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Galois conjugates of topological phases
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Galois conjugation relates unitary conformal field theories and topological quantum field theories (TQFTs)
to their nonunitary counterparts. Here we investigate Galois conjugates of quantum double models, such as the
Levin-Wen model. While these Galois-conjugated Hamiltonians are typically non-Hermitian, we find that their
ground-state wave functions still obey a generalized version of the usual code property (local operators do not act
on the ground-state manifold) and hence enjoy a generalized topological protection. The key question addressed
in this paper is whether such nonunitary topological phases can also appear as the ground states of Hermitian
Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states lead to a loss of
the code property and topological protection of the degenerate ground states. Beyond this, we rigorously prove
that no local change of basis can transform the ground states of the Galois-conjugated doubled Fibonacci theory
into the ground states of a topological model whose Hermitian Hamiltonian satisfies Lieb-Robinson bounds.
These include all gapped local or quasilocal Hamiltonians. A similar statement holds for many other nonunitary
TQFTs. One consequence is that these nonunitary TQFTs do not describe physical realizations of topological
phases. In particular, this implies that the “Gaffnian” wave function can not be the ground state of a gapped
fractional quantum Hall state.
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I. INTRODUCTION

Galois conjugation, by definition, replaces a root of a
polynomial by another one with identical algebraic properties.
For example, i and −i are Galois conjugate (consider z2 +
1 = 0) as are φ = 1+√

5
2 and − 1

φ
= 1−√

5
2 (consider z2 − z −

1 = 0), as well as 3
√

2, 3
√

2e2πi/3, and 3
√

2e−2πi/3 (consider
z3 − 2 = 0). In physics, Galois conjugation can be used to
convert nonunitary conformal field theories (CFTs) to unitary
ones, and vice versa. One famous example is the nonunitary
Yang-Lee CFT, which is Galois conjugate to the Fibonacci
CFT (G2)1, the even (or integer-spin) subset of su(2)3.

In statistical mechanics, nonunitary conformal field theories
have a venerable history.1,2 However, it has remained less clear
if there exist physical situations in which nonunitary models
can provide a useful description of the low-energy physics of
a quantum mechanical system; after all, Galois conjugation
typically destroys the Hermitian property of the Hamiltonian.
Some non-Hermitian Hamiltonians, which surprisingly have
totally real spectrum, have been found to arise in the study
of PT -invariant one-particle systems3 and in some Galois-
conjugate many-body systems4 and might be seen to open the
door a crack to the physical use of such models.

Another situation, which has recently attracted some
interest, is the question as to whether nonunitary models
can describe one-dimensional (1D) edge states of certain
two-dimensional (2D) bulk states (the edge holographic for
the bulk), in particular, for certain fractional quantum Hall
states. The first such proposal came in the form of the
Haldane-Rezayi wave function5 to describe the ν = 5/2
quantum Hall state. However, it turns out that the latter
does not describe a gapped topological phase. A more
recent proposal is the “Gaffnian” wave function proposed
to describe a gapped fractional quantum Hall (FQH) state
albeit with a nonunitary “Yang-Lee” CFT describing its
edge.6–9 We conclude here that this is not possible, further

restricting the possible scope of nonunitary models in quantum
mechanics.

We reach this conclusion quite indirectly. Our main thrust
is the investigation of Galois conjugation in the simplest
non-Abelian Levin-Wen model.10 This model, which is also
called “DFib,” is a topological quantum field theory (TQFT)
whose states are string nets on a surface labeled by either
a trivial or “Fibonacci” anyon. From this starting point, we
give a rigorous argument that the “Gaffnian” state can not
be locally conjugated to the ground state of any topological
phase, within a Hermitian model satisfying Lieb-Robinson
(LR) bounds11 (which includes, but is not limited to, gapped
local and quasilocal Hamiltonians).

Lieb-Robinson bounds are a technical tool for local lattice
models. In relativistically invariant field theories, the speed of
light is a strict upper bound to the velocity of propagation.
In lattice theories, the LR bounds provide a similar upper
bound by a velocity called the LR velocity, but in contrast
to the relativistic case, there can be some exponentially small
“leakage” outside the light cone in the lattice case. The Lieb-
Robinson bounds are a way of bounding the leakage outside
the light cone. The LR velocity is set by microscopic details
of the Hamiltonian, such as the interaction strength and range.
Combining the LR bounds with the spectral gap enables us to
prove locality of various correlation and response functions.
We will call a Hamiltonian a Lieb-Robinson Hamiltonian if it
satisfies LR bounds.

We work primarily with a single example, but it should
be clear that the concept of Galois conjugation can be widely
applied to TQFTs. The essential idea is to retain the particle
types and fusion rules of a unitary theory, but when one comes
to writing down the algebraic form of the F matrices (also
called 6j symbols), the entries are now Galois conjugated. A
slight complication, which is actually an asset, is that writing
an F matrix requires a gauge choice, and the most convenient
choice may differ before and after Galois conjugation.
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Our method is not restricted to Galois-conjugated DFibG

and its factors FibG and FibG , but can be generalized to
infinitely many nonunitary TQFTs, showing that they will
not arise as low-energy models for a gapped 2D quantum
mechanical system with topological order.

