorted (α = 1/2,Jz = 1) point in the
middle of our phase diagram in Fig. 11. In complete analogy
to the classical model, a subset of two stripy FM states locking
the spins into the z direction is selected for (α > 1/2,Jz > 1)
as well as for (α < 1/2,Jz < 1). For the other two quadrants
(α < 1/2,Jz > 1) and (α > 1/2,Jz < 1), the opposite subset
of four stripy FM states with the spins locking into either the x

or y directions are selected by the quantum order-by-disorder
mechanism, see Appendix C for details.

Arguably the most interesting phases in our phase diagram
are the two spin liquid phases emerging for dominating Kitaev
couplings. For the undistorted Heisenberg-Kitaev model, it
was previously established [6,14] that the stripy FM phase
gives way to a gapless spin liquid phase for α ≈ 0.8, i.e.,
Kitaev couplings, which are about eight times larger than
the isotropic Heisenberg exchange. This gapless spin liquid
phase remains stable when introducing an exchange distortion
Jz �= 1 and is found to occupy a rather extended regime in
the (α,Jz)-parameter space as illustrated in Fig. 11. For the
pure Kitaev model, it is well known [9] that the gapless
spin liquid can be gapped out into a topological spin liquid
if one introduces an exchange distortion that renders one
of the three coupling exchanges dominant, i.e., Jz � 3/2 in
our notation, see Fig. 1(c). Upon including a Heisenberg
exchange this gapped phase must remain stable for a finite
parameter regime—however, since the gap itself is rather small
the regime occupied by this topological spin liquid in our
(α,Jz)-parameter space reduces to a small sliver as illustrated
in Fig. 11. We come back to a more detailed discussion of the
emergence of this topological phase as well as the nature of
the quantum phase transition out of this phase into the stripy
phase in the next section.

Our approach to map out the phase diagram of the quantum
Heisenberg-Kitaev model as discussed above is based on
various numerical techniques, in particular exact diagonaliza-
tion (ED) studies and density-matrix renormalization group
(DMRG) [35] calculations for small, but highly symmetric
clusters with up to N = 48 (N = 24) sites for the DMRG
(ED) calculations, respectively. In order to minimize finite-size
effects, we employed periodic boundary conditions and chose
the clusters such that they preserve the SU(2) symmetry of the
four-sublattice basis transformation introduced in Sec. II A.
We used clusters of N = 24 = 3 × 4 × 2 and N = 32 =
4 × 4 × 2 sites. For the DMRG calculations, we typically kept
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FIG. 12. (Color online) Second derivative of the ground-state
energy density as a function of α for two different values of the
distortion Jz.

up to m = 2048 states in the DMRG block and performed
multiple sweeps to converge the observables with the typical
truncation error becoming of the order of 5 × 10−6 or smaller.
The location of the phase boundaries in the phase diagram
(see Fig. 11) are determined by the peak position of the
second derivatives of the ground-state energy density, i.e.,
d2E/dα2 and d2E/dJ 2

z . A similar approach has previously
been used to successfully map out the phase diagram of the
(undistorted) Heisenberg-Kitaev model in a magnetic field
[14]. Data for these derivatives along representative cuts in
the (α,Jz)-parameter space are shown in Figs. 12 and 13. A
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tion of the distortion Jz for two different values of the coupling α.
The kink at Jz = 1 clearly indicates a first-order transition.
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FIG. 14. (Color online) Bond magnetization Bγ
a as a function of

α for two different values of the distortion Jz. Here, γ = a = x,y,z.

very sharp peak in the second derivative—corresponding to a
jump of the first derivative of the ground-state energy density,
i.e., dE

dα
and dE

dJz
—is taken as a signature for a first-order

transition and marked by the red solid lines in the phase
diagram, while a relative shallow peak in the second derivative
data is interpreted as possibly indicating continuous phase
transitions.

To further identify the nature of different phases and
compare with the classical Heisenberg-Kitaev model, we
calculate a “bond magnetization,” i.e., the expectation value of
the bond operator B

γ
a = 〈Sγ

i · S
γ

i+â〉, where γ = x,y,z denotes
the γ component of spin, and â = x̂,ŷ,ẑ is the unit vector along
an a-bond. As illustrated in Fig. 14, this bond magnetization
is a very useful tool to track the quantum order-by-disorder
selection in the distorted stripy phases. For example, in the
stripy-z phase for (α > 1/2,Jz > 1) and (α < 1/2,Jz < 1),
the z-bond magnetization Bz

z is positive since Sz points in the
same direction in z bond, while Bz

x and Bz
y are negative because

Sz are antiparallel along the x and y bonds (not shown). In
addition to the stripy phase, this bond operator can also be used
to study the phase transition between different phases, which
will increase or decrease rapidly across the phase boundary. As
an example, we plot the bond operator B

