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In the field of quantum magnetism, the advent of numerous spin-orbit assisted Mott insulating compounds,
such as the family of Kitaev materials, has led to a growing interest in studying general spin models with
nondiagonal interactions that do not retain the SU(2) invariance of the underlying spin degrees of freedom.
However, the exchange frustration arising from these nondiagonal and often bond-directional interactions for
two- and three-dimensional lattice geometries poses a serious challenge for numerical many-body simulation
techniques. In this paper, we present an extended formulation of the pseudofermion functional renormalization
group that is capable of capturing the physics of frustrated quantum magnets with generic (diagonal and
off-diagonal) two-spin interaction terms. Based on a careful symmetry analysis of the underlying flow equations,
we reveal that the computational complexity grows only moderately, as compared to models with only diagonal
interaction terms. We apply the formalism to a kagome antiferromagnet which is augmented by general in-plane
and out-of-plane Dzyaloshinskii-Moriya (DM) interactions, as argued to be present in the spin liquid candidate
material herbertsmithite. We calculate the complete ground state phase diagram in the strength of in-plane and
out-of-plane DM couplings, and discuss the extended stability of the spin liquid of the unperturbed kagome
antiferromagnet in the presence of these couplings.
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I. INTRODUCTION

The study of quantum magnets has produced an impressive
streak of deep conceptual insights, often with implications
that go far beyond the scope of the field of magnetism.
An early revelation was Haldane’s conjecture [1,2] of the
fundamental difference between integer and half-integer spin
chains, whose gapped/gapless energy spectra he explained
using topological terms—laying the conceptual groundwork
for what has later been coined symmetry-protected topo-
logical states of matter [3]. Another striking example is
the generalization of the Lieb-Schultz-Mattis theorem [4] to
higher dimensions by Oshikawa [5] and Hastings [6], stating
in particular that two-dimensional spin-1/2 systems cannot
be featureless (for an odd number of spins per unit cell),
i.e., if the energy spectrum is gapped, then the system must
exhibit topological order and a nontrivial ground-state degen-
eracy. This general signature of intrinsic topological order
is not limited to magnetic systems, but in fact the general
consequence of the formation of long-range entanglement
[7]. Signatures for such macroscopic entanglement [8,9] also
allow, for instance, to positively identify quantum spin liquids
[10]—long elusive ground states of quantum magnets that
defy any classical ordering tendencies, but instead exhibit
quantum order [11], concurrent with a fractionalization of the
original spin degrees of freedom and the emergence of a lattice
gauge structure.

A common thread in this foundational work on quantum
magnets is that their microscopic spin interactions are typi-
cally written in terms of Heisenberg models that retain the
full SU(2) invariance of the underlying spins. The reason to

do so can arguably be traced back to what has been one of
the core motivations to study quantum magnetism in the first
place: the discovery of high-temperature superconductivity
[12] in close proximity to a “parent” Mott insulating state
in which the charge degrees of freedom are frozen out and
the remaining local moments are spin degrees of freedom—a
quantum magnet. To derive the microscopic spin exchange
in such Mott insulators, one typically expands the original
electronic Hubbard model in terms of the (considerably sup-
pressed) electronic hopping, which directly leads to the afore-
mentioned SU(2)-invariant Heisenberg model [13]. In recent
years, however, there has been a flurry of activity directed to-
wards the analysis of quantum magnets with interactions that
explicitly break the SU(2) spin rotational symmetry. The most
prominent example is the Kitaev model [14], in which SU(2)
spin-1/2 degrees of freedom interact via bond-directional
exchanges, i.e., Ising-like interactions where the easy axis of
the magnetic exchange depends on the spatial orientation of
the exchange bond. Kitaev’s exact analytic derivation of a
number of quantum spin liquid ground states for this model
[14] has led to an intense search for “Kitaev materials” [15]
that give rise to such bond-directional exchanges. Guided by
the work of Khaliullin, Jackeli, and coworkers [16], a number
of spin-orbit assisted Mott insulators [17] have been explored
as candidate materials, including Na2IrO3, (α, β, γ )-Li2IrO3,
and RuCl3 amongst others [18]. What is, however, common
to all these materials is that their microscopic description
includes not only symmetric (Kitaev- and Heisenberg-like)
exchange interactions but also off-diagonal, bond-directional
exchanges such as the so-called � terms, i.e., their generic
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spin models are often written as

H = −
∑

γ -bonds

J SiS j + K Sγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)
, (1)

where the precise coupling strengths, of course, depend on
the actual compound at hand (see Ref. [19] for an overview
of Kitaev materials) and which are sometimes augmented
by further terms, such as another form of off-diagonal �′
interactions [19] or a Dzyaloshinskii-Moriya exchange.

It is the purpose of this manuscript, to expand one of the
few numerical many-body approaches capable of studying
frustrated quantum magnets in two or three spatial dimen-
sions, the pseudofermion functional renormalization group
(pf-FRG) [20], such that it can efficiently treat Hamiltonians
such as the one in Eq. (1), or more generally, arbitrary two-
spin interactions of the form

H =
∑

i j

Si

⎛
⎜⎝

Kxx �xy �xz

�yx Kyy �yz

�zx �zy Kzz

⎞
⎟⎠S j . (2)

This has remained a major technical challenge thus far, as the
approach was initially derived for SU(2) invariant Heisenberg
models [20] by decomposing the original spin degrees of free-
dom into auxiliary Abrikosov fermions (or pseudofermions)
and then employing the well-known fermionic functional
renormalization group (FRG) approach introduced by Wet-
terich [21]. Going beyond the Heisenberg interactions, by
including Kitaev-type interactions [22] or a Dzyaloshinskii-
Moriya exchange [23], amounted to the tedious exercise
of rederiving, for each coupling type, the fermionic flow
equations at the heart of the FRG approach. Including other
types of interactions such as the off-diagonal � exchange
has also been hindered by the expectation that the number
of flow equations that need to be handled numerically grows
tremendously (by some three orders of magnitude) for such
more general interaction types.

In what follows, we will overcome this challenge and pro-
vide an efficient parametrization for the pseudofermion func-
tional renormalization group, which is suited to numerically
investigate general spin exchanges of the above form with
only a moderate increase in computational cost. This progress
is based on a careful symmetry analysis of the flow equations
derived for these more general interaction types. In particular,
we argue that in the presence of time-reversal symmetry, the
increase in computational complexity remains moderate, and
the overall complexity is two orders of magnitude smaller
than in the general case that allows breaking of time-reversal
symmetry.

We corroborate the expanded usability of the method by
an exemplary study of the Heisenberg antiferromagnet on
the kagome lattice with additional in-plane and out-of-plane
Dzyaloshinskii-Moriya (DM) interactions—off-diagonal spin
interactions that in prior implementations of the pf-FRG algo-
rithm could only be handled for specialized cases and using
significant numerical resources [23]. With the symmetry-
constrained pf-FRG implementation introduced here, we
demonstrate the increased numerical efficiency by mapping
out an entire phase diagram (in the in-plane and out-of-plane
DM coupling strengths). Physically, such DM interactions

have been argued [24,25] to be present, for instance, in the
spin liquid candidate material herbertsmithite [26]. We find
that the spin liquid ground state of the unperturbed kagome
Heisenberg antiferromagnet, indicated in pf-FRG calculations
[27,28], is robust against small out-of-plane DM interactions
up to D/J ≈ 0.1. We further find that additional in-plane DM
interactions only have a comparably small impact on the phase
diagram—the model exhibits an extended spin liquid regime
for realistic parameter estimates that go up to D′/J ≈ 0.3 in
herbertsmithite.

The remainder of the manuscript is structured as follows.
In Sec. II, we present a concise overview of the pseudofermion
functional renormalization group (pf-FRG) approach to gen-
eral, time-reversal invariant quantum spin models, summa-
rizing our most important results for the practical applica-
tion of the method. In the remaining sections, based on a
careful symmetry analysis, we present the detailed derivation
of the pf-FRG approach. We point out some fundamental
differences between the FRG approach applied to (symmetry-
constrained) pseudofermions and (conventional) fermions,
which we summarize in a systematic classification of the
projective symmetries of the pseudofermions in Sec. III. This,
in turn, allows to provide an efficient, symmetry-constrained
vertex parametrization in Sec. IV and discuss the general
symmetries of the pf-FRG flow equations in Sec. V. An appli-
cation example to the kagome antiferromagnet with additional
in- and out-of-plane DM interactions is presented in Sec. VI,
followed by conclusions and a brief outlook in Sec. VII.

II. FUNCTIONAL RENORMALIZATION GROUP FOR
TIME-REVERSAL INVARIANT SYSTEMS: OVERVIEW

In general terms, the pf-FRG approach [20] is a two-step
scheme of (i) re-writing SU(N) spin operators in terms of
auxiliary Abrikosov fermions (pseudofermions), followed by
(ii) the application of a fermionic FRG scheme [21]. This
overall pf-FRG formalism is by now well established and
has been studied extensively in the past, establishing for
instance that the approach becomes exact in the independent
limits of large S [30] and large N [31,32] (on a mean-field
level) and demonstrating its general applicability also to three-
dimensional frustrated quantum magnets, where results have
been seen to be in good agreement with predictions from
quantum Monte Carlo calculations [33] or series expansions
[28]. Here we demonstrate, in a careful symmetry analysis,
that the combination of a fermionic FRG approach with a
pseudofermionic model (instead of a regular fermion model)
leads to a considerable simplification of the underlying renor-
malization group flow equations, owed to an extended set
of projective symmetries [11] that is present in every pseud-
ofermionic Hamiltonian per construction.

We put our focus on time-reversal invariant spin models,
which further augments the symmetry constraints, and con-
sider microscopic models comprising arbitrary off-diagonal
two-spin interactions, such as those given in Eq. (2)
above. Our discussion will not be limited to a particular
spatial dimension—in particular, our implementation of a
symmetry-constrained pf-FRG approach (to be discussed be-
low) will be capable to study, in a straight-forward man-
ner, three-dimensional frustrated quantum magnets, for which
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efficient numerical many-body approaches are particularly
scarce.