The 2D quantum mechanical systems which can be de-
scribed by any type of TQFTs are known as topological phases.
Although this concept is widely noted in the condensed matter
physics literature, our introduction is not complete without
providing a definition. Many authors focus on properties (e.g.,
existence of anyonic excitations), but we prefer to give a more
fundamental definition since it is this definition that figures into
our proof in Sec. IV. We say that a LR Hamiltonian describes
a topological phase (or a phase is topologically ordered) if
and only if its ground-state manifold G satisfies the following
“code” property with respect to all spatially local operators L:
the composition

G
inc
↪→ H

L−→ H
inc†−−→ G (1)

is a multiplication by some scalar s(L) [possibly s(L) = 0].
L local means L acts only on sites in a sufficiently small
radius. This definition first appeared in Ref. 12 (see definition
3.6 there), conceptualizing the earlier formulation of Ref. 13.
Recently, Bravyi et al.14 have called this axiom “TQO-1” and
advocated an additional requirement that they called “TQO-2,”
which enforces a consistency between local and global ground
states. While technically necessary, we know of no realistic
case where the second axiom would be required and so have
not included it in the framework of this paper.15

II. LEVIN-WEN MODEL AND ITS GALOIS CONJUGATES

A. Levin-Wen model

Topological quantum field theories are highly constrained
mathematical constructs16–18 designed to capture the low-
energy physics of topologically ordered systems. Chern-
Simons theory19 generates most of the known examples, with
the simplest of these, all chiral, being based on a Lie group and
level k, Gk . Starting from a set of particles and fusion rules,
there is a standard construction, called the “quantum double”
or “Drinfeld center,” which produces an achiral TQFT. Such
quantum doubles were introduced in the physics literature by
Levin and Wen10 in the form of “string-net” Hamiltonians.
If, for instance, we take the particles and fusion rules from
the chiral Fib TQFT [see Eq.(2) below] and use these to label
string nets on surfaces, a “larger” TQFT DFib ∼= Fib ⊗ Fib
(with more particle types) is obtained.

The Levin-Wen model thus is a microscopic spin Hamilto-
nian implementing doubled topological theories. Originally, it
was defined10 on a honeycomb lattice, but its extension to any
trivalent graph is straightforward. Given a lattice graph and
an anyonic theory, the model’s Hilbert space is spanned by all
labelings of graph edges with the theory’s particle types, which
are consistent with a set of constraints given by the theory, the
so-called fusion rules. As a simple example, we first consider
the Fibonacci theory Fib, where there are only two particle
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FIG. 1. Edge labeling for a plaquette of the honeycomb lattice.

types, namely, a trivial particle 1 and the Fibonacci anyon τ .
Two particles can combine according to the fusion rules

1 × 1 = 1, 1 × τ = τ , τ × τ = 1 + τ . (2)

In the Levin-Wen (LW) model implementing the doubled
Fibonacci theory DFib, this amounts to the constraint that of
the three edges meeting in any single vertex, never only one can
carry a τ label. This Hilbert space can either be understood as
that of an anyonic quantum liquid enclosing the lattice links20

or alternatively as the the ground states of a spin model (by
identifying particle types with spin directions) with a peculiar
three-spin interaction enforcing the vertex constraint.

Within these states, the Hamiltonian

H LW = Jp

∑
plaquettesp

δφ(p),τ (3)

is a projector onto the τ -flux state of a plaquette p, thus
favoring the trivial flux φ(p) = 1 through each plaquette. The
action of this operator on an element of the basis where the
edges belonging to plaquette p carry labels α, . . . ,ζ,a, . . . ,f

as displayed in Fig. 1 results in a superposition of states where
the inner edges of the plaquette carry new labels α′, . . . ,ζ ′,
whereas all other edges remain unchanged. Any of the labels
takes one of the values {1,τ }. The matrix elements between
these basis states read explicitly as (see Refs. 10 and 20 for a
detailed derivation)

δφ(p),τ = 1 −
∑

s

ds

D2

(
Fα′sζ

a

)ζ ′

α

(
F

β ′sα
b

)α′

β

(
Fγ ′sβ

c

)β ′

γ

× (
F

δ′sγ
d

)γ ′

δ

(
Fε′sδ

e

)δ′

ε

(
F

ζ ′sε
f

)ε′

ζ
, (4)

where ds denotes the quantum dimension of particle type s,
i.e., d1 = 1 and dτ = φ ≡ (1 + √

5)/2, the golden ratio, and
D the total quantum dimension D =

√
d2

1 + d2
τ = √

2 + φ

for Fibonacci anyons. For different plaquette geometries, this
operator has an analogous form with one F symbol for each
edge of the plaquette.