γ
a with γ = a = x,y,z

in Fig. 14(b), in which the dotted lines are the phase boundaries
determined by B

γ
a , and consistent with the ones determined by

the second derivative of the ground-state energy density.
Finally, we want to shortly comment on the quantum

order-by-disorder mechanism playing out in the distorted
stripy phase. As mentioned earlier, for precisely α = 1/2, the
system exhibits an additional SU(2) symmetry and its ground
state can be characterized by a conventional ferromagnetic
order parameter in terms of the four-sublattice transformed S̃

spin variables introduced in Sec. II A. For small deviations
from α = 1/2, the symmetry of the model is reduced to a
discrete one. However, as we saw in Sec. II A when discussing
the classical model, one can quickly see that on the mean-field
level the actual direction of the ferromagnetic order is not
fixed upon introducing a distortion. In fact, as we have shown

FIG. 15. (Color online) Mapping from the honeycomb lattice to
the toric code lattice.

in Sec. II A, thermal fluctuations are ultimately responsible
for the eventual ordering along cubic axes in the classical
model. An analogous argument applies to the quantum model
where quantum fluctuations will favor a locking of the spin
orientation along the cubic axes of the model for finite
distortions at zero temperature. This effect has been first
commented on in Refs. [36] and [6] and is discussed in detail
in Appendix C.

B. Phase transition out of the Abelian topological phase

For Jz = 3, Jx = Jy = 0, the system decouples into z

dimers with Hamiltonian Hz
ij given in Eq. (2). The Heisenberg

term has the singlet state s as the ground state with an excited
triplet {t+,t−,t0}, whereas the Kitaev ferromagnetic term has a
degenerate pair of ground states (t±) and a second degenerate
pair of excited states (s,t−). The energies of these states are
Es/Jz = 5α − 3, Et±/Jz = 1 − 3α, and Et0/Jz = 1 + α. For
α = 1, one can formulate an effective interaction between
the doublet t± degrees of freedom localized on z links and
represented by effective spins σ z

i = ±1. Thus for a given z

link, σ z
i = +1 for the state |↑↑〉 and σ z

i = −1 for the state
|↓↓〉. Following Kitaev [9], those spins can be located on
the links of a square lattice; see Fig. 15. For small Jx , Jy

the dimer-dimer interaction can be represented as an effective
interaction between the σ ’s. For the Kitaev model (α = 1),
the leading interaction is generated at forth order in Jx,Jy ,
and is a 4-spin interaction equivalent to the toric code model.
Explicitly for Jx = Jy � Jz [9],

H (4) = −JTC

∑
P

QP , (31)

with JT C = J 2
x J 2

y

16J 3
z

, and the plaquette operator QP =
σ

y

left(p)σ
y

right(p)σ
z
up(p)σ

z
down(p), where P runs over all hexagonal

plaquettes of the honeycomb lattice, which become either
plaquettes p or stars s on the square lattice of the toric code.

In the presence of the Heisenberg term, we find an
interaction already at first order in Jx,y that reads simply

H (1) = J
∑
〈i,j〉

σ z
i σ z

j , (32)

with J = Jx(1 − α). Here, 〈i,j 〉 are nearest neighbors in the
square lattice of the toric code. One immediately sees that this
term stabilizes a Néel order of the effective spins σ z

i , which
is equivalent to the stripy-z phase in Fig. 4. Therefore the
phase transition between the topological phase and stripy phase
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FIG. 16. (Color online) A represents star operators in Eq. (34),
B plaquette operators, and J Ising coupling on nearest neighbors.

emanates from the right-top corner of the phase diagram. By
comparing the energy scales of the interaction JTC, in Eq. (31),
stabilizing the topological phase and the Ising interaction
J , in Eq. (32), one immediately sees that the transition line
approaches the right-top point as

1 − α ∝ (3 − Jz)
3. (33)

This high power of (3 − Jz) is consistent with the very small
area occupied by the gapped topological phase in our phase
diagram in Fig. 11.

1. Possibility of condensation of (e,m) excitations

We propose a simple model to understand the quantum
phase transition between the gapped topological phase and
stripy phase. This model contains just the two competing inter-
actions that stabilize either phase: the toric code Hamiltonian
(31) and the Ising Hamiltonian (32). In order to introduce the
standard notation for the toric code model, after permuting the
spin indices (z,x,y) → (x,y,z), and then performing a −π/2
rotation along y for spins living on vertical bonds in the toric
code square lattice defined in Fig. 15, the model becomes

H = −A
∑

s

∏
i∈s

σ z
i − B

∑
p

∏
i∈p

σ x
i + J

∑
〈i,j〉

σx
i σ z

j , (34)

where the coupling JTC has been separated into star and
plaquette operators with couplings A and B, shown in
Fig. 16. In our case A = B = JTC. In the last term σx

i always
belongs to a horizontal bond and σ z

j to a vertical bond and 〈i,j 〉
are nearest neighbors (see Fig. 16). As a function of J there
must be a quantum phase transition between the Z2 gapped
topological phase to the Ising ordered phase at J ∼ JTC with
spontaneously broken local Ising symmetry:

σx
i → −σx

i , i ∈ horizontal link,

σ z
j → −σ z

j , j ∈ vertical link. (35)

One can write this model in terms of the excitations of the
gapped topological phase: (i) electric excitations e living on
stars s with −1 eigenvalue of

ez
s =

∏
i∈s

σ z
i , (36)

and (ii) magnetic excitations m living on plaquettes p with −1
eigenvalue of

mz
p =

∏
i∈p

σ x
i . (37)

In the physical Hilbert space, both e and m excitations occur
in pairs. Such pairs are created, respectively, by

ex
ss ′ =

∏
i∈Css′

σx
i , mx

pp′ =
∏

i∈Cpp′

σ z
i , (38)

where Css ′ (Cpp′) is an arbitrary path along the lattice (dual
lattice) connecting stars s, s ′ (plaquettes p, p′) where the two
excitations are created. One can check that {ex

ss ′ ,e
z
s ′′ } = 0 for

s ′′ = s or s ′′ = s ′, and [ex
ss ′ ,e

z
s ′′ ] = 0 otherwise, and the m’s

satisfy similar relations. Independent of the choice of contours,
ex
ss ′ and mx

pp′ commute if the corresponding contours cross an
even number of times and anticommute otherwise.

The Hamiltonian is simply

H (J ) = −A
∑

s

ez
s − B

∑
p

mz
p

+ J
∑
〈i,j〉

ex
s0si

ex
s0s

′
i
mx

p0pj
mx

p0p
′
j
. (39)

Here each horizontal edge i is shared by two stars si and s ′
i

and each vertical edge j shares two plaquettes pj and p′
j .

The reference star s0 and reference plaquette p0 are arbitrary
and can be thought of as being located at infinity (with open
boundary conditions).

Clearly, in the Néel phase, there is a finite expectation
value of

E = 〈
σx

i

〉 = 〈
ex
s0si

ex
s0s

′
i

〉 �= 0 (40)

and

M = 〈
σ z

j

〉 = 〈
mx

p0pj
mx

p0p
′
j

〉 �= 0, (41)

and their relative sign is opposite for J > 0. In the topological
phase, all excitations are gapped and uncorrelated. Thus a
natural question is how the e and m excitations condense.
Typically, excitations condense at a phase transition as their
kinetic energy exceeds the mass gap. From the effective model
(39), we see that, to first order in J , individual e and m

excitations can not hop thus their excitation energy is 2A

and 2B, respectively. On the other hand, their bound state
(e,m) does acquire kinetic energy of order J . It can hop along
the x direction hence lowering the gap to 2A + 2B − 2J .
This suggests an interesting type of quantum phase transition
consisting of a condensation of the (e,m) bound states for
large enough J , which is unusual due to the fermionic nature
of those composite particles. It is interesting to explore this
possibility on a quantitative level in the future.

C. One-dimensional limit of the Heisenberg-Kitaev model

In the limit of Jz = 0, corresponding to the bottom in
the phase diagram in Fig. 11, the system decomposes into
decoupled Heisenberg-Kitaev chains. The physics of such
chains has previously been partially explored, in particular
with regard to its energy dynamics [37]. Here, we will apply
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one-dimensional (1D) field theoretical methods to analytically
construct the 1D phase diagram of such Heisenberg-Kitaev
chains, and to gain insight into the 2D case by studying the
limit of weakly coupled chains.

1. Phase diagram

Our phase diagram of the 1D Heisenberg-Kitaev (HK)
model is shown in Fig. 17(a). It contains three exactly solvable
points: (i) for α = 0, the model is the antiferromagnetic
Heisenberg chain, which is described by a conformal field
theory (CFT) with central charge c = 1. (ii) At α = 1/2,
the model written in terms of the S̃ spin variables is the
ferromagnetic Heisenberg chain, which has dynamical critical
exponent z = 2. (iii) At α = 1, the system is also critical and
can be described by a CFT with c = 1/2 corresponding to
gapless Majorana chains [9]. Below, we describe the phases in
between these three exactly solvable points.

It is convenient to express the 1D HK Hamiltonian as the
sum of the well studied XXZ model,

Hxxz[	] =
∑

i

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + 	Sz
i S

z
i+1

)
, (42)

and a perturbation. Indeed, our model reads

HHK(S)

Jx

= (1 − 2α)Hxxz

[
1 − α

1 − 2α

]
± αδH, (43)

with

δH =
∑

i

(−1)i+1
(
Sx

i Sx
i+1 − S

y

i S
y

i+1

)
. (44)

The ± signs correspond to alternating chains. The well known
phase diagram of the XXZ model is summarized in Fig. 17(b).