In a first step, we recast the spin operators in terms of
pseudofermion operators

Sμ
i → 1

2 f †
iασ

μ
αβ fiβ, (3)

which is a faithful mapping under the half-filling constraint

f †
iα fiα = 1. (4)

In the context of pseudofermionized spin models, it is a good
approximation to fulfill this constraint only on average by
setting the chemical potential to zero [20]. Yet, in princi-
ple, the constraint can also be fulfilled exactly by introduc-
ing an artificial imaginary chemical potential according to
the Popov-Fedotov scheme [34,35]. Performing the substi-
tution scheme (3) on the spin Hamiltonian (2), one obtains
a purely quartic Hamiltonian acting on the pseudofermion
Hilbert space. The absence of any quadratic term makes the
Hamiltonian inaccessible to perturbative approaches around
a Gaussian theory. Instead, the functional renormalization
group scheme is applied as a means to concurrently treat
millions of flowing parameters in a renormalization group
scheme. For pseudofermionic models, one can reason that
this approach amounts to a simultaneous expansion in spin
length (i.e., a large-S expansion) and in the spins’ symmetry
group SU(N) (i.e., a large-N expansion). Most importantly,
despite being a formally uncontrolled approximation, the ap-
proach becomes separately exact, on the level of mean field
considerations, in the two limits of large S [30] and large N
[31,32]. These two cases mark the classical limit, which is a
suitable description for magnetically ordered states, and the
limit of artificially enhanced quantum fluctuations, which is
a good picture to capture spin liquid states. It is generally
believed that the incorporation of these two channels on equal
footing contributes to the pf-FRG’s success in modeling the
competition between magnetic order and spin liquid behavior
in a number of model applications.

The flow equations at the heart of the pf-FRG approach
are obtained as a special case of the well known general
fermionic FRG equations [21]. Given the field-theoretical ac-
tion of a (pseudo)fermionic model, they are most conveniently
formulated in terms of the one-line irreducible interaction
vertices. Neglecting three-particle vertices and higher, the
flow equations for the single-particle � and the two-particle
vertex � are given by

d

d�
��(1′; 1) = − 1

2π

∑
2

��(1′, 2; 1, 2)S�(ω2) (5)

and

d

d�
��(1′, 2′; 1, 2)

= 1

2π

∑
3,4

[��(1′, 2′; 3, 4)��(3, 4; 1, 2)

− ��(1′, 4; 1, 3)��(3, 2′; 4, 2) − (3 ↔ 4)

+ ��(2′, 4; 1, 3)��(3, 1′; 4, 2) + (3 ↔ 4)]

× G�(ω3)S�
kat (ω4), (6)

respectively. Here the numbers n = {in,wn, αn} represent tu-
ples of a lattice site index in, the Matsubara frequency ωn, and
a spin index αn, respectively. Note that in formulating these
flow equations, we have already used that the single-scale
propagator S and the full propagator G are diagonal in all their
arguments and depend only on the frequency argument. The
renormalization group flow is then generated by a sharp cutoff
function in frequency space, such that the full propagator is
given by

G�(ω) = θ (|ω| − �)

iω − ��(ω)
(7)

and the single-scale propagator is given by

S�(ω) = δ(|ω| − �)

iω − ��(ω)
. (8)

In the flow equtions for the two-particle vertex, the single-
scale propagator is treated according to the Katanin truncation
scheme [36],

S�
kat (ω) = S�(ω) − (G�(ω))2 d

d�
��(ω). (9)

Note that the diagonal structure of the propagators in their
spin arguments is inherited from the diagonal structure of
the self-energy �, which in turn is a consequence of time-
reversal symmetry in the pseudofermion Hamiltonian. By a
more detailed symmetry analysis (Sec. III), we will see that
the self-energy can be efficiently parametrized as

�(i′ω′α′; iωα) = �(ω)δα′αδi′iδω′ω, (10)

where the basis function �(ω) obeys the symmetry relations

�(ω) ∈ iR

�(ω) = −�(−ω). (11)

The two-particle vertex is parametrized as

�(1′, 2′; 1, 2)

= [(
�

μν
i1i2

(s, t, u)σμ
α1′ α1

σ ν
α2′ α2

)
δi1′ i1δi2′ i2 − (1′ ↔ 2′)

]
× δω1′+ω2′−ω1−ω2 , (12)

where σ 0 is the identity matrix and σ 1, σ 2, and σ 3 denote the
usual spin Pauli matrices. Furthermore, we have introduced
the transfer frequencies

s = ω1′ + ω2′ ,

t = ω1′ − ω1, (13)

u = ω1′ − ω2.

As the key property leading to a significant increase in nu-
merical efficiency, the basis functions �

μν
i1i2

(s, t, u) obey the
symmetry relations

�
μν
i1i2

(s, t, u) ∈
{
R if ξ (μ)ξ (ν) = 1

iR if ξ (μ)ξ (ν) = −1,

�
μν
i1i2

(s, t, u) = �
νμ
i2i1

(−s, t, u),

�
μν
i1i2

(s, t, u) = ξ (μ)ξ (ν)�μν
i1i2

(s,−t, u), (14)

�
μν
i1i2

(s, t, u) = ξ (μ)ξ (ν)�νμ
i2i1

(s, t,−u),

�
μν
i1i2

(s, t, u) = −ξ (ν)�μν
i1i2

(u, t, s),
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FIG. 1. Flow equations for the one-particle (top row) and two-particle (bottom row) vertices. The diagram for the one-particle vertex
should be read as �(ω)δα′αδi′iδω′ω and the diagram for the two-particle vertex represents the expression �

μν
i1i2

(s, t, u)σμ
α1′ α1

σ ν
α2′ α2

δω1′ +ω2′ −ω1−ω2

(see text for details). In the single-particle flow equation, the slashed propagator line represents the single-scale propagator. In the two-particle
flow equation, the pair of slashed propagator lines represents the two terms G(ω1)Skat (ω2) + G(ω2)Skat (ω1). The lattice site index is preserved
along the solid black lines, such that only the second term on the right-hand side of the top row and the second term in the bottom row contain
internal summations over lattice sites. A more explicit, yet significantly lengthier, representation of the flow equations is given in Ref. [29].

where

ξ (μ) =
{+1 if μ = 0
−1 otherwise . (15)

The initial conditions for the flow equations (5) and (6) in
the limit of large cutoff � → ∞ are given by

��→∞(ω) = 0,

�
�→∞,μν
i j (s, t, u) = 1

4 Jμν
i j , (16)

where Jμν
i j is the coupling constant defined by the general

form of a two-spin Hamiltonian H = ∑
i j Jμν

i j Sμ
i Sν

j . Employ-
ing this parametrization, one obtains flow equations for the
basis functions �(ω) and �

μν
i1i2

(s, t, u). The equations are dia-
grammatically shown in Fig. 1. Note that the flow equations
are formally derived at zero temperature, but it has been
demonstrated [33] that from such a zero temperature solution
one can nevertheless extract finite temperature properties by
relating the frequency cutoff � to the actual temperature via
T = π

2 �.
Once the flow equations have been solved numerically,

and all vertex values are known, one may extract observables
like the (static) spin-spin correlations χ

μν
i j = 〈Sμ

i Sν
j 〉, which

diagrammatically is given by

(17)
A phase transition, accompanied by the spontaneous breaking
of symmetries, is formally detected via a divergence in the RG
flow of the vertex functions—in the case of magnetic long-
range order implying also a divergence in the corresponding
spin correlations defined in Eq. (17). In practice, resulting
from the truncation of the flow equations and finite numerical
resolution, the divergence is often regularized to manifest only

as a kink or a cusp in the RG flow (cf. Fig. 3). Different
schemes to improve the resolution of the phase transition are
subject of current research [23,37,38], addressing also the
detection of valence bond solid configurations [20].

It is worth mentioning that in the case of more symmetric
spin models (e.g., Heisenberg interactions or Kitaev interac-
tions), the parametrization reduces to previously known cases.
For Heisenberg models, only the �00 and �11 = �22 = �33

components are nonzero, and other terms cannot be generated
in the RG flow as a consequence of the SU(2) spin rotation
symmetry [20]. For the slightly less symmetric Kitaev interac-
tions, only the components �00, �11, �22, and �33 can become
nonzero, but unlike in the Heisenberg model, the last three
components no longer need to be equal.

The different parametrizations have an immediate impact
on the computational complexity of the problem. To leading
order, the complexity depends on the number of diagrams
that include a summation over the entire lattice (cf. Fig. 1).
Estimates for the computational complexity for a number of
model systems are compared in Table I. As long as time-
reversal symmetry remains intact, one may exploit the four
symmetries in the frequency dependence listed in Eq. (14)
to cut the computational costs by a factor of 16. Additional
complexity may arise depending on how many lattice symme-
tries can be exploited: While Heisenberg interactions usually

TABLE I. Computational complexity for different parametriza-
tions of the pf-FRG flow equations. Apart from the parametrization,
the complexity also depends on the size of the lattice and the
underlying Matsubara frequency mesh (see text for details). The
parametrization for general off-diagonal interactions proposed in this
paper is two orders of magnitude simpler than the unconstrained flow
equations (that allow breaking of time-reversal symmetry).

Model rel. complexity

Heisenberg interactions 1
XYZ interactions 2
Off-diagonal interactions 32
Time-reversal breaking 2048
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are not bond dependent, this is a common feature in models
with Kitaev-like interactions. DM interactions, in particular,
break inversion symmetry on lattice bonds which automat-
ically reduces the lattice’s point group. In total, the overall
computational complexity scales as

O
(
N2

L N4
ω

)
,

where NL is the number of symmetry-reduced lattice sites
and Nω is the number of frequencies that are being used
to model the Matsubara frequency dependence. This scaling
arises from the necessity to compute O(NLN3

ω ) diagrams, each
containing an internal sum over O(NL ) lattice sites and O(Nω )
frequencies.

III. SYMMETRY CLASSIFICATION

We now proceed to a detailed analysis of the (projective)
symmetries of the general pseudofermion Hamiltonian, which
we use to derive symmetry constraints on the functional
form of single-particle and two-particle correlation functions.
These results in turn allow us to implement a symmetry-
constrained parametrization for the effective action (10)–(14)
in the pf-FRG scheme in the subsequent sections.

To recapitulate, the Hamiltonian for the auxiliary pseud-
ofermion degrees of freedom is obtained from the original
spin model (2) by applying the pseudofermion transformation
(3), and generally reads as

H =
∑

i j

Jμν
i j

4
σ

μ

αβσ ν
γ δ f †

iα f †
jγ f jδ fiβ. (18)

This Hamiltonian exhibits two distinct types of symmetries,
which should be carefully distinguished: On the one hand,
there are physical symmetries present in the original spin
Hamiltonian, most importantly time reversal symmetry which
inverts the sign of each spin operators—but as we are only
considering two-spin interactions, these signs cancel. The
Hamiltonian is also assumed to be hermitian. Since the spin
operators are already hermitian themselves, this limits our
analysis to real couplings constants.