The F symbol, which can be thought of as a generalized 6j

symbol, describes local basis transformations in a fusion tree
as shown in Fig. 2 and is a defining property of the anyonic
theory. For Fibonacci anyons, this transformation is trivial
except for the case when all four outer legs of the subgraph
that is to be transformed carry the τ label. Then, we have the
unitary 2 × 2 matrix

Fτττ
τ =

(
φ−1 cφ−1/2

c−1φ−1/2 −φ−1

)
, (5)
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FIG. 2. The F symbol.

where any choice of the gauge c satisfies the pentagon equa-
tions for the Fibonacci fusion rules. Choosing the gauge =1
gives the usual unitary F matrix for the Fibonacci theory,
which we refer to as the symmetric normalization. From an
algebraic point of view, the natural gauge choice is =φ5/2,
which leads to

F τττ
τ =

(
φ − 1 φ + 1

2φ − 3 1 − φ

)
, (6)

where no square roots of φ appear. We refer to this choice
as the algebraic normalization and define λ = c/φ5/2. We
remark that both normalizations give the same spectra for our
models since the corresponding Hamiltonians are conjugate
by a diagonal fugacity change matrix.

The Levin-Wen model can can be solved exactly since all
the plaquette terms commute.10 As a sum of projectors, it
counts the number of plaquettes penetrated by a nontrivial
τ flux and the spectrum hence consists of states at all non-
negative integer multiples of Jp, corresponding to the number
of nontrivial plaquette fluxes.

The ground states of the model correspond to all states with
no plaquette fluxes, corresponding to the ground states of the
topological liquid on a doubled surface around the lattice. With
periodic boundary conditions in both directions, this surface
is a doubled torus with four degenerate ground states.

B. Doubled Yang-Lee model

Now we turn to a theory of nonunitary non-Abelian anyons,
which are closely related to the Fibonacci ones by Galois
conjugation. We start by noting that Fib is only one particular
subtheory out of a discrete set of su(2)k (for finite k) anyonic
theories, specifically the integral spin half of the unitary su(2)3

theory. The su(2)k theories are certain deformations of SU(2)
characterized by the truncation level k, which defines the
particle types in the theory, and additionally a deformation
parameter q determining the precise values of the F symbol.
For k = 3, two subtheories characterized by the roots of unity
t = e2πi/5 and t ′ = e4πi/5 are Galois conjugates of each other
(see Fig. 3).

unitary
Fibonacci anyons

non-unitary
Yang-Lee anyons

t = e4πi/5

t = e2πi/5

Re t

Im t

FIG. 3. (Color online) The t-deformation parameters of
Fibonacci and Yang-Lee anyons correspond to different primitive
roots of unity.

Now, the former value for q produces the Fibonacci theory
as described above, whereas the latter leads to the nonunitary
F matrix

F τττ
τ =

(
d − 1 d + 1

2d − 3 1 − d

)
(7)

in the algebraic normalization and

F τττ
τ =

( −φ iφ1/2

iφ1/2 φ

)
(8)

in the symmetric normalization. These are just the F matrices
of the DFib theory with φ = −t1/2 − t−1/2 replaced by
d = −1/φ = −t ′1/2 − t ′−1/2. Here, we choose the fourth roots
t1/4 = ieπi/10 and t ′1/4 = ie−3πi/10, which will be needed to
specify the Galois conjugation of the full theory below.

We remark on the choice of algebraic normalization for the
F matrix. For the Yang-Lee theory, no choice of c would make
F unitary, a manifestation of the nonunitarity. While there
would be no topological invariant positive-definite Hermitian
products on all ground-state manifolds in Yang-Lee theory,
there is always a topological invariant Hermitian product with
possibly mixed signatures. The topological invariant inner
product is Hermitian because the partition function under
time reversal in a (2 + 1)-topological theory is Hermitian
conjugated. The (1,2) entry of the above F matrix is the theta
symbol (the norm of a fusion basis in a fusion space) multiplied
by d−2, hence, it should be a real number. The above choice
of F matrix for the Fibonacci case is pleasant when we work
on number theory related problems. In particular, one notices
that in this case we obtain the Galois conjugate by replacing
all occurrences of the golden ratio φ by d = −1/φ, which is
the second solution of the quadratic equation x2 = 1 + x.

As Galois conjugation does not change the theory’s al-
gebraic structure, the doubled Yang-Lee (DYL) Levin-Wen
model using the F matrix of Eq. (8) can be solved in exactly the
same way as its DFib counterpart. In particular, it has exactly
the same spectrum, the eigenvalues of which count the number
of plaquettes penetrated by a nontrivial flux and the same
ground-state degeneracies. The DYL model also retains the
topological protection of the ground-state degeneracy against
local perturbations.

III. HERMITIAN MODEL FROM NONUNITARY THEORY

A. Constructing Hermitian models

While the non-Hermitian DYL model features a generalized
stable topological phase and a generalized code property, dis-
cussed in more detail below, an immediately arising question is
whether this phase can also be realized in a Hermitian model.
There are multiple ways to obtain a Hermitian model that has
the same ground states as the non-Hermitian parent model.
However, as we will see in the following, the question as to
whether the topological nature of the ground state remains is
a more subtle one.

