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We discuss generalizations of quantum spin Hamiltonians using anyonic degrees of freedom. The
simplest model for interacting anyons energetically favors neighboring anyons to fuse into the trivial
(‘‘identity’’) channel, similar to the quantum Heisenberg model favoring neighboring spins to form spin
singlets. Numerical simulations of a chain of Fibonacci anyons show that the model is critical with a
dynamical critical exponent z � 1, and described by a two-dimensional (2D) conformal field theory with
central charge c � 7

10 . An exact mapping of the anyonic chain onto the 2D tricritical Ising model is given
using the restricted-solid-on-solid representation of the Temperley-Lieb algebra. The gaplessness of the
chain is shown to have topological origin.
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Non-Abelian anyons are exotic particles expected to
exist in certain fractional quantum Hall (FQH) states
[1,2]. A set of several anyons supports very robust collec-
tive states that are degenerate to exponential precision;
such states can potentially be used as quantum memory
and for quantum computation [3]. However, this degener-
acy can be lifted by a short-range interaction if the anyons
are very close to each other. As a first step towards under-
standing interacting anyons, we describe a simple, exactly
solvable model that is an anyonic analogue of the quantum
Heisenberg chain.

We start by considering the well-known Moore-Read
state [1], a candidate state, exhibiting non-Abelian statis-
tics, for the topological nature of FQH liquids at filling
fraction � � 5

2 . It has two important types of excitations:
quasiholes with electric charge e=4 and neutral fermions.
Quasiholes may be trapped by an impurity potential while
the fermions can still tunnel between them [4]. For a one-
dimensional (1D) array of trapped quasiholes, the
Hamiltonian can be described in terms of free Majorana
fermions on a lattice, which is in turn equivalent to the 1D
transverse field Ising model at the quantum phase transition
point. The more interesting model discussed here is based
on so-called ‘‘Fibonacci anyons,’’ which represent the non-
Abelian part of the quasiparticle statistics in the k � 3,
Zk-parafermion state [2], an effective theory for FQH
liquids at filling fraction � � 12

5 [5]. Even without parame-
ter fine-tuning, these 1D anyonic arrays will be shown to
exhibit gapless excitations due to topological symmetry.

Model.—Our model describes pairwise interactions
within an array of L anyons, for instance along a chain
as shown in Fig. 1(a). In the Fibonacci theory there are only
two types of particles: the Fibonacci anyon, denoted by �,
and the trivial particle denoted by 1 with a fusion rule ��
� � 1� �. We refer to the label 1 or � as the topological
charge. When two neighboring anyons interact, indicated

in the figure by the ellipses, they can either fuse in the
trivial channel, annihilating each other, or in the nontrivial
one, becoming a single � anyon [6]. We define our model
by assigning an energy gain if they fuse along the trivial
channel. This is an anyonic analogue of the spin- 1

2 quantum
Heisenberg antiferromagnet, which assigns an energy gain
to two neighboring spin- 1

2 fusing into a spin-0 singlet as
compared to a spin-1 triplet.

To define the Hilbert space we consider the treelike
fusion diagram in Fig. 1(b). The basis corresponds to all
admissible labelings jx1; x2; . . .i of the links, with xi � 1 or
�. Each label represents the combined topological charge
of the particles left to a given point. Not all possible values
(x1; x2; . . . ) represent allowed basis states due to the fusion
rules: a 1 must always be preceded and followed by a �,
since the fusion of a 1 and a � always gives a �. This
reduces the dimension of the Hilbert space of the open
chain (with � labels at the boundary) to the Fibonnacci
sequence dimL � FL�1, and for the periodic chain
dimL � FL�1 � FL�1. For large L it is well known that
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FIG. 1. (a) Illustration of the Fibonacci chain with L �-anyons.
(b) The fusion path. (c) Definition of the F matrix.
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these numbers grow at a rate dimL / ’L, where ’ � �1����
5
p
�=2 is the golden ratio. This Hilbert space has no natural

decomposition in the form of a tensor product of single-site
states, in contrast to SU�2� quantum spin chains.