We begin by analyzing the small α limit. At α = 0, the
perturbation to the XXZ chain vanishes and 	 = 1. Our
system lies inside the gapless Luttinger liquid phase of the
XXZ model, which extends in the range −1 � 	 � 1. This
phase is described by a Luttinger liquid theory [38], which is
characterized by Luttinger parameter K and velocity v, given
exactly by

K = π

2(π − arccos 	)
, v = π

√
1 − 	2

2 arccos 	
. (45)

FIG. 17. (Color online) (a) Phase diagram of the 1D Heisenberg
Kitaev model. (b) Phase diagram of the XXZ model.

We find that the perturbation to the XXZ model δH has
renormalization group scaling dimension

xK = K + K−1. (46)

Hence it is marginal (xK = 2) at K = 1 (	 = 0 in the XXZ
model) and, otherwise, it is irrelevant (xK > 2). Since at the
vicinity of the point α = 0 the perturbation δH is both small
and irrelevant, we may safely ignore it. In other words, the
HK 1D model at α = 0+ and the XXZ model at 	 = 1+ differ
only by the irrelevant operator δH . When α becomes nonzero
and positive, 	 increases above unity in the XXZ chain, and
then the gapless phase is destroyed and the chain undergoes a
Kosterlitz Thouless transition into a Néel ordered state along
z. For the field theoretical description of this transition in the
XXZ model we refer the reader to Ref. [38] and references
therein.

Translating the Néel order to the S̃ variables, one obtains
the ferromagnetic-z phase, e.g., ↑↑↑↑. This order parame-
ter coincides with that of the ferromagnetic point at α =
1/2. Therefore we expect that the Néel ordered phase (in
terms of the original spin variables) persists in the entire
range 0 < α � 1/2.

We now analyze the vicinity of the point α = 1/2. It is
convenient to write the HK model in terms of the S̃ spin
variables using Eq. (3). After a π rotation around the z axis
of each second spin, one can rearrange terms into a sum of an
XXZ model and a perturbation,

HHK(S̃)

Jx

= αHxxz

[
α − 1

α

]
± (2α − 1)δH. (47)

We see that α = 1/2 brings us to the point 	 = −1 in the XXZ
model. This point is connected to the gapless phase of the XXZ
model, although it has different universality with vanishing
velocity, see Eq. (45), and dynamical critical exponent z = 2.

We now consider α slightly larger than 1/2. Since the
perturbation to the XXZ model in terms of the S̃ spins, δH ,
has exactly the same form as the perturbation in terms of
original spins, S, we draw the same conclusion regarding
the irrelevance of δH . We have again a model that up to
an irrelevant operator is equivalent to the XXZ model. We
see that moving to the right from α = 1/2 is equivalent
to moving to the right from 	 = −1 in the XXZ model,
entering into the gapless Luttinger liquid phase. We expect
that the end point of the Luttinger liquid phase is the 1D
limit of the Kitaev Z2 liquid, α = 1. This spin liquid does
not have any continuous symmetry. This is consistent with
the statement that only upon approaching the point α = 1 the
operator δH becomes relevant. Using the scaling dimension
of δH , Eq. (46), this implies for the Luttinger liquid parameter
K → 1 upon approaching the Kitaev limit. Thus the region
1/2 < α < 1 maps to the region −1 < 	 < 0 in the XXZ
model.

The existence of a gapped phase for 0 < α < 1/2 as well
as the persistence of a c = 1 gapless phase in the parameter
regime 1/2 < α < 1 is nicely confirmed by DMRG simula-
tions of chains with open and periodic boundary conditions
with up to L = 256 sites, see Fig. 18. For the extended
gapless phase, the central charge of the conformal field theory
describing the gapless system can easily be extracted by fitting
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FIG. 18. (Color online) Entanglement scaling for the 1D
Heisenberg-Kitaev chain for various coupling strength α. (a) Data
for a periodic L = 100 site chain in the gapped phase for α < 1/2.
(b) Data for a periodic L = 100 site chain in the gapless phase for
α > 1/2. (c) Data for an open L = 256 site chain in the gapless phase
for α > 1/2 and α = 1. Boundary effects of the open chain result in
an odd-even staggering.

the entanglement entropy to the analytical form

S(x) = c

3η
x + O(1) , (48)

where x = ln [ ηL

π
sin (πl

L
)] is the logarithm of the so-called

chord distance for a cut dividing the chain into segments of
length l and L − l and periodic (open) boundary conditions are
indicated by the parameter η = 1 or 2, respectively. Performing
such a fit as indicated by the solid lines in Fig. 18 nicely
confirms the expected central charge of c = 1. In the Kitaev
limit α = 1, the gapless phase is verified to be described by
c = 1/2 conformal field theory, as validated by our numerical
simulations [39] shown in Fig. 18(c).