The simplest Hermitian model H †H is obtained by squaring
the non-Hermitian parent Hamiltonian H . This model has the
same right ground-state eigenvectors as the original model.
Alternatively, HH † has the same left ground-state eigenvec-
tors. The simplicity of this approach comes at the cost of a
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Hamiltonian that is highly nonlocal. To avoid nonlocal terms,
we can take an alternative route and individually square each
plaquette term of Hp = δDYL

φ(p),τ , arriving at the Hamiltonian∑
p H

†
pHp or

∑
p HpH

†
p. Since each plaquette term annihilates

the ground state, squaring them in this way also annihilates
the (right or left) ground-state eigenvectors. Finally, we can
replace the non-Hermitian plaquette operator Hp with a
projector onto the complement of the operator’s kernel. More
specifically, we diagonalize the plaquette operator and use
its orthogonalized right eigenvectors |0(r)

i 〉 belonging to the
eigenvalue 0 to define a projector

Pp = 1 −
∑

i

∣∣0(r)
i

〉〈
0(r)

i

∣∣. (9)

The sum of these projectors is then used to define the Hermitian
Hamiltonian

H Herm = Jp

∑
p

Pp. (10)

It turns out that all three approaches result in the same
qualitative behavior, i.e., a loss of the code property and
the associated stable topological order, and we will limit our
discussion to the last approach.

B. Loss of the code property

We find that the non-Hermitian models are stable against
local perturbations, and they satisfy a generalized code
property. Keeping in mind that a non-Hermitian matrix has
left and right eigenvectors, which in general are not identical,
a local operator acts as a scalar multiple of an identity operator
connecting the left and right ground-state subspaces:〈

0(l)
i

∣∣L∣∣0(r)
j

〉 = λ(L)δij . (11)

Independent of the way we derive a Hermitian model from
the parent DYL model, we find that the code property is lost for
the Hermitian models: when constructing a Hermitian model,
one inevitably has to decide wether to preserve left or right
ground states. The code property for the Hermitian model
would require expectation values of local operators of the form〈

0(r)
i

∣∣L∣∣0(r)
j

〉
and

〈
0(l)

i

∣∣L∣∣0(l)
j

〉
(12)

to again be multiples of the identity. In general, this usual code
property will not be satisfied, as one can see, for example, by
calculating the matrix elements of a local observable such as a
string tension. Perturbing any Hermitian Hamiltonian, which
has the (right or left) DYL ground states with an arbitrary small
string tension, will hence immediately lead to a splitting of the
ground-state degeneracy, as we will discuss below.

C. Absence of topological order

In this section, we probe whether topological order sur-
vives the construction of a Hermitian model by numerically
diagonalizing the models on different lattice geometries, the
honeycomb lattice of the original Levin-Wen construction,10

and the two-leg ladder geometry of Ref. 20. We diagonalized
systems with up to 24 edges using a dense eigenvalue solver
and employed iterative schemes for systems with up to 39
edges: the Lanczos algorithm for Hermitian models and an
implicitly restarted Arnoldi method for non-Hermitian models.
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FIG. 4. (Color online) Scaling of the finite-size gap �(L) (in
units of Jp) with linear system size for the Hermitian projector model
H Herm on two different lattice geometries: the honeycomb lattice with
L × W plaquettes (a) and two-leg ladder systems of length L (b). This
figure can be reproduced using the VisTrails33 workflows Figs. 4(a)
and 4(b) included in the Supplementary Material.37

1. Honeycomb model

Our results on the honeycomb lattice show a clear dis-
tinction between the DFib and DYL models on the one hand
and the Hermitian model H Herm derived from the DYL model
on the other hand. While all models feature four degenerate
ground states, the former two are gapped, whereas the latter
one turns out to be gapless in the thermodynamic limit; see
the finite-size extrapolation in Fig. 4(a). Furthermore, the
ground-state degeneracy is easily lifted by a local perturbation,
such as a string tension, in contrast to the stability of the
topological phases of the DFib and DYL models.

2. Ladder model

Since only small linear dimensions are accessible to exact
numerical diagonalization for the honeycomb lattice, we also
consider a quasi-one-dimensional ladder geometry consisting
of rectangular plaquettes as shown in Fig. 5. The DFib and
DYL models on this ladder geometry were introduced and
solved in Refs. 20 and 4, respectively. Both models feature
topological phases with two (instead of four) degenerate
ground states, but are otherwise identical to the respective
honeycomb lattice models.

The quasi-one-dimensional geometry allows us to numer-
ically diagonalize systems up to linear system size L = 13.
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FIG. 5. Edge labeling for a plaquette of the ladder lattice.

The finite-size gap of the Hermitian model H Herm is again
found to vanish in the thermodynamic limit, showing a linear
dependence on the inverse system size as shown in Fig. 4(b).
To further demonstrate the fragility of these gapless ground
states against local perturbations, we add a string tension20

H pert = Jr

∑
rungs r

δl(r), τ (13)

favoring the trivial label l(r) = 1 on each rung of the ladder.
We parametrize the couplings of the competing plaquette and
rung terms as

Jr = sin θ and Jp = cos θ,

where θ = 0 corresponds to the unperturbed Hamiltonian. The
phase diagrams as a function of θ have been mapped out for
both the DFib model20 and the DYL model,4 respectively.