On the other hand, the Hamiltonian has an additional,
nonphysical symmetry that derives from the fermionization
process and is therefore present in any pseudofermion Hamil-
tonian. This extra symmetry is a local SU(2) gauge redun-
dancy, an artifact of the parton construction (3)

Sμ
i → 1

2 f †
iασ

μ
αβ fiβ. (19)

In this notation, it is easy to see that there is an inherent U(1)
gauge redundancy in the construction which amounts to lo-
cally multiplying fermionic operators with an arbitrary phase
factor. Since the fermion operators always come in pairs, the
phase factor cancels. It is less obvious, however, that the real
symmetry group is larger. Therefore let us make the full SU(2)
symmetry more explicit by rewriting the above substitution
rule. Instead of expressing the spin operator in terms of a
vector-matrix-vector product, it can also be expressed in terms
of a trace over a matrix-matrix-matrix product [39]

Sμ
i → 1

4 F †
i,αβσ

μ
βγ Fi,γ α, (20)

where the 2 × 2 matrix Fi of pseudofermionic operators is
defined as

Fi =
(

fi↑ f †
i↓

fi↓ − f †
i↑

)
. (21)

The local SU(2) gauge redundancy is represented by the
space of 2 × 2 matrices glocal with the defining prop-
erty g†

localglocal = 1, which is the conventional representation
spanned by the Pauli matrices. The symmetry group action on
the pseudofermionic operators is given by right-multiplication
of glocal with the operators,

F̃i = Fi glocal. (22)

In this notation, the invariance of the parton construction (20)
is a direct consequence of the invariance of the trace under
cyclic permutations.

Moreover, the difference between the artificial SU(2)
gauge redundancy and the physical SU(2) spin rotation can
be made apparent as well. While we have implemented
the (local) gauge redundancy as right-multiplication, the
(global) physical spin rotation gglobal is implemented as left-
multiplication,

F̃i = gglobal Fi, (23)

such that in the spin operator (20) it does not cancel out and
instead acts as a rotation on the Pauli matrix spin space,

σ̃ μ = g†
globalσ

μgglobal, (24)

as expected. In the remainder of this section, however, we
shall not address the full SU(2) redundancy in one blow, but
instead separately consider the U(1) subgroup and a particle-
hole symmetry. The reason that we treat the two symmetries
separately is that the first one puts a strong constraint on the
spatial structure of our parametrization of the vertex functions,
while the latter one is used to derive constraints on the
frequency structure of the parametrization.

For each symmetry (regardless of whether it is physical
or unphysical), we shall present an implementation of the
symmetry group action on the pseudofermion space in second
quantized language. We then derive constraints that the sym-
metry places on pseudofermionic correlation functions. Since
the structure of the correlation functions is intimately tied
to the structure of the single-particle irreducible vertices (in
which the pf-FRG scheme is formulated) by construction [40],
the constraints ultimately carry over to the parametrization of
the interaction vertices.

A. Local U(1) symmetry

One of the most important symmetries, that sets pseud-
ofermion models apart from conventional fermion systems, is
the artificial local U(1) symmetry, a subgroup of the artificial
SU(2) gauge redundancy. In pseudofermion space, we can
define the action of local U(1) rotations by a set of angles
{ϕi}, where each angle is associated with a lattice site i (not
to be confused with the imaginary unit), acting as

gϕi

(
f †
iα

fiα

)
g−1

ϕi
=

(
eiϕi f †

iα

e−iϕi fiα

)
. (25)
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We are now interested in the transformation behavior of
single-particle correlation functions

G(1′; 1) =
∫

dτ ′dτeiτ ′ω′−iτω〈 f †
i′τ ′α′ fiτα〉, (26)

as well as in the transformation behavior of two-particle
correlation functions

G(1′, 2′; 1, 2) =
∫

dτ1′dτ2′dτ1dτ2ei(τ1′ ω1′+τ2′ω2′−τ1ω1−τ2ω2 )

× 〈
f †
i1′ τ1′α1′ f †

i2′ τ2′α2′ fi1τ1α1
fi2τ2α2

〉
, (27)

where we have used the shorthand notation n = in, ωn, αn

for composite lattice site, frequency, and spin indices. We
suppress the time ordering operator in the correlator, as it
becomes trivial once we upgrade pseudofermionic operators
to Grassmann numbers in the field-theoretical framework that
the pf-FRG approach is formulated in.

In order for the symmetry transformation to leave the cor-
relators invariant, lattice site indices may only appear pairwise
in creation and annihilation operators, such that the phase
factors vanish. For the single-particle correlation function, this
poses the constraint

G(1′; 1) = G(1′; 1)δi1′ i1 , (28)

and for the two-particle correlator, we have

G(1′, 2′; 1, 2) = G(1′, 2′; 1, 2)δi′1i1δi′2i2

− G(2′, 1′; 1, 2)δi′2i1δi′1i2 . (29)

Further details are presented in Appendix A.

B. Local particle-hole symmetry

Next, we consider the artificial local particle-hole symme-
try that is a subset of the SU(2) gauge redundancy of the
pseudofermion Hamiltonian. In the pseudofermionic space,
we define the symmetry operation as

gi

(
f †
iα

fiα

)
g−1

i =
(

α fiᾱ

α f †
iᾱ

)
, (30)

where the spin index α takes values +1 or −1 (representing
spin-up and spin-down, respectively). The notation ᾱ indicates
that the spin has been reversed, ᾱ = −α. This transformation
leaves the pseudofermion Hamiltonian (18) invariant and,
requiring that the single-particle correlation functions also
remains invariant, yields the relation

G(1′; 1) = −α′αG(i − ωᾱ; i′ − ω′ᾱ′). (31)

Note that for conciseness we are omitting commas in between
triples of lattice site index, Matsubara frequency, and spin
index; the expression G(i − ωᾱ; i′ − ω′ᾱ′) should therefore
be read as G(i,−ω, ᾱ; i′,−ω′, ᾱ′). On the level of bilocal
two-particle correlators (we have learned from the local U(1)
symmetry that we only need to consider bilocal correlation
functions), we obtain two different symmetry relations since
we can independently apply the particle-hole transformation
on the two lattice sites:

G(1′, 2′; 1, 2)δi1′ i1δi2′ i2

= −α1′α1G(i1 − ω1ᾱ1, i2ω2′α2′ ; i1 − ω1′ ᾱ1′ , i2ω2α2)

= −α2′α2G(i1ω1′α1′ , i2 − ω2ᾱ2; i1ω1α1, i2 − ω2′ ᾱ2′ ). (32)

In fact, the symmetries also hold independently for the purely
local vertex i1 = i2, since the particle-hole transformation
is inherently tied to the pseudofermion construction. More
precisely, it acts on pairs of fermions that originate from
the same spin operator in the fermionization process (19).
Since these pairs of fermions necessarily live on the same
lattice site, it is often simpler to think of the symmetry as a
local transformation. For a more rigorous treatment one would
need to introduce additional indices that carry the information
of which spin operator each individual fermion belongs to,
and define the particle-hole symmetry to act locally in this
extra index space. As such a treatment does not generate new
insight, we shall refrain from writing it down explicitly and
simply impose that the symmetry relations (32) also hold for
purely local correlators.

C. Lattice symmetries

We now focus on a second set of symmetries that affects the
structure of lattice site indices—genuine lattice symmetries.
They are necessarily present in the microscopic definition of
the spin models that we consider. Depending on the specifics
of the microscopic model and the type of lattice that it is
defined on, the group of lattice symmetries varies in its
number of symmetry elements. Any lattice can be defined via
an underlying periodic Bravais lattice, which is decorated with
a single- or multiatomic unit cell. In lattice calculations, it is
often convenient to group lattice sites by their relative position
in the unit cell, such that every sublattice individually pre-
serves the translation symmetry of the Bravais lattice. In pf-
FRG calculations, we typically do not discriminate between
different sublattices, but assume all lattice sites to be identical,
i.e., we assume that it is possible to map any lattice site to
any other site via a lattice symmetry. Such transformations
exist also for non-Bravais lattices, but they may require more
complex transformations that go beyond plain translations.

The straight-forward definition of a lattice transformation
only acts on the lattice site index,

gT

(
f †
iα

fiα

)
g−1

T =
(

f †
T (i)α

fT (i)α

)
, (33)

where T is a lattice automorphism, which maps the lattice
onto itself. This definition is sufficient for most Heisenberg-
like spin models, but it could also be upgraded to a combined
symmetry in lattice space and spin space, which can be partic-
ularly useful in the presence of bond-directional interactions,
as defined, for instance, in the Kitaev honeycomb model. For
the single-particle correlation function, this implies

G(1′; 1) = G(T (i′)ω′α′; T (i)ωα). (34)

For the two-particle correlator, it implies

G(1′, 2′; 1, 2) = G(T (i1′ )ω1′α1′ , T (i2′ )ω2′α2′ ;

T (i1)ω1α1, T (i2)ω2α2). (35)

Using the locality constraint for single-particle correlator (28),
its site dependence can be reduced from two lattice sites to a
single lattice site. In combination with lattice symmetries, the
single site dependence can be further mapped to an arbitrary
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(fixed) reference site, and in our notation we may suppress
the site dependence altogether. The lattice site structure of
the two-particle correlator, which is a function of two lattice
sites as a consequence of the bilocality constraint (29), can be
further reduced to depend only on a single site (in addition to
a fixed reference site).