2. Insight about 2D

Having constructed the phase diagram of the 1D HK
model at Jz = 0, we now consider perturbatively the coupling

between the chains by studying the effect of a small Jz. This
will be useful for the purpose of locating the precise position
of the phase transition between the Néel and stripy phase when
Jz → 0, which will be the focus of this section.

In terms of the original spins, the interchain Hamiltonian is

H⊥ = Hz =
∑

z−links

Jz

[
(1 − α)SiSj − (2α)Sz

i S
z
j

]

=
∑

z−links

Jz

[
(1 − α)2(S+

i S−
j + S−

i S+
j )

+ (1 − 3α)Sz
i S

z
j

]
. (49)

For 0 < α < 1/2, the chains are ordered and gapped already
on the 1D level characterized by the Néel order parameter
M(j ). On the level of expectation values, we have 〈Sz

i,j 〉 =
(−1)iM(j ) where j labels different chains. Here, the notation
Sz

i,j refers to a deformation of the honeycomb into a brickwall
lattice. Within this ordered state, the interchain coupling acts
classically and couples M(j ) to M(j ± 1). We thus obtain two
regimes for the 2D system.

(i) 0 < α < 1/3. In this regime, the effective interchain
coupling is antiferromagnetic, leading to M(j ) = −M(j ±
1). This phase is the 2D Néel antiferromagnet. The order
parameter is

∑
i,j (−1)i+j 〈Sz

i,j 〉.
(ii) 1/3 < α < 1/2. In this regime, the effective inter-

chain coupling is ferromagnetic leading to M(j ) = M(j ± 1).
This phase is the stripy z phase. The order parameter is∑

i,j (−1)i〈Sz
i,j 〉 = ∑

i,j 〈S̃z
i,j 〉 corresponding to ferromagnetic

order of the rotated spin variables.
Thus using weak chain coupling in the regime α < 1/2,

we found the Néel antiferromagnet as well as the stripy
phase, which exist at strong interchain coupling Jz = 1. It
is therefore reasonable that the phases we found from the 1D
limit are indeed connected to those found earlier along the C3

symmetric line without phase transitions in between. This is,
indeed, confirmed by our numerical calculation, see Fig. 11.
It is interesting that the transition between the Néel AF and
stripy-z phases along the 1D line occurs exactly at α = 1/3 as
for the classical model (see Fig. 2). The discrepancy with the
numerical transition point at Jz = 0 between the Néel AF and
stripy phase could result from a finite-size effect.

IV. SUMMARY

To summarize, we have used a combination of numerical
and analytical methods to establish the rich phase diagram
for the distorted Heisenberg-Kitaev model considering both
the classical and quantum version of the model. The effect of
a finite distortion on the magnetically ordered phases of the
undistorted model is an order-by-disorder driven transition,
which locks the spin orientation in the ordered phases to
the z (x or y) directions—the precise form of the locking is
found to be sensitive to both the strength of the distortion as
well as the relative coupling strength of the Heisenberg and
Kitaev-type interactions.

The physics around the Kitaev limit proves most interesting
in both the classical and quantum versions of the model.
For the classical model, we have discussed the emergence
of a classical spin liquid with a Coulomb gas description in
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the undistorted Kitaev limit and its modifications for finite
distortions. For the quantum model, the well-known gapless
spin liquid around the undistorted Kitaev limit turns out
to be remarkably stable also in the presence of substantial
distortions. This behavior should be contrasted to the gapped
topological spin liquid that arises for strong distortions in the
Kitaev limit. The effect of an additional Heisenberg exchange
is found to quickly destabilize this phase.

With regard to future work a deeper understanding of the
precise nature of these phase transition between the topological
and nontopological phases in this phase diagram is probably
most desirable. Various recent studies [40–47] have addressed
the phase transitions between the gapped Z2 topological phase
of Kitaev’s toric code model and conventionally ordered states.
Some of these transitions are well-understood continuous
phase transitions arising from the condensation of one of
the elementary (bosonic) excitations of the toric code, often
referred to as electric charges (e) or magnetic vortices (m),
as it is the case for the phase transition induced by a
single-component magnetic field pointing along one of the
two longitudinal directions. Our analysis of the distorted
Heisenberg-Kitaev model has led to an effective model, which
potentially paves the path to a different type of phase transition
arising from the simultaneous condensation of the fermionic
(em) bound state of an electric and magnetic excitation,
which drives the system from the Z2 topological phase to
a conventional phase with stripy order. Such fermionic (em)
bound states have been previously discussed in the context of
the single and two-component (longitudinal) magnetic field
transitions [41,42,44], transverse field transitions [43], and in
more general field theoretical terms [48]. Similarly, the nature
of the phase transition between the stripy phase and the gapless
topological phase, which has been a topic of recent interest
[6,14–16], may be further explored in our distorted model
where one can benefit from anisotropic limits.
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APPENDIX A: CLASSICAL ORDER
BY DISORDER MECHANISM