By directly probing the topological order in the DYL
model and its Hermitian counterpart, we show the lifting of
their respective ground-state degeneracies in Figs. 6 and 7
when including a string tension. We find a striking qualitative
difference between these two models: For the DYL model,
the lifting of the ground-state degeneracy is exponentially
suppressed with increasing system size, characteristic of a
topological phase. For the Hermitian model, on the other
hand, we find a splitting of the ground-state degeneracy
proportional to JrL. The linear increase with both system
size and coupling can be easily understood by the different
matrix elements of the string tension term on a single rung for
the two degenerate ground-states of the unperturbed model.
Plotting the low-energy spectrum in Fig. 7 clearly shows that
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FIG. 6. (Color online) Ground-state degeneracy splitting of the
non-Hermitian doubled Yang-Lee model when perturbed by a string
tension (θ 	= 0). This figure can be reproduced using the VisTrails33

workflow Fig. 6 included in the Supplementary Material.37
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FIG. 7. (Color online) Ground-state degeneracy splitting of the
Hermitian model H Herm, the counterpart to the DYL model, when
perturbed by a string tension (θ 	= 0) (a). The slope of the splitting
around the unperturbed model (θ = 0) is given in the inset (a) for
different system sizes L. (b) Shows the low-energy spectrum, which
clearly shows that the degeneracy at θ = 0 is due to a level crossing.
This figure can be reproduced using the VisTrails33 workflows
Figs. 7(a) and 7(b) included in the Supplementary Material.37

the twofold degeneracy of the unperturbed Hermitian model
arises from a (fine-tuned) level crossing. Similar behavior is
found in the honeycomb lattice model (not shown).

Considering the model in a wider range of couplings,
as shown in Fig. 8, further striking differences between the
non-Hermitian DYL model and its Hermitian counterpart are
revealed: The DYL model exhibits two extended topological
phases around θ = 0 and θ = π/2 (with two and four
degenerate ground states, respectively), which are separated by
a conformal critical point at precisely θc = π/4 as discussed
extensively in Refs. 4 and 20. In contrast, the Hermitian
model H Herm exhibits no topological phase anywhere, and
the intermediate coupling θ = π/4 does not stand out.

IV. ABSENCE OF NONUNITARY TOPOLOGICAL PHASES
IN UNITARY MODELS

So far, we have considered a specific set of Hermitian
models constructed to have the same ground states as a
non-Hermitian parent model and found that they no longer
exhibit a topological phase. This raises the question as to
whether this observation points to a deeper principle, which
we investigate in this section in rigorous mathematical terms.
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FIG. 8. (Color online) The low-energy spectra of the doubled
Yang-Lee model (a) and its Hermitian counterpart (b) for a wide
range of coupling parameters. Data shown are for a ladder of length
L = 8. This figure can be reproduced using the VisTrails33 workflows
Figs. 8(a) and 8(b) included in the Supplementary Material.37

A. Galois conjugate

Let us now lay out the mathematical foundations as clearly
as possible. The double DFib is isomorphic to a copy of Fib and
its time reversal DFib ∼= Fib ⊗ Fib. Thus, to Galois conjugate
DFib, it is sufficient to define FibG , then DFibG ∼= FibG ⊗ FibG .

A theory such as Fibonacci can be defined using a set of
6j symbols {F ijk

lmn}, braiding eigenvalues {Rbc
a } (not always

necessary), and some pivotal coefficients {εi = ±1}, where
i,j,k,l,m,n,a,b,c are anyon types (see Chap. 4 of Ref. 21).
Because of gauge choices, there are many different sets for
the same theory. If we fix a set of data, then we can define
a number field K for a theory as the number field obtained
from adjoining all numbers {F ijk

lmn} and {Rbc
a } to the rational

numbers Q ({εi = ±1} are already in Q). The automorphisms
of the number field K fixing Q form the Galois group of K ,
denoted as GK . If g is an element of GK , then by applying
g to all data, we get a potentially new theory. We will call
the new theory a Galois conjugate or a Galois twist. For the
Fibonacci theory, the minimal number fields required for the
Galois conjugation for both the algebraic normalization and

unitary normalization are worked out in Ref. 22 and needed
below for the discussion of the projectors for code subspace
property. For the algebraic normalization, the number field is
the cyclotomic number field Q(ξ20), where ξN = e2πi/N , while
for the unitary normalization, the number field is Q(

√
φ,ξ20).

It is known in general that a theory from quantum groups
such as Fibonacci can always be defined within a cyclotomic
field Q(ξN ) for some N . For the Jones representation
with the algebraic normalization, this is done explicitly by
Kuperberg.23 To explain this, we digress briefly to some basic
quantum topology.

The Jones representation (and polynomial) may be con-
structed from the Kauffman bracket

= −t1/4 −t−1/4 = −t1/2 − t−1/2, ,

with t indeterminate.
The skein space W (n · 1,0,t) is the vector space of formal

linear combinations of arc matchings (i.e., skeins) of an even
number n of fixed points on the top of a square (the arcs are
imbedded in the interior of the square and “0” means no points
marked on the bottom of the square). An n braid b acts on W

by gluing b onto the top of the square and resolving crossings
by the above rule. The trick is to define each braid generator
as t1/4 times the geometric crossing. Additionally, each skein
is “even” or “odd” according to whether a two-coloring of the
skein complement (starting with the bottom of the square being
colored white) has an even or odd number of black regions.
All black skeins should be multiplied by a factor of t1/2. This
results in a basis for W and a rescaling of the action so that this
“W representation” is defined over the field Q[t]. The famous
quantum representations of Jones at level k will be quotients of
the W representation for t = e

2πi
k+2 . Note that the rescaling can

not affect the density of the projective Jones representation,
which will be important shortly.