D. Time-reversal symmetry

We now proceed to the physical symmetries of the Hamil-
tonian and first examine time-reversal symmetry. Time re-
versal is an antiunitary symmetry which effectively inverts
the sign of every spin operator. Consequently, all two-spin
interactions with real coupling constants, which are captured
by the general Hamiltonian (2), preserve time-reversal sym-
metry. On the Hilbert space of pseudofermions, the symmetry
operation can be implemented as

g

(
f †
iα

fiα

)
g−1 =

(
eiπα/2 f †

iᾱ

e−iπα/2 fiᾱ

)
, (36)

where g is antiunitary. Note that this definition is not unique,
since it can always be composed with arbitrary transfor-
mations from the SU(2) gauge redundancy. Analyzing its
effects on single-particle correlators and bilocal two-particle
correlators, we obtain the symmetry relations

G(1′; 1) = α′αG(i′ − ω′ᾱ′; i − ωᾱ)∗ (37)

and

G(1′, 2′; 1, 2)δi1′ i1δi2′ i2

= α1′α2′α1α2G(i1 − ω1′ ᾱ1′ , i2 − ω2′ ᾱ2′ ;

i1 − ω1ᾱ1, i2 − ω2ᾱ2)∗, (38)

respectively. The antiunitary property of the transformation
introduces a complex conjugation, which we can exploit to
make a connection between the real and imaginary parts of
the correlators.

E. Hermitian symmetry

The relations that we have derived in the presence of
time-reversal symmetry become a lot more powerful in com-
bination with a hermitian symmetry, i.e., assuming that the
Hamiltonian is self-adjoint. The two-spin Hamiltonian (2)
automatically fulfills this condition, since the individual spin
operators are already self-adjoint and we assume all prefactors
to be real. Therefore, we may upgrade the complex conjuga-
tion in relations (37) and (38) to a conjugate transpose (since
they are plain numbers, transposition acts trivially) and eval-
uate the expressions explicitly. Leaving the Hamiltonian—
and hence the Boltzmann factors—in the thermal expectation
value invariant, the constraints on the correlation functions
can be evaluated to

G(1′; 1) = α′αG(iωᾱ; i′ω′ᾱ′) (39)

for the single-particle correlator and

G(1′, 2′; 1, 2)δi1′ i1δi2′ i2

= α1′α2′α1α2G(i1ω1ᾱ1, i2ω2ᾱ2; i1ω1′ ᾱ1′ , i2ω2′ ᾱ2′ ) (40)

for the bilocal two-particle correlator.

IV. SYMMETRY-CONSTRAINED VERTEX
PARAMETRIZATION

The key result of the detailed analysis of the individual
symmetries of the general bilinear spin interactions of form
(2) in the previous section has been to derive constraints on
the functional form of single-particle and two-particle cor-
relation functions, summarized with regard to the individual
symmetries in the final equations of each of its subsections.
With these symmetry considerations in place, we now proceed
to combine these individual symmetries to find a convenient
parametrization for the correlation functions that ultimately
leads us to an efficient, symmetry-constrained parametrization
of the effective action (10)–(14) in the pf-FRG scheme.

Let us begin with the parametrization of the single-particle
correlation function. Starting from the general expression for
the single-particle correlator G(1′; 1), we use the local U(1)
symmetry to guarantee locality in real space. In combination
with lattice symmetries, we can always map the single lattice
site dependence to a fixed reference site. The correlation
function thereby becomes independent of the lattice site and
we suppress the site index in our notation. Furthermore, we
shall make use of Matsubara frequency conservation (as a
consequence of translation symmetry in imaginary time, not
shown explicitly) to see that the correlation function must be
diagonal in the frequency index. The remaining dependency
on spin indices is captured by an expansion in the basis
of Pauli matrices, such that the correlator can generally be
written as

G(1′; 1) = (
Gμ(ω)σμ

α′α

)
δi′iδω′ω, (41)

where we are implicitly summing over the repeated index μ =
0, . . . , 3. The 2 × 2 matrix σ 0 denotes the identity matrix and
σ 1, σ 2, and σ 3 are the Pauli matrices.

For the parametrization of the two-particle vertex, we pro-
ceed analogously. Utilizing the local U(1) symmetry in com-
bination with lattice symmetries and Matsubara frequency
conservation, we can conveniently write the correlator as

G(1′, 2′; 1, 2)

= [(
Gμν

i1i2
(s, t, u)σμ

α1′ α1
σ ν

α2′α2

)
δi1′ i1δi2′ i2 − (1′ ↔ 2′)

]
× δω1′+ω2′−ω1−ω2 , (42)

where we introduced the transfer frequencies

s = ω1′ + ω2′ ,

t = ω1′ − ω1, (43)

u = ω1′ − ω2.

Using the set of symmetry relations, which we have ex-
plicitly derived in the subsections of the previous Section, we
find that the basis functions for the single-particle correlator,
Gμ(ω), and for the two-particle correlator, Gμν

i1i2
(s, t, u), are

constrained by the relations given in Table II. In these rela-
tions, we have introduced the sign function

ξ (μ) =
{+1 if μ = 0
−1 otherwise (44)
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TABLE II. Symmetry constraints on the basis functions for the
parametrization of one-particle and two-particle vertices in the pf-
FRG scheme. The equations are labeled by the symmetries that
have been used to derive them—‘H’ is shorthand notation for the
hermitian symmetry, “TR” is time reversal, “X” denotes the si-
multaneous exchange of the two in-going and the two out-going
fermion operators, and “PH1” and “PH2” are the two particle-hole
symmetries acting on the first pair of lattice sites and the second pair,
respectively (if applied to a single-particle vertex, this distinction is
not sensible).

Gμ(ω) = ξ (μ)Gμ(ω) (H ◦ TR)

Gμ(ω) = −ξ (μ)Gμ(−ω) (PH)

Gμ(ω) = −Gμ(ω)∗ (TR ◦ PH)

Gμν
i1 i2

(s, t, u) = Gνμ
i2 i1

(−s, t, u) (X ◦ H ◦ TR ◦ PH1 ◦ PH2)

Gμν
i1 i2

(s, t, u) = ξ (μ)ξ (ν )Gμν
i1i2

(s,−t, u) (H ◦ TR)

Gμν
i1 i2

(s, t, u) = ξ (μ)ξ (ν )Gνμ
i2 i1

(s, t,−u) (X ◦ H ◦ TR)

Gμν
i1 i2

(s, t, u) = −ξ (ν )Gμν
i1i2

(u, t, s) (PH2)

Gμν
i1 i2

(s, t, u) = ξ (μ)ξ (ν )Gμν
i1i2

(s, t, u)∗ (TR ◦ H ◦ TR ◦ PH1 ◦ PH2)

that results from symmetry manipulations of spin indices after
using the identities

α′ασ
μ

ᾱᾱ′ = α′α(σμ∗)ᾱ′ᾱ = ξ (μ)σμ

α′α. (45)

With this, we have almost reached the goal to find an effi-
cient, symmetry-constrained parametrization for the effective
action in the pf-FRG scheme. The one step left is to see that
the symmetries from the (disconnected) correlation functions
carry over to the effective action—that is, to the one-line
irreducible correlation functions �(1′; 1) and �(1′, 2′; 1, 2).
For the single-particle correlation function, this is easy to see,
since per definition the relation

G(1′; 1) = 1

iω − �(1′; 1)
(46)

must hold. If G is diagonal in all arguments and antisymmetric
the frequency dependence, this must also be true for �. For the
two-particle correlation function, it is not as easy to see that
the symmetries carry over. However, we can see the inheri-
tance of symmetries from the so-called tree-expansion [40],
which relates the one-line irreducible two-particle correlation
function �(1′, 2′; 1, 2) to the connected correlation function
Gc(1′, 2′; 1, 2) according to

Gc(1′, 2′; 1, 2)

= −
∑
3456

�(3, 4; 5, 6)G(1′; 3)G(2′; 4)G(5; 1)G(6; 2),

(47)

which has a structure simple enough for the symmetries to
directly carry over (knowing that G is diagonal in all its
arguments). Between the connected correlation function Gc

and disconnected correlation function G, it can then be seen
on the level of their generating functionals that they have the
same symmetries [40].

We can thus conclude that the parametrization (10)–(14) of
the effective action is valid for any time-reversal symmetric,

hermitian pseudofermion Hamiltonian. In particular, it is valid
for any two-spin interaction with real coupling constants.

V. SYMMETRIES OF THE FLOW EQUATIONS

By considering symmetries of the Hamiltonian, we have
demonstrated, in the previous Section, that the effective ac-
tion can be efficiently parametrized by a set of purely real
functions, c.f. Eqs. (10)–(14). We now complement these
findings by arguing that, on the level of the pf-FRG flow
equations, the parametrization and the symmetries of its basis
functions are indeed preserved throughout the renormalization
group flow—assuming that they exist in the initial conditions.
Starting from the familiar parametrization of the self-energy,

�(1′; 1) = �(ω1)δα1′α1δi1′ i1δω1′ω1 , (48)

with

�(ω1) ∈ iR, (49)

and the parametrization of the two-particle vertex,

�(1′, 2′; 1, 2)

= [(
�

μν
i1i2

(s, t, u)σμ
α1′ α1

σ ν
α2′ α2

)
δi1′ i1δi2′ i2 − (1′ ↔ 2′)

]
× δω1′+ω2′−ω1−ω2 , (50)

with

�
μν
i1i2

(s, t, u) ∈
{
R if ξ (μ)ξ (ν) = 1

iR if ξ (μ)ξ (ν) = −1
, (51)

it can readily be seen, by inserting the expressions into the
FRG flow equations (5) and (6), that the parametrization is
complete and no additional terms are generated throughout
the RG flow.

On top of the parametrization, we postulate the following
symmetry relations:

�(ω1) = −�(−ω1),

��(1′, 2′; 1, 2) = ��(2′, 1′; 2, 1),

��(1′, 2′; 1, 2) = ��(1, 2; 1′, 2′)∗,

��(1′, 2′; 1, 2) = ��(i1′ − ω1′α1′ , i2′ − ω2′α2′ ;

i1 − ω1α1, i2 − ω2α2),

��
i1i2 (1′, 2′; 1, 2) = −α2′α2�

�
i1i2 (ω1′α1′ ,−ω2ᾱ2;

ω1α1,−ω2′ ᾱ2′ ). (52)

The first two symmetry relations have already been discussed
in the previous section. The third relation is a combination
of Eqs. (32) and (38). The fourth relation is a combination
of Eqs. (32) and (40). The last relation is equivalent to
Eq. (32). By combining these symmetries with the vertex
parametrizations, one recovers the symmetry constraints on
the basis functions as listed in Eq. (14).