We now provide the details of the derivation of the
effective Hamiltonian Eq. (13) starting from the continuum
model Eq. (8). This effective Hamiltonian of ê is defined via
integrating over the fluctuations πa (defined in Eq. (10),

e−Heff [ê]/T =
∫

Dπa(r)e−H[ê,πa (r)]/T . (A1)

We now compute this effective Hamiltonian explicitly by
expanding H[ê,πa(r)] up to quadratic order in the fluctuations
πa(r).H[ê,πa(r)] contains a Heisenberg part and a Kitaev part.
For the Heisenberg part, we use

(∇uγ
M)2 = (∇uγ

π1)2 + (∇uγ
π2)2 + O

(
π4

a

)
, (A2)

which does not depend on the magnetization direction ê. For
the Kitaev term, we have

∇uγ
Mγ = ê

γ

1 ∇uγ
π1 + ê

γ

2 ∇uγ
π2 + O(π2) , (A3)

which depends on the magnetization direction ê through its
complementary orthogonal vectors ê1 and ê2. In k space,

H[ê,πa(r)] = J
2

∑
k

∑
a,b

πa(k)hab(k)πb(−k), (A4)

with J = J/Ahex and

hab(k) =
∑

γ

[
((1 − α)δab + (4α − 2)eγ

a e
γ

b

]
k2
uγ

, (A5)

where kuγ
= k · ûγ . Performing the Gaussian integrals over

πa(k), we arrive at the effective Hamiltonian

Heff

T
=
∑

k

ln det

( J
2T

ĥ(k)

)
, (A6)

where det ĥ = h11h22 − h12h21. In order to proceed analyti-
cally we assume that the anisotropic Kitaev term is small,
|α − 1/2| � 1. Then, up to a constant, we can expand

Heff

T
=
∑

k

ln det

(
δab + ε

∑
γ

eγ
a e

γ

b

k2
uγ

|k|2
)

. (A7)

with small parameter ε = 4
3

2α−1
1−α

∝ (2α − 1).
We further make the simplifying approximation of a

circular Brillouin zone of radius kBZ such that the total
number of sites is N = ∑

k = A
∫
|k|<kBZ

d2k
(2π)2 with total area

A = NAhex. Using polar coordinates for the momentum
integral and performing the integral over |k|, we obtain Heff

NT
=∫ 2π

0
dθ
2π

ln tr(1 + εÂ). Next, we use the identity ln det = tr ln
and expand the ln up to quadratic order in α − 1/2, to obtain

Heff

NT
=
∫ 2π

0

dθ

2π

[
ε tr(Â) − 1

2
ε2 tr(A2)

]
+ O

(
α − 1

2

)3

,

(A8)

with Aab = ∑
γ e

γ
a e

γ

b cos2(θ − θγ ), θx = 2π/3, θy = 4π/3,

θz = 0. Using
∫ 2π

0
dθ
2π

cos2(θ − θγ ) = 1/2,(γ = x,y,z), we

have simply for the first order term
∫ 2π

0
dθ
2π

tr A =
1
2 tr
∑

γ e
γ
a e

γ

b = 1
2 (ê2

1 + ê2
2) = 1 which is a constant indepen-

dent of ê. The second-order term is evaluated similarly. Using∫ 2π

0
dθ
2π

cos2(θ − θγ ) cos2(θ − θγ ′) = 3
16 (1 + δγ γ ′ ), we have

Heff

NT
= −2

3
(2α − 1)2

∑
γ,γ ′

∑
a,b=1,2

eγ
a e

γ

b e
γ ′
b eγ ′

a (1 + δγ γ ′).

(A9)

As the unit vectors ê1,ê2,ê form an orthonormal basis, one
can readily derive the identities

∑
γ,γ ′

∑
a,b=1,2 e

γ
a e

γ

b e
γ ′
b e

γ ′
a =
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2, and ∑
γ

∑
a,b=1,2

eγ
a e

γ

b e
γ

b eγ
a =

∑
γ

(êγ )4 + const. (A10)

As a result, we obtain the decisive term in the effective
Hamiltonian, up to a constant and up to quadratic order in
2α − 1,

Heff

NT
= −2

3
(2α − 1)2 [(êx)4 + (êy)4 + (êz)4]. (A11)

APPENDIX B: EMERGENT MAGNETOSTATICS
IN THE CLASSICAL KITAEV MODEL

The aim of this section is to provide a brief, self-consistent
description of the Coulomb gas formulation of the spin liquid
state in the undistorted classical Kitaev model, i.e., we consider
the situation of Jx = Jy = Jz = J only. Given an arbitrary
configuration of spins Sγ , we can assign to each lattice bond
(Ri ,γ ) connecting sublattice a site (filled circles in Fig. 8)
Ri to a neighboring sublattice b (empty circles in Fig. 8) site
Ri + ûγ , a vector E = E(Ri ; γ )ûγ , with