In the case at hand, Fib, t = e2πi/5, and the Galois-conjugate
theory FibG is obtained by replacing t by t ′ = e4πi/5. The
skein space W (n · 1,0,t) carries a natural bilinear form 〈,〉
obtained by doubling the square (thought of as a disk) along
its boundary and evaluating the union of the two skeins as a
scalar using the above Kauffman relations. When |t | = 1, the
form 〈A,B〉 is Hermitian. If further t is a root of unity, then this
form has a singular subspace. X(n · 1,0,t) is, by definition, the
finite-dimensional Hilbert space obtained by annihilating this
kernel. The Hermitian form 〈A,B〉 is nonsingular on X and
the braid group Bn acts.

When t = e
2πi
k+2 , this quotient action is the Jones represen-

tation associated to SU(2)k , whose trace leads to the Jones
polynomial evaluated at t . For t = e2πi/(k+2), the Hermitian
form 〈A,B〉 is positive definite. For other roots of unity, 〈A,B〉
may be of mixed signs (p,q), p 	= 0, q 	= 0. This happens in
particular for t ′ = e4πi/5 when n � 4 as we now check.

Well-established conventions in mathematics and physics
lead to two different ways to label the particle types in SU(2)k:
one by the spins of the irreps, and the other by the dimensions
of irreps minus one. Unless we speak explicitly of a spin
label, as in the next paragraph, the labels of particles in this
section are by the dimensions minus one, which are twice of
the physical spins.
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Note that X(n · 2,0,e2πi/5) ∼= X(n · 1,0,e2πi/5) as Hilbert
spaces via the “̂” automorphism of SU(2)3: ̂spin 0 = spin 3/2,
̂spin 1/2 = spin 1, ̂spin 1 = spin 1/2, ̂spin 3/2 = spin 0. Sim-

ilarly, X(n · 2,0,e4πi/5) ∼= X(n · 1,0,e4πi/5) as Hilbert spaces
of mixed sign. The braid group actions (Galois conjugates of
the Jones representation) are, of course, also identical. For
t = e4πi/5, the loop value is d = −e2πi/5 − e−2πi/5 = −1/φ,
φ = 1+√

5
2 , the golden ratio.

We use trivalent graphs with the Kauffman vertex normal-
ization

1/2 1/2

1/2 1/2

1/2 1/2
=

1

1 1

where is the Jones-Wenzl projector

P ,2 −=
1
d

and 1/2 and 1 are the spins of the quasiparticles, to write an
orthogonal basis for X(4 · 2,0,t) (the .2 after n indicates the
second, i.e., spin 1, nontrivial particle type).

,

= = 1
d2 ,

is a positive number. Now consider an orthogonal basis element

.

We have

,

= =0

Its self-pairing is negative:

,

= = θ
d

2
d,

a negative number where d is the loop value −1
φ

and the
θ symbol = −φ (simplified from the formula in Fig. 19 in
Ref. 24). It follows that for n � 4, the Hermitian structure
on X(n · 2,0,e4πi/5) ∼= X(n · 1,0,e4πi/5) has mixed signs. The
corresponding braid representations for DFibG also have mixed
signs when n � 4.

The doubled Fibonacci theory DFib, as with all topological

phases, has the code property: the composition G
inc
↪→ H

L−→
H

P−→ G is multiplication by some scalar λL ∈ C whenever L

is a (sufficiently) local operator (P = inc† is the Hermitian
orthogonal projection to the Levin-Wen ground state G, see

Ref. 10). In general, P is Hermitian, but for Fib, P is actually
real symmetric.

In the Levin-Wen Hamiltonian scheme, there are two kinds
of terms: the vertex type Av for each vertex v, and a plaquette
type Bp for each plaquette p. The code space G is the common
eigenspace of all local operators {Av} and {Bp}. With the
standard choices of basis, the vertex terms Av are matrices
with entries 0’s and 1’s, while the plaquette terms Bp are
matrices with entries given by products of 6j symbols. The
algebraic constraints defining the code subspace transform
under a Galois conjugation. Hence, by solving the Galois
conjugates of the constraints defining G, we obtain GG and
replace the matrix P with its Galois conjugate P G . Clearly

GG inc−→ H
L−→ H

P G−→ GG is multiplication by (λ
L(G−1) )G since

L is local if and only if L(G−1) is local. Thus, GG retains a “code”
property, but with respect to a non-Hermitian projector P G .
In the symmetric normalization of Yang-Lee, P G is complex
symmetric with eigenvalues 0 and 1 [since (P G)2 = P G ,
however, (P G)† = P̄ G 	= P G].

We close this paragraph by noting that our proof uses the
mixed signatures in the Jones braid group representations
as shown above, and as such applies only to the algebraic
normalization. For the symmetric normalization of the DYL
theory, the Jones representation spaces have either positive-
or negative-definite inner products, but the mixed sign in the
algebraic normalization will be sufficient to prove our theorem
for any choice of normalization.