In this form, however, the symmetries are more convenient
to verify on the level of the flow equations. This is done
by inserting the symmetry relations (52) into the FRG flow
equations, given in Eqs. (5) and (6), and confirming that
the derivative of the vertices has the same symmetry as
the vertices themselves—the explicit calculation is provided
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FIG. 2. DM interactions on the kagome lattice. On each lattice
bond, the orientation of the DM coupling (Dez + D′di j ) · (Si × S j )
is defined by the black arrows pointing from site i to j. The orien-
tation of the in-plane component of the DM vectors is different for
up-pointing and down-pointing triangles, as indicated by the gray
arrows. The vectors ez and di j have unit length.

in Appendix B. This insight proves, by induction, that the
symmetries are preserved throughout the entire RG flow.

VI. APPLICATION TO KAGOME MAGNETS

To illustrate the numerical efficiency of the symmetry-
constrained pf-FRG scheme introduced in the discussion of
the previous Sections, we apply it to the spin-1/2 Heisenberg
antiferromagnet on the kagome lattice augmented by a general
(in-plane and out-of-plance) Dzyaloshinskii-Moriya (DM) ex-
change. This general form of an off-diagonal DM interaction
requires to make full use of the symmetry constraints intro-
duced above and was previously beyond the numerical scope
of the pf-FRG approach.

Explicitly, the microscopical model of interest is captured
by the Hamiltonian∑

〈i, j〉
J Si · S j + (Dez + D′di j ) · (Si × S j ), (53)

where the DM vectors Dez + D′di j have an out-of-plane com-
ponent D and an in-plane component D′ whose orientation
[41] is defined according to Fig. 2. The strength of the anti-
ferromagnetic Heisenberg interaction in given by a positive
J > 0. The physical motivation to study Hamiltonian (53)
originates, for instance, from the microscopics of the spin
liquid candidate material herbertsmithite [26]. For this ma-
terial, it has been argued that the dominant antiferromagnetic
nearest-neighbor interaction of Heisenberg type is accompa-
nied by a sub-dominant DM interaction, which indeed exhibits
in-plane and out-of-place components [24,25], as schemati-
cally illustrated in Fig. 2.

In our numerical pf-FRG calculations for this model sys-
tem, we typically consider a finite lattice geometry that ex-

D�J�0 �N �66�

D�J�0 �N �144�

D�J�0.5 �N �66�

D�J�0.5 �N �144�

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

cutoff

su
sc
ep
tib
ili
ty
�q
m
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�

FIG. 3. Breakdown scale of the smooth renormalization group
flow. The susceptibility is plotted at the point qmax in momentum
space, where it is largest. A phase transition into a magnetically
ordered state is indicated by a breakdown of the smooth flow (black
arrows). The breakdown scale is resolved sufficiently well at Nω =
144. Lower resolution of the frequency mesh, Nω = 66, introduces
additional numerical uncertainty, which manifests in the form of
oscillations on top of the susceptibility flow, making the precise
determination of the breakdown scale more difficult.

tends seven bond lengths in every direction, and correlations
are truncated beyond this range. Note that such a truncation
scheme does not introduce an artificial finite-size boundary
to the lattice, but it can rather be understood similar to a
series expansion that eventually converges, upon increasing
the cutoff range, to the thermodynamic value [42]. We make
use of the full set of lattice symmetries, including nontrivial
symmetries that allow us to map any lattice site onto an
arbitrary fixed reference site as detailed in Sec. III C. Note
that, despite the model explicitly breaking inversion symmetry
of the lattice, mappings between different basis sits on the
lattice are still possible by augmenting lattice transformations
with rotations in spin space. We model the frequency depen-
dence by a set of discrete frequencies arranged symmetrically
around zero and interpolate linearly in between the mesh
points. In our calculations, we use between Nω = 66 and Nω =
144 frequency points on a logarithmic scale with positive
values lying in the range between ωmin = 0.001 and ωmax =
250. Employing the symmetry relations listed in Eq. (14), it is
sufficient to consider only positive frequencies, resulting in a
total number of up to 3.7 × 108 coupled differential equations
that need to be solved per set of coupling constants. The flow
equations are reasonable well-behaved, such that they can be
solved by means of the Euler scheme. We approximate the
cutoff dependence by an exponential mesh with a step size
�n+1 = 0.98�n in the range of �min = 0.01 and �max = 500.

We first consider the case where the in-plane component of
the DM interaction vanishes, i.e., D′ = 0. It has been estab-
lished in previous studies [23] that the spin liquid state, which
nucleates around the unperturbed kagome Heisenberg anti-
ferromagnet (KHAFM), remains stable under weak out-of-
plane DM interactions up to approximately D/J ≈ 0.1. Our
calculations for this scenario with purely out-of-plane DM
interactions, summarized in Figs. 3–5, confirm these findings.
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classical model
quantum model

�1.0 �0.5 0.0 0.5 1.0

0.0
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D�J

T c
�J

FIG. 4. Transition temperature into the ordered state as a func-
tion of the out-of-plane DM coupling D (in-plane coupling D′ is set to
zero). In the quantum model, a stable nonmagnetic phase exists (the
kagome antiferromagnet), that is not present in the classical model.
The classical results are taken from Ref. [43].

As shown in Fig. 3, we find that below the critical coupling
a smooth evolution of the susceptibility flow is found down
to zero cutoff, indicating the existence of a low-temperature
spin liquid regime. If the DM coupling exceeds the critical
value, a breakdown of the smooth flow indicates the onset of
spontaneous symmetry breaking, and the system undergoes a
magnetic ordering transition. From the breakdown scale, we
can extract an estimate for the transition temperature Tc =
π
2 �c [33] and determine the finite-temperature phase diagram
of the model, see Fig. 4. While the static structure factor

χ (q) = 1

N2

∑
i, j

eiq(ri−r j )
〈
Sz

i Sz
j

〉
, (54)

is featureless for the KHAFM (i.e., for D = 0) and shows
no signs of magnetic order, the structure factor for finite
out-of-plane DM interactions shows clear maxima at positions
that are associated with q = 0 order, see the two panels of
Fig. 5. Away from the spin liquid regime, we therefore find
the same type of magnetic order that is known to proliferate
in the classical model [43]. The transition temperature, as
compared to the classical model, is slightly lowered in the
presence of quantum fluctuations, as documented by the direct
comparison in Fig. 4.

As we tune the in-plane DM interaction to finite values
D′/J > 0, we can again ask about the stability of the spin
liquid phase. We find that the spin liquid indeed persists even
when D′ is of similar strength as the Heisenberg coupling.
However, once we include also out-of-plane DM interactions,
the precise location of the phase boundary between the spin
liquid phase and the magnetically ordered phase is shifted
depending on the value of D′, see Fig. 6 for a complete
ground state phase diagram as a function of the in-plane and
out-of-plane DM coupling strengths D′ and D, respectively.
Initially, the phase boundary is symmetric around D = 0, but
at finite in-plane components |D′| > 0, the transition points
are shifted towards smaller D. Such a bending of the phase
boundaries has already been seen in the classical model,
where the spin liquid phase is not present. Instead, there is a

(a) (b)

FIG. 5. Structure factors (a) in the spin liquid phase at D/J = 0
and (b) in the magnetically ordered phase at D/J = 1 (in-plane
coupling D′ is set to zero in both figures). The solid black line
denotes the extended Brillouin zone, the dashed line indicates the
first Brillouin zone.

direct transition between two magnetically ordered phases of
q = 0 type that differ in their chirality [43]. Unfortunately, the
direct measurement of the spin chirality χi jk = Si · (S j × Sk ),
where i, j, and k are sites on an elementary triangle, is not
possible in pf-FRG calculations, as it breaks time reversal
symmetry and involves three spin operators.

FIG. 6. Phase diagram of the full Hamiltonian with out-of-plane
DM interaction D and in-plane DM interaction D′. Blue color indi-
cates the region where no magnetic ordering transition is observed
down to zero temperature. The approximate phase boundaries are
indicated by the dashed lines. The frequency resolution is Nω = 66,
which leads to an error bar of the phase boundary of approximately
D/J ± 0.1, as indicated by the shaded region (typically, lower fre-
quency resolution in pf-FRG tends to overestimate paramagnetic
regions, cf. Fig. 3). The white and gray stars indicate estimates of the
coupling constants in herbertsmithite as determined in Refs. [24,25],
respectively.
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For herbertsmithite, the strength of the DM interactions has
been estimated in electron spin resonance measurements [24]
to be D/J ≈ 0.08 and D′/J ≈ 0.01. Other model calculations
that focus on reproducing the thermodynamic properties of
the material report similar out-of-plane DM interactions, but
more sizable in-plane interactions of up to D′/J ≈ 0.3 [25].
Regardless of the actual size of the in-plane couplings, our
calculations imply that any finite in-plane DM interaction
pushes the system closer towards the ordered q = 0 state and
hence is compatible with the weak maxima that have been
measured in inelastic neutron scattering measurements [44]
of the structure factor at points that are associated with q = 0
order.

VII. CONCLUSIONS

To summarize, we have generalized the pf-FRG method
such that arbitrary spin-anisotropic models with two-body ex-
change couplings may be efficiently handled. Particularly, our
approach allows to numerically treat off-diagonal � interac-
tions that have been discussed in the context of various Kitaev
materials and general Dzyaloshinskii-Moriya exchanges even
in the case where no continuous spin-rotation symmetries are
present. The main difficultly of this generalization concerns
the appearance of new spin components of the fermionic two-
particle vertex and, as a consequence, an enormous growth
of the complexity of the RG flow equations. We have demon-
strated, based on a detailed symmetry analysis and an efficient
parametrization of the vertex functions, that the complexity
can be limited to a degree that only leads to moderate increase
of the computational costs as compared to spin isotropic
systems. Key simplifications of the RG equations are achieved
by exploiting combinations of time reversal symmetry and an
SU(2) gauge redundancy that is intimately connected to the
pseudofermionic representation of the original spin operators.
Due to a subtle interplay of these properties, the fermionic
self-energy assumes a simple diagonal form in its spin vari-
ables and the two-particle vertex satisfies various symmetries
in its frequency arguments resulting in an overall drastic
reduction of numerical complexity.

As a first demonstration of its capabilities we have ap-
plied our generalized pf-FRG approach to an anisotropic
spin system on the kagome lattice with nearest neighbor
Heisenberg exchange J as well as in-plane and out-of-plane
Dzyaloshinskii-Moriya interactions D′ and D, respectively.
Our main finding is that the well-known nonmagnetic phase of
the J-only model is readily destabilized into q = 0 magnetic
order by rather small out-of-plane DM interactions D/J ≈
0.1, while the inclusion of in-plane DM components leaves
this phase largely intact.