E(Ri ; γ ) = (
S

γ

a,Ri

)2 − 1
3 . (B1)

The discrete divergence of the E-field at vertices Ri of
sublattice a vanishes by definition,

∑
γ E(Ri ; γ ) = 0, since

|SRi
| = 1. The nontrivial property of the ground states of the

classical Kitaev model is that they satisfy a divergence-free
condition also in the b sublattice,

vertex Ri + ûz : ∇ · E =
∑

γ

E(Ri − rγ ; γ ) = 0, (B2)

where rγ = ûz − ûγ . This condition follows from the forma-
tion of dimer-covering states; see Fig. 8. In such states, for
every spin on sublattice a, there exists a neighboring spin in
sublattice b such that both spins point ferromagnetically along
the direction of the connecting bond.

It is not difficult to show that the dimer covering states have
the lowest possible energy for the classical Kitaev model [17].
The partition function

Z =
∫ ∏

Ri

dSa,Ri

4π

dSb,Ri

4π
e−H/T (B3)

can be evaluated by writing the Hamiltonian as H =
−∑Ri

Sa,Ri
BRi

, where BRi
= ∑

γ Jγ S
γ

b,Ri+ûγ
ûγ , and then

performing the integral over spins of sublattice a which appear
to be free except for an external field BRi

. This gives

Z =
∫ ∏

Ri

dSb,Ri

4π
e
−∑Ri

heff [|BRi
|]/T

. (B4)

Now, using the convexity of the effective Hamilto-
nian heff(B) = −T ln T sinh(B/T )

B
, which implies 〈heff(x)〉 <

heff(〈x〉), one sees that the total energy is minimized when all
|BRi

|’s are equal. As
∑

Ri
|BRi

| = NJ the minimum occurs
when |BRi

| = J . This situation is indeed achieved in the
dimer-covering state. It should be noted that there exist an
additional continuous slide degree of freedom within the
ground state [34].

The emergent divergence-free E-field leads to peculiar fea-
tures in observables that depend on E. For example, consider

the bond-energy correlation 〈(Sz
i )2(Sz

j )2〉 − 1/9, which mea-
sures the 〈EzEz〉 correlation. The following simple derivation
applies to Coulomb phases in general, so we now coarse grain
the original lattice and consider separations |i − j | much larger
than the lattice spacing. For such a long distance description,
we can think of E as a field on a continuous space that satisfies
the divergence free condition

∇ · E(r) = 0. (B5)

At zero temperature, all divergence free field configurations
are equally likely. At finite temperature (low enough to
avoid considerable charge density), field configurations having
locally a net polarization are suppressed entropically, leading
to the leading quadratic term in the effective free energy:

F = K
2

∫
ddr[E(r)]2. (B6)

Here, the constant K is analogous to the permittivity in
electrodynamics and this coarse grain formulation may be
considered in arbitrary dimension d. The divergence-free
constraint Eq. (B5) is easily taken into account in momentum
space where it reads

k · E(k) = 0, (B7)

and the free energy is F = K
2

∑
k |E⊥(k)|2. Here, E⊥(k)

refers to the components (single component in 2D) of E
perpendicular to k. The correlation function is calculated di-
rectly from the equipartition 〈Eμ(−k)Eν(k′)〉 = K−1Pμνδk,k′ ,
where in a basis whose first element is parallel to k we have
P = (0 0

0 1d−1
). Writing the projector P in a general basis gives

〈Eμ(−k)Eν(k′)〉 = K−1

(
δμν − kμkν

|k|2
)

δk,k′ . (B8)

This implies a power-law decay of correlation functions in
real space 〈Eμ(−k)Eν(k′)〉 ∝ 1

|r|d . This general result implies
pinch points in correlation functions, since the correlation
functions depend on how the limit |k| → 0 is approached.
For our model, this implies for the (Sz

i )2 correlation the form

S(k) = 〈(
Sz

i

)2(
Sz

j

)2〉
k ∝ k2

y

k2
x + k2

y

, (B9)

leading to the pinch point at |k| = 0.

APPENDIX C: QUANTUM ORDER-BY-DISORDER
MECHANISM

Following a similar logic as in the classical case, here we
will determine the magnetization direction of the quantum
stripy phase, by following an order-by-disorder calculation
of the fluctuations. Technically, the quantum fluctuations will
be taken into account by a large-S expansion of the S̃ spin
variables, with Hamiltonian (3). We represent the spins in
sublattice a and b using Holstein-Primakoff bosons aRi

and
bRi

, respectively, as

S̃a,Ri
= (S − a

†
Ri

aRi
)ê

+
√

S

2

[
ê1
(
aRi

+ a
†
Ri

)− iê2
(
aRi

− a
†
Ri

)]
,
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FIG. 19. (Color online) Quantum fluctuation contribution to the
ground-state energy per unit cell as a function of azimuthal angle
along the equator as parameterizing the magnetization ê, with α =
0.45 Jz = 1.5, or alternatively for α = 0.6 Jz = 0.5 showing minima
along cubic axes. Numerical evaluation of the k sum in Eq. (C6)
has been done for a honeycomb lattice with 10 × 10 unit cells with
periodic boundary conditions.