To generate a local Hamiltonian H �
P
iHi assigning

an energy to the fusion of two neighboring � anyons we use
the so-called Fmatrix to transform the local basis as shown
in Fig. 1(c). In the transformed basis the state ~xi corre-
sponds to the fusion of the two anyons. The Hamiltonian is
then defined by assigning an energy E� � 0 for ~xi � �, and
E1 � �1 for ~xi � 1. The resulting local terms Hi contain
three-body interactions in the link basis,

 H ijxi�1xixi�1i �
X
x0i�1;�

�Hi�
x0i
xi jxi�1x

0
ixi�1i

with �Hi�
x0i
xi :� ��Fxi�1

xi�1���
1
xi�F

xi�1
xi�1���

1
x0i
:

(1)

It is diagonal in the subspace fjxi�1xixi�1ig �
fj1�1i; j1��i; j��1ig, Hi � diagf�1; 0; 0g, where the F
matrix is a number due to the constraints arising from the
fusion rules. For the case xi�1 � xi�1 � �, the F matrix
and the corresponding Hamiltonian are the following 2� 2
matrices (xi, x0i 2 f1; �g)

 F �
��� �

’�1 ’�1=2

’�1=2 �’�1

� �
; Hi � �

’�2 ’�3=2

’�3=2 ’�1

� �
:

(2)

The Hamiltonian can be written in terms of Pauli matrices:
 

Hi � �ni�1 � ni�1 � 1�

� ni�1ni�1�’
�3=2�xi � ’

�3ni � 1� ’�2�;

where the sum runs over the links of the chain. In this
expression, the operators ni count the �-particle occupation
on link i, ni �

1
2 �1� �

z
i � � 0, 1, and the Hamiltonian H

acts on the constrained Hilbert space defined above.
Central charge.—We simulated this model numerically,

and calculated the finite-size gap by exact diagonalization
using the ALPS libraries [7]. A finite-size analysis shows
that the gap vanishes linearly in 1

L , indicative of a critical
model with dynamical critical exponent z � 1 described
by a conformal field theory (CFT). The central charge c of
a CFT can be calculated from the finite-size scaling of the
entanglement entropy [8]. A density matrix renormaliza-
tion group method [9] calculation gives a central charge
estimate of c � 0:701� 0:001. Since possible (unitary)
CFTs in the vicinity of these estimates have central charges
[10] 1

2 , 7
10 , or 4

5 we can unambiguously conclude that our
results are consistent only with central charge c � 7

10 .
Mapping and exact solution.—We now proceed to de-

rive these results exactly. By construction 1
’Xi � �Hi is a

projector onto the trivial particle. One can then verify that
the operators Xi form a representation of the Temperley-
Lieb (TL) algebra [11]

 �Xi�
2 � dXi; XiXi�1Xi � Xi;

�Xi;Xj	 � 0 for ji� jj 
 2;
(3)

where the ‘‘d-isotopy’’ parameter equals the golden ratio,
d � ’. This representation can be seen to be identical to
the standard TL algebra representation associated with
SU�2�k at level k � 3. For an arbitrary integer k > 0, the
latter contains k� 1 anyon species labeled by j �
0; 1

2 ; 1; . . . ; k2 , satisfying the fusion rules of SU�2�k [12].
The operators ei defined by
 

e�i	jji�1jiji�1i �
X
j0i

�e�i	ji�1
ji�1
�
j0i
ji
jji�1j

0
iji�1i

and �e�i	ji�1
ji�1
�
j0i
ji
� �ji�1;ji�1

������������������
S0
ji
S0
j0i

S0
ji�1
S0
ji�1

vuuut
(4)

are known [13] to form a representation of the Temperley-
Lieb algebra (3) for any value of k, where jji � ji�1j �

1
2

and Sj
0

j :�
���������

2
�k�2�

q
sin�� �2j�1��2j0�1�

k�2 	 [14].

Our model can be cast into this form at k � 3 by first
mapping xi � 1! ji � 0, and xi � �! ji � 1, and then
applying the SU�2�3 fusion rule 3

2� j �
3
2� j to the even-

numbered sites. This maps any admissible labeling
jx1; x2; . . .i uniquely into jj1; j2; . . .i where for odd-
numbered sites j2i�1 2 f0; 1g, and for even-numbered sites
j2i 2 f

1
2 ;

3
2g. This relabeling maps the matrix elements of

Xi into those of ei from Eq. (4).
The Hamiltonian in Eq. (1) is that corresponding to a

standard (integrable) lattice model description of the clas-
sical 2D tricritical Ising model, known as the restricted-
solid-on-solid (RSOS) model [15]. Specifically, the two-
row transfer matrix T :� T2T1 of this lattice model, see
Fig. 2, is written in terms of Boltzmann weights W�i	
assigned to a plaquette i of the square lattice