B. Lieb-Robinson bounds and local unitary evolution
of a ground state under changes in the Hamiltonian

Our proof of absence below will be based on a contradiction
of the above result for the Galois-conjugated theory with
local unitary evolution of a ground state under local changes
in a Hermitian Hamiltonian. This local unitary evolution
can be proven for all Hermitian Hamiltonians that satisfy
Lieb-Robinson bounds.

Lieb-Robinson bounds are a mathematical way of express-
ing the physical fact that, in local lattice Hamiltonians, there is
some upper bound to the velocity of excitations. These bounds
can be proven for a wide range of Hamiltonians, including
what would be colloquially referred to as “Hamiltonians with
finite-range interactions” or “Hamiltonians with exponentially
decaying interactions.”

For a precise statement of conditions under which Lieb-
Robinson bounds can be proven, we follow Ref. 25 where one
sufficient condition is given as follows (see also Ref. 26). We
consider lattice Hamiltonians, and use i,j, . . . to label sites
of the lattice, with some metric dist(i,j ) on the lattice. We
use X,Y,Z, . . . to label sets of sites of the lattice. Let the
Hamiltonian H be written as

H =
∑
Z

HZ, (14)

where the operators HZ are supported on sets Z (an operator
is said to be supported on a set Z if it can be written as a
tensor product of an operator on the degrees of freedom on
set Z with an identity operator on the remaining degrees of
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freedom). Assume that the following condition holds for all
sites i: ∑

X�i

‖HX‖|X| exp[μ diam(X)] � s < ∞ (15)

for some positive constants μ,s, where diam(X) denotes the
diameter of set X, and |X| denotes the cardinality of X, and
‖HX‖ denotes the operator norm.

Then,25 Eq. (15) implies the following Lieb-Robinson
bound for Hermitian Hamiltonians. For any operator O,
we use O(t) to denote the Heisenberg time evolution of
the operator: O(t) = exp[iH t]O exp[−iH t]. Let AX,BY be
operators supported on sets X,Y , respectively. Then, there is
a constant vLR depending only on s,μ such that for t real with
|t | � dist(X,Y )/vLR, we have

‖[AX(t),BY ]‖ � vLR|t |
l

g(l)|X|‖AX‖‖BY ‖, (16)

where l = dist(X,Y ) and g(l) decays exponentially in l. Given
that AX(t) has small commutator with all operators BY with
sufficiently large distance dist(X,Y ), this implies27 that the
operator AX(t) can be approximated by an operator Al

X(t),
which is supported on the set of sites within distance l = vLR|t |
of the set X up to an error in operator norm which is bounded
by vLR|t |

l
g(l)|X|‖AX‖.

Definition IV.1. We say that a Hamiltonian is a Lieb-
Robinson Hamiltonian (or that it obeys a Lieb-Robinson
bound) if a bound of the form Eq. (16) holds for some vLR

and some exponentially decaying g(l). A parameter-dependent
family of Hamiltonians Hs uniformly obeys a Lieb-Robinson
bound if for some vLR and g(l) the bound Eq. (16) holds for
all s. Such a family is called “uniformly LR.”

We also want to define what it means for a Hamiltonian
to have multiple ground states and a spectral gap. Note that it
is common practice in physics to refer to a system, such as a
fractional quantum Hall system that has three low-lying states
with an exponentially small splitting between them and then a
gap to the rest of the spectrum, as having a “degenerate ground
state,” even though the nonvanishing splitting means that the
lowest eigenvalue is in fact nondegenerate. Our definition will
reflect this usage, as we will not require that the states that we
refer to as “ground states” be degenerate. All we will require
is that the “ground states” be separated from the rest of the
spectrum by a gap.

Definition IV.2. A Hamiltonian has n ground states and a
spectral gap �E, if En−1 + �E � En where the eigenvalues
of the Hamiltonian are E0,E1, . . . with E0 � E1 � . . . . A
family of Hamiltonians Hs has n ground states and a uniform
spectral gap �E if En−1(s) + �E � En(s) for all s, where the
eigenvalues of Hs are E0(s) � E1(s) � . . . .

Note that we did not require in the above definition that
the splitting En−1 − E0 between the different ground states be
small. For all the systems we are concerned with, this splitting
will turn out to be small, but since it is not required to be
small for Lemma IV.3, we do not include this in our definition
(in some applications of Lieb-Robinson bounds, the splitting
between different ground states is important, but we do not
need it here).

The next lemma expresses how the ground states evolve un-
der changes in the Hamiltonian. We consider some parameter-

dependent family of Hamiltonians Hs for 0 � s � 1, and
imagine this family as describing some path from an initial
Hamiltonian at s = 0 to some final Hamiltonian at s = 1.
Stated roughly, this lemma shows that if the Hamiltonian is
gapped and local, then the change in the ground state under a
local change in the Hamiltonian can be expressed by a local
operator acting on the ground state.