It is worth highlighting again that our pf-FRG algorithm is
applicable to general anisotropic two-body spin interactions
and, hence, provides a flexible methodological framework for
the investigation of an abundance of spin systems. For exam-
ple, the currently investigated Kitaev candidate materials have
been proposed to harbor the full range of symmetry-allowed
exchange couplings including Kitaev, �, and Dzyaloshinskii-
Moriya interactions which now become amenable to a numer-
ical pf-FRG analysis. Another possible future research direc-
tion are anisotropic spin interactions for pyrochlore quantum

magnets, which exhibit a rich phenomenology such as the
emergent electrodynamics in quantum spin ice systems. Ul-
timately, even though computationally costly, it will also be
worth further expanding the scope of the pf-FRG by including
finite magnetic fields which, e.g., will allow one to investigate
field induced quantum spin liquids.
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APPENDIX A: SYMMETRIES OF THE
PSEUDOFERMION HAMILTONIAN

1. Local U(1) symmetry

In this Appendix, we present additional details on the
derivation of symmetry constraints for the vertex parametriza-
tion. The action of the local U(1) symmetry is defined as

gϕi

(
f †
iα

fiα

)
g−1

ϕi
=

(
eiϕi f †

iα

e−iϕi fiα

)
, (A1)

i.e., the transformation simply acts by multiplying the pseud-
ofermion operators on lattice site i with a phase factor of ϕi.
In the notation that we are using throughout this section, the
index i refers to a lattice site (we use the letter i to denote
lattice sites since it is a common notation in literature, but
the latter is simultaneously also being used as a symbol for
the imaginary unit—in such cases of double use the meaning
should be clear to the reader from the context), and the
index α denotes spin. Applying this transformation to an
arbitrary pseudofermion Hamiltonian leaves the Hamiltonian
invariant. This is how it should be, since we are explicitly
discussing a subgroup of the larger SU(2) gauge redundancy,
whose existence we have confirmed earlier in Eq. (20) of the
main text. In the current representation of spin operators, the
invariance is easily seen from the fact that each single spin
operator transforms as

gϕi S
μ
i g−1

ϕi
= gϕi

(
1
2 f †

iασ
μ
αβ fiβ

)
g−1

ϕi

= ei(ϕi−ϕi )
(

1
2 f †

iασ
μ
αβ fiβ

)
= Sμ

i . (A2)

Now, we examine the effect of the transformation on a two-
point correlator. Consider to this end the correlation function
(note that throughout the entire chapter we are only going
to consider correlators of an equal number of creation and
annihilation operators, see below)

〈 f †
i′τ ′α′ fiτα〉 =: G(i′τ ′α′; iτα). (A3)

Two remarks are in order at this point. First of all, we
have introduced an imaginary-time dependence, denoted by
the additional index τ . Moreover, our labeling suggests that
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we are dealing with the Green’s function of the system. Yet,
we slightly deviate from the conventional notion of a Green’s
function which would include time ordering on the imaginary
time axis. We suppress time ordering, since we are ultimately
interested in the implementation of symmetries in functional
integral constructions, where time ordering becomes trivial
after replacing fermionic operators with Grassmann numbers.
We may now apply the symmetry transformation to the corre-
lator, which yields〈

gϕi′ gϕi f †
i′τ ′α′ fiταg−1

ϕi
g−1

ϕi′

〉 = ei(ϕi′ −ϕi )〈 f †
i′τ ′α′ fiτα〉, (A4)

which, upon Fourier transformation to Matsubara frequency
space, becomes〈

gϕi′ gϕi f †
i′ω′α′ fiωαg−1

ϕi
g−1

ϕi′

〉 = ei(ϕi′ −ϕi )〈 f †
i′ω′α′ fiωα〉. (A5)

Since the transformation is a symmetry of the Hamiltonian,
the correlator must be invariant under the transformation. For
this to hold for arbitrary phase factors, the correlator has to be
zero for i′ �= i. In a similar way, we may now investigate the
four-point correlators. To keep the notation simple, we intro-
duce composite indices, n := (in, ωn, αn), that simultaneously
represent lattice site, Matsubara frequency, and spin index.
We shall use this notation whenever suitable, but we may also
fall back to explicitly stating all three indices separately when
necessary. We define the four-point correlator as

〈 f †
1′ f †

2′ f1 f2 〉 =: G(1′, 2′; 1, 2). (A6)

In analogy to the two-point correlators, their transformation
behavior under local U(1) is given by〈

gϕi1′ gϕi2′ gϕi1
gϕi2

f †
1′ f †

2′ f1 f2 g−1
ϕi2

g−1
ϕi1

g−1
ϕi2′

g−1
ϕi1′

〉
= ei(ϕi1′ +ϕi2′ −ϕi1 −ϕi2 )〈 f †

1′ f †
2′ f1 f2 〉. (A7)

In order for the phase factor to vanish, we have to impose
bilocality, meaning that the two incoming lattice sites (by
incoming indices we mean those of annihilation operators)
have to match the two outgoing lattice sites (by outgoing
we refer to properties of creation operators). This leaves two
nonzero combinations of lattice site indices: either we pair up
sites i1′ and i1 as well as i2′ and i2 or we match i2′ and i1 as
well as i1′ and i2.

2. Local particle-hole symmetry

The action of the local particle-hole symmetry is given by

gi

(
f †
iα

fiα

)
g−1

i =
(

α fiᾱ

α f †
iᾱ

)
. (A8)

The transformation locally exchanges creation and annihila-
tion operators and reverses the spin. Note that unlike a phys-
ical particle-hole symmetry, however, this transformation is
not antiunitary. This symmetry is a subset of the SU(2) gauge
redundancy and therefore holds for every pseudofermion
Hamiltonian. When considering the action of the symmetry
transformation on correlators, we note that the transformation
acts trivially on the imaginary time index, as can be seen in the
Heisenberg picture of operators. For a two-point correlator,
the symmetry operation implies〈

gi′gi f †
i′τ ′α′ fiταg−1

i g−1
i′

〉 = −α′α〈 f †
iτ ᾱ fi′τ ′ᾱ′ 〉, (A9)

where we assumed that the transformation is applied to both
lattice sites involved. Fourier transformation yields the coun-
terpart in frequency space,〈

gi′gi f †
i′ω′α′ fiωαg−1

i g−1
i′

〉 = −α′α〈 f †
i−ωᾱ fi′−ω′ᾱ′ 〉. (A10)

We now discuss the symmetry of bilocal four-point correlators
[as a consequence of local U(1) symmetry, we have already
seen that the correlator can only be nonzero when lattice sites
are matched pairwise]. Here, the local particle-hole transfor-
mation can be applied separately to either one of the pairs of
lattice sites. Applying the transformation to lattice site i1, we
obtain 〈

gi1 f †
i1τ1′α1′ f †

i2τ2′α2′ fi1τ1α1
fi2τ2α2

g−1
i1

〉
= −α1′α1

〈
f †
i1τ1ᾱ1

f †
i2τ2′α2′ fi1τ1′ ᾱ1′ fi2τ2α2

〉
, (A11)

which, upon Fourier transformation, becomes〈
gi1 f †

i1ω1′α1′ f †
i2ω2′α2′ fi1ω1α1

fi2ω2α2
g−1

i1

〉
= −α1′α1

〈
f †
i1−ω1ᾱ1

f †
i2ω2′α2′ fi1−ω1′ ᾱ1′ fi2ω2α2

〉
. (A12)

Analogously, a second relation can be obtained from applying
the symmetry relation to lattice site i2,〈

gi2 f †
i1ω1′α1′ f †

i2ω2′α2′ fi1ω1α1
fi2ω2α2

g−1
i2

〉
= −α2′α2

〈
f †
i1ω1′α1′ f †

i2−ω2ᾱ2
fi1ω1α1

fi2−ω2′ ᾱ2′

〉
. (A13)

3. Lattice symmetries

Lattice symmetries only act on the lattice site index. On the
space of pseudofermions, they can be implemented as

gT

(
f †
iα

fiα

)
g−1

T =
(

f †
T (i)α

fT (i)α

)
, (A14)

where T is a lattice automorphism, which maps the lattice
onto itself. Applied to a two-point correlation function, it acts
as 〈

gT f †
i′τ ′α′ fiταg−1

T

〉 = 〈 f †
T (i′ )τ ′α′ fT (i)τα〉, (A15)

which, upon Fourier transformation, becomes〈
gT f †

i′ω′α′ fiωαg−1
T

〉 = 〈 f †
T (i′ )ω′α′ fT (i)ωα〉. (A16)

On the bilocal four-point correlator, it acts as〈
gT f †

i1τ1′α1′ f †
i2τ2′α2′ fi1τ1α1

fi2τ2α2
g−1

T

〉
= 〈

f †
T (i1 )τ1′α1′ f †

T (i2 )τ2′α2′ fT (i1 )τ1α1
fT (i2 )τ2α2

〉, (A17)

which is equivalent to the frequency dependent expression〈
gT f †

i1ω1′α1′ f †
i2ω2′α2′ fi1ω1α1

fi2ω2α2
g−1

T

〉
= 〈

f †
T (i1 )ω1′α1′ f †

T (i2 )ω2′α2′ fT (i1 )ω1α1
fT (i2 )ω2α2

〉
. (A18)

4. Time-reversal symmetry

On pseudofermion operator level, time-reversal symmetry
is implemented by the antiunitary mapping

g

(
f †
iα

fiα

)
g−1 =

(
eiπα/2 f †

iᾱ

e−iπα/2 fiᾱ

)
, (A19)

125164-12



FUNCTIONAL RENORMALIZATION GROUP … PHYSICAL REVIEW B 100, 125164 (2019)

where the antilinearity ensures that for all spin operators
gSμg−1 = −Sμ. The transformation acts on the two-point
correlator as

〈gf †
i′τ ′α′ fiταg−1〉∗ = eiπ (α−α′ )/2〈 f †

i′τ ′ᾱ′ fiτ ᾱ〉∗ = α′α〈 f †
i′τ ′ᾱ′ fiτ ᾱ〉∗,

(A20)

where the star denotes complex conjugation and we have
used that for a Hamiltonian, which is invariant under the
antiunitary transformation g, the thermal expectation value of
an operator A transforms as 〈A〉 → 〈gAg−1〉∗. Furthermore,
we have rewritten the resulting phase factors as eiπ (α−α′ )/2 =
α′α. Fourier transformation of the expression yields