 T 1 :�
Y
n

W�2n	 and T2 :�
Y
n

W�2n� 1	;

 with W�i	
~j0

~j
�

sin� �k�2� u	

sin �
k�2

1
~j0

~j
�

sinu
sin �

k�2

e�i	
~j0

~j
; (5)

where ~j � �j1; j2; . . .�. The parameter u > 0 is a measure
of the lattice anisotropy, 1 is the identity operator, and
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FIG. 2 (color online). Transfer matrix of the RSOS model.
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 e �i	
~j0

~j
:�

�Y
m�i

�j0m;jm

�
�e�i	ji�1

ji�1
�
j0i
ji
: (6)

The Hamiltonian of the so-defined lattice model is ob-
tained from its transfer matrix by taking, as usual [16],
the extremely anisotropic limit, u� 1,
 

T � expf�a�H� c1� �O�a2�g;

a �
u’

sin��=�k� 2�	
� 1

yielding H � �
P
i

1
’ ei (c1 is an unimportant constant).

Since the operators Xi can be identified with ei, this
demonstrates that the Hamiltonian of the Fibonacci chain
is exactly that of the corresponding k � 3 RSOS model
which is a lattice description of the tricritical Ising model at
its critical point. The latter is a well-known (supersymmet-
ric) CFT with central charge c � 7

10 [17,18]. Analogously
one obtains [19] for general k the �k� 1�st unitary minimal
CFT [10] of central charge c � 1� 6=�k� 1��k� 2�. A
ferromagnetically coupled Fibonacci chain (energetically
favoring the fusion along the � channel) is described [20]
by the critical 3-state Potts model with c � 4

5 and, for
general k, by the critical Zk-parafermion CFT [15,19]
with central charge c � 2�k� 1�=�k� 2�.

Excitation spectra.—We calculated the excitation spec-
tra of chains up to size L � 37 with open and periodic
boundary conditions using exact diagonalization, as shown
in Fig. 3. The numerical results not only confirm the CFT
predictions but also reveal some important details about the
correspondence between continuous fields and micro-
scopic observables. In general, low-energy states on a
ring are associated with local conformal fields [21], whose
holomorphic and antiholomorphic parts belong to repre-
sentations of the Virasoro algebra, described by conformal
weights hL and hR. The energy levels are given by

 E � E1L�
2�v
L

�
�
c

12
� hL � hR

�
; (7)

corresponding to states with a choice of momenta K �
hL � hR or K � hL � hR � L=2 in units of 2�=L, where
E1, v are nonuniversal constants. Here, hL � h�0�L �mL

and hR � h�0�R �mR, where h�0�L , h�0�R correspond to weights
of ‘‘primary’’ fields and mL and mR are non-negative
integers describing so-called ‘‘descendant’’ fields. The
numerical spectra for even values of L (see the first plot
in Fig. 3) agree with Eq. (7), exhibiting primary fields with
h�0�L � h�0�R � 0, 1

10 , 3
5 , 3

2 , 3
80 , 7

16 , which are conventionally
denoted by I, ", "0, "00, �, �0, respectively [22]. The
momenta of the last two fields and their descendants are
near K � L=2, as compared to the other four, indicating
that the corresponding microscopic observables have alter-
nating sign on the lattice. Such ‘‘staggered’’ fields must
have nontrivial monodromy with respect to a space-time
dislocation (i.e., the insertion or removal of a site at some
particular time). Such a dislocation is characterized by a
chiral "00 field, say, "00L [23]. The log of the monodromy

factor exp�2�i�h �"
00

L � h L � h
"00
L �	 matches the momenta

K in Fig. 3 [24]. Given this information, we may predict
that the states of an odd size ring are associated with fields
of the form �L�R, where � � �� "00. These include six
primary fields, "00L, "00R, "0L"R, "L"0R, �L�R, �0L�

0
R, as well

as their descendants. Integrality of the momentum K dic-
tates the choice of K [see below Eq. (7)], as in Fig. 3.