S̃b,Ri
= (

S − b
†
Ri

bRi

)
ê

+
√

S

2

[
ê1
(
bRi

+ b
†
Ri

)− iê2
(
bRi

− b
†
Ri

)]
. (C1)

We have expanded around a uniform ground state with mag-
netization direction ê1 × ê2 = ê. The terms in the Hamiltonian
of order S2 give the classical energy. At this level, the energy
is independent on the magnetization direction ê. We now
evaluate the next leading order terms in a 1/S expansion. It
is convenient to compute the spin-spin couplings appearing in
the Hamiltonian. For the Heisenberg, we have the simple form

S̃a · S̃b = −S(a†a + b†b − a†b − ab†). (C2)

For the Kitaev term, we have

S̃γ
a S̃γ

b =
(

(S − a†a)êγ +
√

S

2

[
êγ

1 (a + a†) − iêγ

2 (a − a†)
])

×
(

(S − b†b)êγ +
√

S

2

[
êγ

1 (b + b†) − iêγ

2 (b − b†)
])

.

(C3)

This includes an O(S3/2) term linear in the bosons a, a†, b, and
b†. This linear term contains one contribution proportional to
êγ êγ

1 , and another proportional to êγ êγ

2 . Upon summing over
the three links connected to either a or b these contributions
vanish since ê · ê1 = ê · ê2 = 0.

The O(S) term is quadratic in the bosonic operators. After
Fourier transformation, the O(S) term can be written as

H̃

S
=
∑

k

[



†
k ĥk
k + (2 − 4α)

∑
γ

Jγ (êγ )2

]
,


k = (ak bk a
†
−k b

†
−k

)T (C4)

with

ĥk =
∑

γ

Jγ

⎡
⎢⎢⎢⎣α − 1

2

⎛
⎜⎜⎜⎝

−1 eik·rγ 0 0

e−ik·rγ −1 0 0

0 0 −1 eik·rγ

0 0 e−ik·rγ −1

⎞
⎟⎟⎟⎠

+ 1 − 2α

2

⎛
⎜⎜⎜⎜⎝

−2(êγ )2
((

êγ

1

)2 + (
êγ

2

)2)
eik·rγ 0

(
êγ

1 + iêγ

2

)2
eik·rγ((

êγ

1

)2 + (
êγ

2

)2)
e−ik·rγ −2(êγ )2

(
êγ

1 + iêγ

2

)2
e−ik·rγ 0

0
(
êγ

1 − iêγ

2

)2
eik·rγ −2(êγ )2

((
êγ

1

)2 + (
êγ

2

)2)
eik·rγ(

êγ

1 − iêγ

2

)2
e−ik·rγ 0

((
êγ

1

)2 + (
êγ

2

)2)
e−ik·rγ −2(êγ )2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ .

The second term in Eq. (C4) is proportional to the classical term ∝ S2. Hence it does not lift the degeneracy of the ground-state
manifold. Ignoring this term, after Bogoliubov transformation [49], the quadratic Hamiltonian becomes

∑
k

2∑
μ=1

ωk,μ(�†
kμ�kμ + �kμ�

†
kμ), (C5)

where ωk,μ > 0 (μ = 1,2), and (ωk,1,ωk,2,−ωk,1,−ωk,2) are the eigenvalues of the matrix diag{1,1,−1,−1} · hk and
[�kμ,�

†
k′ν] = δμνδkk′ . Finally, this calculation gives the O(S) zero-point energy fluctuations per site as a function of ê,

EGS[ê] = 1

N

∑
k

2∑
μ=1

ωk,μ. (C6)
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This is the quantum analog of Eq. (A6). Evaluating EGS numerically, we find that it is minimized for ê parallel to the cubic axes
for either α > 1/2 or α < 1/2 (and at α = 1/2). For example, EGS is plotted for α = 0.45 and Jz = 1.5, or alternatively for
α = 0.6 and Jz = 0.5 in Fig. 19 demonstrating that the magnetization points along the cubic axes in the stripy xy phases.

Whereas our linear spin wave calculation gives also the dispersion of the spin waves, ωk,μ, it fails to show the opening of
the gap of the Goldstone modes once the continuous symmetry is spoiled at α �= 0. A self-consistent spin wave calculation does
account for the gap in the spin wave spectrum [6,36].
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