〈gf †
i′ω′α′ fiωαg−1〉∗ = α′α〈 f †

i′−ω′ᾱ′ fi−ωᾱ〉∗. (A21)

This symmetry is particularly helpful, because it links the real
part and the imaginary part of the correlator (when comparing
to the nontransformed expression). Although generically the
correlator may be a complex number, time-reversal symmetry
thus opens up the possibility to parametrize the two-point
correlator by a real number instead of a complex number (or
a pair of real numbers). Now we turn to the transformation
behavior of the four-point correlator. The symmetry transfor-
mation of a bilocal four-point correlator is given by〈

gf †
i1τ1′α1′ f †

i2τ2′α2′ fi1τ1α1
fi2τ2α2

g−1
〉∗

= eiπ (α1+α2−α1′ −α2′ )/2〈 f †
i1τ1′ ᾱ1′ f †

i2τ2′ ᾱ2′ fi1τ1ᾱ1
fi2τ2ᾱ2

〉∗
= α1′α2′α1α2

〈
f †
i1τ1′ ᾱ1′ f †

i2τ2′ ᾱ2′ fi1τ1ᾱ1
fi2τ2ᾱ2

〉∗
. (A22)

In Matsubara frequency space, the relation reads〈
gf †

i1ω1′α1′ f †
i2ω2′α2′ fi1ω1α1

fi2ω2α2
g−1〉∗

= α1′α2′α1α2
〈
f †
i1−ω1′ ᾱ1′ f †

i2−ω2′ ᾱ2′ fi1−ω1ᾱ1
fi2−ω2ᾱ2

〉∗
. (A23)

Just like for the two-point correlator, the symmetry can be
used to make a connection between the real and the imaginary
part of the correlator.

5. Hermitian symmetry

We assume that the Hamiltonian is Hermitian, i.e., in-
variant under a complex transposition. Since the correlation
functions are scalar numbers, complex transposition is equiv-
alent to complex conjugation, and we obtain for the two-point
correlator

〈 f †
i′ω′α′ fiωα〉∗ = 〈 f †

i′ω′α′ fiωα〉† = 〈 f †
i−ωα fi′−ω′α′ 〉. (A24)

For the four-point correlator, complex transposition yields

〈
f †
i1ω1′α1′ f †

i2ω2′α2′ fi1ω1α1
fi2ω2α2

〉∗
= 〈

f †
i1−ω1α1

f †
i2−ω2α2

fi1−ω1′α1′ fi2−ω2′α2′

〉
. (A25)

6. Green’s functions

In the previous sections, we have discussed the trans-
formation behavior of two-point and four-point correlation
functions. In the main text of the paper, we derive an efficient
parametrization of the effective action, based on combina-
tions of these symmetries. For better readability, we therefore
collect the individual symmetry relations. We also add to
the list (Matsubara) frequency conservation as a consequence
of translation invariance in imaginary time. Furthermore, we
include the trivial symmetry relation obtained from simulta-
neous exchange of both ingoing and outgoing particles. The
symmetries for the two-point correlation function are given by

G(i′ω′α′; iωα) = G(iω′α′; iωα)δi′i (local U(1))
G(i′ω′α′; iωα) = −α′αG(i − ωᾱ; i′ − ω′ᾱ′) (local PH)
G(i′ω′α′; iωα) = G(T (i′)ω′α′; T (i)ωα) (lattice)
G(i′ω′α′; iωα) = α′αG(i′ − ω′ᾱ′; i − ωᾱ)∗ (time reversal)
G(i′ω′α′; iωα) = G(i − ωα; i′ − ω′α′)∗ (hermiticity)
G(i′ω′α′; iωα) = G(iω′α′; iωα)δω′ω (energy conservation)

The list of symmetries for the four-point correlator comprises

G(1′, 2′; 1, 2) = G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 − G(2′, 1′; 1, 2)δi2′ i1δi1′ i2 (local U(1))
G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 = −α1′α1G(i1 − ω1ᾱ1, i2ω2′α2′ ; i1 − ω1′ ᾱ1′ , i2ω2α2) (local PH 1)
G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 = −α2′α2G(i1ω1′α1′ , i2 − ω2ᾱ2; i1ω1α1, i2 − ω2′ ᾱ2′ ) (local PH 2)
G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 = G(T (i1)ω1′α1′ , T (i2)ω2′α2′ ; T (i1)ω1α1, T (i2)ω2α2) (lattice)
G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 = α1′α2′α1α2G(i1 − ω1′ ᾱ1′ , i2 − ω2′ ᾱ2′ ; i1 − ω1ᾱ1, i2 − ω2ᾱ2)∗ (time reversal)
G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 = G(i1 − ω1α1, i2 − ω2α2; i1 − ω1′α1′ , i2 − ω2′α2′ )∗ (hermiticity)
G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 = G(1′, 2′; 1, 2)δi1′ i1δi2′ i2δw1′+w2′−w1−w2 (energy conservation)
G(1′, 2′; 1, 2)δi1′ i1δi2′ i2 = G(2′, 1′; 2, 1)δi1′ i1δi2′ i2 (particle exchange).

APPENDIX B: SYMMETRIES OF FLOW EQUATIONS

We will now explicitly show that the symmetries of the
vertices stated in Sec. V are indeed preserved during the �

flow. The following proofs are performed by induction, i.e.,
we assume that all symmetries are satisfied for the vertices

on right-hand sides of the flow equations and then show that
the derivative of the vertex on the left-hand side fulfills the
symmetries as well. The initial step of the induction proof
amounts to confirming that the symmetries are also obeyed in
the initial conditions. Since this is trivial to show, we will omit
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this step. Note that our proofs are performed simultaneously
for the two-particle vertex and for the self-energy; hence,
when we show the symmetries for the two-particle vertex we
may already assume the symmetries for the self-energy and
vice versa.

For reasons of brevity and since it has already been dis-
cussed in sufficient detail in the main text, we will not prove
the condition in the first two lines of Eq. (14) again, according
to which the two-particle vertex is either purely real or purely
imaginary. Furthermore, we will not show the antisymmetry
of the self-energy in the frequency argument and the fact that
the self-energy is purely imaginary. Both properties follow
straightforwardly from the flow equation for the self-energy.
Therefore it only remains to be shown that the self-energy is
proportional to δα1′α1 in spin space.

We start with the proofs for the two-particle vertex symme-
tries as given in Eq. (52). Our proofs here are similar to those
presented in Ref. [45]. To start with, the symmetry

��(1′, 2′; 1, 2) = ��(2′, 1′; 2, 1) (B1)

is obvious, since it only amounts to exchanging the ingoing
and outgoing particles.

We continue proving the property

��(1′, 2′; 1, 2) = ��(1, 2; 1′, 2′)∗ . (B2)

The induction is performed by first writing down the flow
equation for ��(1, 2; 1′, 2′)∗ and then manipulating the right-
hand side,

d

d�
��(1, 2; 1′, 2′)∗ = 1

2π

∑
3,4

[��(1, 2; 3, 4)∗��(3, 4; 1′, 2′)∗ − ��(1, 4; 1′, 3)∗��(3, 2; 4, 2′)∗ − (3 ↔ 4)

+ ��(2, 4; 1′, 3)∗��(3, 1; 4, 2′)∗ + (3 ↔ 4)]G�(ω3)∗S�(ω4)∗

(I)= 1

2π

∑
3,4

[��(1′, 2′; 3, 4)��(3, 4; 1, 2) − ��(1′, 3; 1, 4)��(4, 2′; 3, 2) − (3 ↔ 4)

+ ��(4, 2′; 3, 1)��(1′, 3; 2, 4) + (3 ↔ 4)]G�(ω3)S�(ω4)

(II)= 1

2π

∑
3,4

[��(1′, 2′; 3, 4)��(3, 4; 1, 2) − ��(1′, 4; 1, 3)��(3, 2′; 4, 2) − (3 ↔ 4)

+ ��(2′, 4; 1, 3)��(3, 1′; 4, 2) + (3 ↔ 4)]G�(ω3)S�(ω4)

= d

d�
��(1′, 2′; 1, 2). (B3)

In step I, we used Eq. (B2), exchanged the orders of the two-particle vertices and used the property that the propagators are
purely imaginary. In step II, we used Eq. (B1) in the last line.

Next, we prove

��(1′, 2′; 1, 2) = ��(−1′,−2′; −1,−2), (B4)

where −n = {in,−ωn, αn} indicates that the sign of the frequency argument is flipped. The induction proof is performed in the
same way as before,

d

d�
��(−1′,−2′; −1,−2) = 1

2π

∑
3,4

[��(−1′,−2′; 3, 4)��(3, 4; −1,−2) − ��(−1′, 4; −1, 3)��(3,−2′; 4,−2) − (3 ↔ 4)

+ ��(−2′, 4; −1, 3)��(3,−1′; 4,−2) + (3 ↔ 4)]G�(ω3)S�(ω4)

(I)= 1

2π

∑
3,4

[��(1′, 2′; −3,−4)��(−3,−4; 1, 2) − ��(1′,−4; 1,−3)��(−3, 2′; −4, 2) − (3 ↔ 4)

+ ��(2′,−4; 1,−3)��(−3, 1′; −4, 2) + (3 ↔ 4)]G�(ω3)S�(ω4)

(II)= d

d�
��(1′, 2′; 1, 2). (B5)

In step I, we used Eq. (B4) and in (II), the frequencies ω3 and ω4 have been substituted by −ω3 and −ω4. We also used the fact
that the propagators are odd in frequency.