For open boundary conditions the spectra are known to
be described by, say, the holomorphic sector only [25]. To
explain the numerical data, we need to assume that the ends
of the chain are charaterized by a boundary field " (or
equally well "0). Thus, for an even size L the spectrum is
described by "� " � I � "0 (plus descendants). For an
odd size, this result is to be modified by fusion with "00,
yielding "00 � ". These predictions agree excellently with
the numerics in Table I.

Hidden symmetries.—The critical behavior of our
model is not just a peculiarity of the exact solution but
rather has topological origin. In general, an effective low-
energy Lagrangian admits perturbations of the formR
 �x; �� dx d�, where  may be any local field that is
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FIG. 3 (color online). Energy spectra for periodic chains of
size L. Energies are rescaled and shifted such that the two lowest
eigenvalues match the CFT assignments. Open boxes indicate
positions of primary fields of the c � 7

10 CFT. Open circles give
positions of descendant fields as indicated. As a guide to the eye
the solid line is a cosine-fit of the dispersion.
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consistent with all applicable symmetries. Such terms are
relevant if h L � h

 
R < 2, in which case they may open a

spectral gap or induce crossover to different critical behav-
ior at large distances. In the tricritical Ising model, there
are four relevant fields: "L"R, "0L"

0
R, �L�R, �0L�

0
R. Some

explanation is in order as to why these fields do not appear
in the effective Lagrangian of our model. The fields � and
�0 are staggered and thus prohibited by translational sym-
metry. Excluding " and "0 requires a more subtle argument.
The Fibonacci ring has a topological symmetry, which
corresponds to adding an extra �-line parallel to the spine
of the fusion diagram [Fig. 1(b)] and merging it with the
diagram using the F matrix. We denote this operator by Y.

 hx00; . . . ; x0L�1jYjx0; . . . ; xL�1i �
YL�1

i�0

�F
x0i�1
�xi��

x0i
xi�1
;

where the identification L � 0 is used. We may think of the
fusion diagram as a description of a process that generates
a set of � anyons on a circle from the local vacuum. Then Y
describes another particle moving along the circle, inside
or outside. The operator Y is sensitive to a possible topo-
logical charge y � 1, � located at the center of the circle.
Thus Y has two eigenvalues, Sy�=Sy1 � ’, �’�1. We
conjecture that the low-energy states associated with fields
I, "00,�0 are in the trivial (y � 1) sector, and the fields "0, ",
� are in the y � � sector. In fact, the topological fusion
algebra (defined by the rule �� � � 1� �) is a quotient of
the CFT fusion algebra.

We may imagine that the interaction between the anyons
alters the topological liquid in which the anyons are ex-
citations, producing an annulus of a different liquid. Some
of the local fields correspond to the tunneling of a � anyon
between the inner and outer edge of the annulus. Such a
process is actually forbidden as it would change the topo-
logical charge y. Thus, only fields in the trivial topological
sector y � 1 are allowed as perturbations. This excludes
 � "L"R and  � "0L"

0
R.

Outlook.—Extensions to chains of anyons in topological
liquids corresponding to the non-Abelian statistics of

higher members �k > 3� of the Read-Rezayi series have
been mentioned below Eq. (6), but their topological stabil-
ity is an open issue. In analogy to quantum spin chains,
additional interactions (e.g., dimerization or coupling two
chains) lead to interesting physics. Disordered anyonic
chains are currently being investigated [26]. For 2D any-
onic structures gapless phases of non-Fermi liquid type
might potentially also emerge.

We thank E. Ardonne, N. Bonesteel, P. Fendley,
C. Nayak, G. Refael, S. H. Simon, and J. Slingerland for
discussions.
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TABLE I. Lowest eigenvalues for open Fibonacci chains of
size L. The two lowest eigenvalues are rescaled and shifted such
that they match the conformal field theory assignments.

Eigenvalue Nnumerics
L � 31

CFT
assignment

Numerics
L � 32

CFT
assignment

0 0.10 1
10 0 0

1 1.10 1
10� 1 0.60 3

5

2 1.49 3
2 1.60 3

5� 1

3 2.09 1
10� 2 2.02 0� 2

4 2.47 3
2� 1 2.58 3

5� 2

5 3.07 1
10� 3 2.59 3

5� 2

6 3.11 1
10� 3 3.01 0� 3

7 3.44 3
2� 2 3.56 3

5� 3

8 3.46 3
2� 2 3.56 3

5� 3
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