The last symmetry

��
i1i2 (1′, 2′; 1, 2) = −α2′α2�

�
i1i2 (1′, 2̄; 1, 2̄′) (B6)

is formulated for the vertex ��
i1i2 (1′, 2′; 1, 2) which is related to ��(1′, 2′; 1, 2) via

��(1′, 2′; 1, 2) = ��
i1i2 (1′, 2′; 1, 2)δi1′ i1δi2′ i2 − ��

i1i2 (2′, 1′; 1, 2)δi2′ i1δi1′ i2 . (B7)
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Note that here the arguments 1′, 2′, etc. only include the frequency and the spin index but not the site. Furthermore, we use the
notation n̄ = {−ωn, ᾱn}. The flow equation for ��

i1i2 (1′, 2′; 1, 2) has the form

d

d�
��

i1i2 (1′, 2′; 1, 2) = 1

2π

∑
3,4

⎡
⎣��

i1i2 (1′, 2′; 3 , 4 )��
i1i2 (3 , 4 ; 1 , 2 ) + (3 ↔ 4) −

∑
j

��
i1 j (1

′, 4; 1, 3)��
ji2 (3, 2′; 4, 2) − (3 ↔ 4)

+ ��
i1i2 (1′, 4; 1, 3)��

i2i2 (3, 2′; 2, 4) + (3 ↔ 4) + ��
i1i1 (1′, 4; 3, 1)��

i1i2 (3, 2′; 4, 2) + (3 ↔ 4)

+��
i2i1 (2′, 4; 3, 1)��

i2i1 (3, 1′; 2, 4) + (3 ↔ 4)

⎤
⎦G�(ω3)S�(ω4). (B8)

The following proof is most conveniently carried out by considering the different channels of the flow equation individually. We
label the five channels on the right-hand side by the letters a to e, according to their order in the flow equation. We start with the
particle-particle and crossed particle-hole channel:

−α′
2α2

d

d�
��,a+e

i1i2
(1′, 2̄; 1, 2̄′)

= − 1

2π

∑
3,4

α2′α2
[
��

i1i2 (1′, 2̄; 3, 4)��
i1i2 (3, 4; 1, 2̄′) + (3 ↔ 4) + ��

i2i1 (2̄, 4; 3, 1)��
i2i1 (3, 1′; 2̄′, 4) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

(I)= − 1

2π

∑
3,4

α2′α2
[
��

i1i2 (1′, 2̄; 3, 4)��
i1i2 (3, 4; 1, 2̄′) + (3 ↔ 4) + ��

i1i2 (4, 2̄; 1, 3)��
i1i2 (1′, 3; 4, 2̄′) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

(II)= − 1

2π

∑
3,4

α2′α2
[
��

i1i2 (1′, 4̄; 3, 2)��
i1i2 (3, 2′; 1, 4̄)(−α2)α4α4(−α2′ ) + (3 ↔ 4)

+ ��
i1i2 (4, 3̄; 1, 2)��

i1i2 (1′, 2′; 4, 3̄)(−α2)α3α3(−α2′ ) + (3 ↔ 4)
]
G�(ω3)S�(ω4)

(III)= 1

2π

∑
3,4

[
��

i1i2 (1′, 4; 3, 2)��
i1i2 (3, 2′; 1, 4) + (3 ↔ 4) + ��

i1i2 (4, 3; 1, 2)��
i1i2 (1′, 2′; 4, 3) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

(IV)= 1

2π

∑
3,4

[
��

i2i1 (4, 1′; 2, 3)��
i2i1 (2′, 3; 4, 1) + (3 ↔ 4) + ��

i1i2 (4, 3; 1, 2)��
i1i2 (1′, 2′; 4, 3) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

= d

d�
��,a+e

i1i2
(1′, 2′; 1, 2). (B9)

In steps I and IV we used Eq. (B1) and in step II, we applied Eq. (B6). The product of spins reduces to one. Step III transforms
the arguments 3̄ and 4̄ to 3 and 4 making use of the antisymmetry of the propagators in the frequency argument. We continue
with one of the particle-hole terms:

−α2′α2
d

d�
��,c

i1i2
(1′, 2̄; 1, 2̄′) = − 1

2π

∑
3,4

α2′α2
[
��

i1i2 (1′, 4; 1, 3)��
i2i2 (3, 2̄; 2̄′, 4) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

(I)= − 1

2π

∑
3,4

α2′α2
[
��

i1i2 (1′, 3̄; 1, 4̄)��
i2i2 (3, 4̄; 2̄′, 2)α4α3(−α2)α4 + (3 ↔ 4)

]
G�(ω3)S�(ω4)

(II)= − 1

2π

∑
3,4

α2′α2
[
��

i1i2 (1′, 3̄; 1, 4̄)��
i2i2 (4̄, 3; 2, 2̄′)α3(−α2) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

(III)= 1

2π

∑
3,4

α2′α2
[
��

i1i2 (1′, 3̄; 1, 4̄)��
i2i2 (4̄, 2′; 2, 3̄)α3(−α2′ )α3(−α2) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

= 1

2π

∑
3,4

[
��

i1i2 (1′, 3; 1, 4)��
i2i2 (4, 2′; 2, 3) + (3 ↔ 4)

]
G�(ω3)S�(ω4)

= d

d�
��,c

i1i2
(1′, 2′; 1, 2). (B10)
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Here steps I and III exploit Eq. (B6), whereas step II uses Eq. (B1). Finally, we treat the remaining two particle-hole channels:

− α2′α2
d

d�
��,b+d

i1i2
(1′, 2̄; 1, 2̄′)

= − 1

2π

∑
3,4

α2′α2

⎡
⎣−

∑
j

��
i1 j (1

′, 4; 1, 3)��
ji2 (3, 2̄; 4, 2̄′) − (3 ↔ 4)

+ ��
i1i1 (1′, 4; 3, 1)��

i1i2 (3, 2̄; 4, 2̄′) + (3 ↔ 4)

⎤
⎦G�(ω3)S�(ω4)

= 1

2π

∑
3,4

α2′α2

⎡
⎣−

∑
j

��
i1 j (1

′, 4; 1, 3)��
ji2 (3, 2′; 4, 2)(−α2)(−α2′ ) − (3 ↔ 4)

+��
i1i1 (1′, 4; 3, 1)��

i1i2 (3, 2′; 4, 2)(−α2)(−α2′ ) + (3 ↔ 4)

⎤
⎦G�(ω3)S�(ω4)

= d

d�
��,b+d

i1i2
(1′, 2′; 1, 2). (B11)

We have only used Eq. (B6) in this proof. This concludes our proofs for the symmetry properties of the two-particle vertices.
We finally show that the self-energy is proportional to δα1′ α1 in spin space. Since it will be needed below, we first express the

symmetries of the two-particle vertex using the parametrization of Eq. (12),

�
μν
i1i2

(ω1′ , ω2′ ; ω1, ω2) = �
νμ
i2i1

(ω2′ , ω1′ ; ω2, ω1), �
μν
i1i2

(ω1′ , ω2′ ; ω1, ω2) = �
μν
i1i2

(ω1, ω2; ω1′ , ω2′ )∗,

�
μν
i1i2

(ω1′ , ω2′ ; ω1, ω2) = �
μν
i1i2

(−ω1′ ,−ω2′ ; −ω1,−ω2), �
μν
i1i2

(ω1′ , ω2′ ; ω1, ω2) = −ξ (ν)�μν
i1i2

(ω1′ ,−ω2; ω1,−ω2′ ) , (B12)

where the relations appear in the same order as in Eq. (52). Using the fact that the two-particle vertices are either purely real or
purely imaginary [see Eq. (14)] these conditions directly lead to

�
μν,�
i1i2

(ω1, ω2; ω1, ω2) = �
μν,�
i1i2

(ω1, ω2; ω1, ω2)∗ ⇒ �
μ0,�
i1i2

(ω1, ω2; ω1, ω2) = �
0μ,�
i1i2

(ω1, ω2; ω1, ω2) = 0 for μ = 1, 2, 3

(B13)

and

�
μν,�
i1i1

(ω1, ω2; ω2, ω1) =�
μν,�
i1i1

(ω2, ω1; ω1, ω2)∗ = �
νμ,�
i1i1

(ω1, ω2; ω2, ω1)∗

⇒ �
μ0,�
i1i1

(ω1, ω2; ω2, ω1) = − �
0μ,�
i1i1

(ω1, ω2; ω2, ω1) for μ = 1, 2, 3

⇒ �
μν,�
i1i1

(ω1, ω2; ω2, ω1) =�
νμ,�
i1i1

(ω1, ω2; ω2, ω1) for μ, ν ∈ {1, 2, 3} or μ, ν = 0. (B14)

These relations will now be used to prove the diagonal form of the self-energy in its spin arguments as shown in Eq. (10). The
proof is based on the flow equation for the self-energy as given in Eq. (5) where the two-particle vertex on the right-hand side is
rewritten using the parametrization of Eq. (12). As before, our induction proof is performed by assuming that the symmetry to
be shown is fulfilled for the vertex functions on the right-hand side (i.e., that the self-energy is proportional to δα1′α1 in our case)
and then verifying that the symmetry also holds for the derivative on the left-hand side. The proof reads

d

d�
��(ω1, α1′ , α1)

= − 1

2π

∫
dω2

∑
α2

⎡
⎢⎢⎢⎣

∑
i2

�
μν,�
i1i2

(ω1, ω2; ω1, ω2)σμ
α1′α1

σ ν
α2α2

−

⎛
⎜⎜⎜⎝

∑
μ>ν

μ, ν �=0

�
μν,�
i1i1

(ω1, ω2; ω2, ω1)
(
σμ

α1′ α2
σ ν

α2α1
+ σ ν

α1′α2
σμ

α2α1

)

+
∑
μ �=0

�
μ0,�
i1i1

(ω1, ω2; ω2, ω1)
(
σμ

α1′α2
σ 0

α2α1
− σ 0

α1′α2
σμ

α2α1

) +
∑

μ

�
μμ,�
i1i1

(ω1, ω2; ω2, ω1)σμ
α1′α2

σμ
α2α1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦S�(ω2)

= − 1

2π

∫
dω2

[
2

∑
i2

�00,�
i1i2

(ω1, ω2; ω1, ω2) −
∑

μ

�
μμ,�
i1i1

(ω1, ω2; ω2, ω1))

]
δα1′ α1 S�(ω2). (B15)
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The first equation is just the flow equation for the self-energy
using the parametrization of Eq. (12). The right-hand side
of this equation has four terms which will be discussed
individually. [For convenience, the terms of the sum

∑
μν have

been split up in the second and third lines and the properties
of Eq. (B14) have been used in the second and third terms.]
The first term can be treated using Eq. (B13) and the fact

that the trace of Pauli matrices vanishes. One finds that only
the �00,� term remains in the last line. The second term
vanishes because {σμ, σ ν} = 2δμνσ

0 for μ, ν ∈ {1, 2, 3}. The
third term vanishes too and for the fourth term we use (σμ)2 =
σ 0. We, hence, observe that only terms proportional to δα1′ α1

survive. This concludes our proof that the spin arguments of
the self-energy satisfy the form given in Eq. (10).
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