Lemma IV.3. Let Hs be a uniformly Lieb-Robinson family
of Hermitian Hamiltonians, for 0 � s � 1, with Hs differen-
tiable with respect to s, such that ∂sHs is supported in a disk X

of radius R and such that for some J , and ‖∂sHs‖ � J for all s.
Let Hs have uniform gap �E. Let P (s) denote the Hermitian
projector onto the ground-state subspace of Hs . Then, for any
l, there exists a family of unitaries Us supported on the set of
sites within distance l of X such that

‖UsP (0)U †
s − P (s)‖

� const.
J

�E
[exp(−l�E/2vLR) + g(l)]. (17)

Proof. The proof largely follows previous results on
quasiadiabatic continuation and is given in Appendix A for
completeness. �

We make a few remarks. First, note the appearance of g(l)
in the lemma above. For a Hamiltonian with exponentially
decaying interactions, g(l) will decay exponentially in l, but
for a Hamiltonian with bounded range interactions, g(l) will
decay faster than exponentially in l, and the error will be
dominated by the term exp(−l�E/2vLR). Further, in the case
of exponentially decaying interactions, the length scale over
which g(l) decays will be set by the decay scale of the
interactions in the Hamiltonian, i.e., by the microscopic details
of the interaction rather than the magnitude of the spectral gap.

Note that, in the lemma above, a bound on ‖∂sHs‖ appears;
that is, the bounds depend upon how rapidly the Hamiltonian
changes along the path. To give a physical explanation of why
this appears, consider dragging an anyon along some path.
Suppose we move the anyon a distance L. Then, since we
always scale the path length to unity (that is, s ranges from
0 to 1), the “velocity” at which the anyon moves along the
path is proportional to L. Thus, for larger L, we are moving
the anyon more rapidly along the path, and so ‖∂sHs‖ will be
larger; thus, in a sense, the appearance of ‖∂sHs‖ is really a
way of measuring the distance we drag the anyons. Thus, it
is worth restating the result in a rescaled way: suppose that
we drag an anyon a distance of order the disk radius R. Then,
typically we will have ‖∂sHs‖ � J for a J of order R. So,
given that the error in Eq. (17) is exponentially small in l, in
such a case it suffices to choose l logarithmically large in R

in order to make the error of order 1. For an l of order R, the
error will be exponentially small in R.

Also, note that, if ∂sHs is approximately supported in X, in
that it can be approximated, up to exponentially small error, by
an operator supported in X, then we can derive a similar bound
to Eq. (17), which will involve the error in approximating ∂sHs .
We omit this case.

Finally, in the case that the Hamiltonian Hs is a sum of
commuting terms with bounded range for all s, the Lieb-
Robinson velocity is zero. In this case, it is possible to show
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that, for sufficiently large l, the error ‖UsP (0)U †
s − P (s)‖ is

exactly zero.

C. Proof of absence

Examined in detail, the ground-state manifold GG and the
projector P G that defines it depend on (1) the number and
location (�) within the two-sphere S2 of the anyons, (2) the
anyon particle type (a kind of boundary condition), and (3) the
(possibly nonunitary) trivalent vertex normalization f : L3 →
C\0 or gauge choice, L being the label set. For Fib, DFib, and
their Galois conjugates and time reversals (represented by¯ ), f
is always symmetric and satisfies a consistency relation with
the F symbols: suppose {F̃ ijk

l;nm} are new 6j symbols from

{F ijk

l;nm} by a gauge change {f (a,b,c)},a,b,c ∈ L, then

F̃
ijk

l;nm = F
ijk

l;nm · f (j,k,n)f (i,n,l)

f (i,j,m)f (m,k,l)
.

Except that it would unpleasantly cluster the notation, we
should write GG

n,�,f and P G
n,�,f . The detailed position � of

the anyons within the lattice model is important to us since our
proof will work with the entire “braid groupoid” Bn. In fact, we
treat � as a continuous variable on a compact space of 2n (real)
dimensions. This moduli space of anyon position is compact
since distinct anyons are not permitted to closely approach. The
elements of Bn are oriented paths of n-distinct (marked and
framed) points in R2, which compose only when end points
match. Bn represents in a large but finite-dimensional Hilbert
space H of microscopic degrees of freedom on S2, the north
pole serving as a standard ∞ for R2. The vertex normalization
f is also important within the proof. As we have already seen,
the symmetric normalization yields a TQFT with all definite
Hilbert spaces (although some are positive definite and others
are negative definite). The proof of Theorem IV.5 requires as
a “kernel” a single Hilbert space on which a nonsingular form
of mixed signs is preserved by Bn. With this kernel in hand,
the proof actually covers all vertex normalizations f .

Definition IV.4. We call an operator L range r if it is
supported on a ball of diameter r . Also, we use the same
term for sums of such operators. Similarly, an operator is
called weakly range r (in either sense) if it is range r up
to exponentially small corrections. We say that an operator
is short range if it is supported on a ball of diameter small
compared to system size.

We say an operator O is a local normalizer iff there is some
constant c that is small compared to system size such that
OLO−1 is range r + c whenever L is range r . We say that an
operator is a weakly local normalizer iff there is some constant
c that is small compared to system size such that OLO−1 is
weakly range r + c whenever L is range r .

A uniform family of (weakly) local normalizers O� is a
parameter-dependent family of operators such that O�LO−1

�

is (weakly) range r + c whenever L is (weakly) range r , with
a uniform bound on the exponentially small corrections and on
the constant c, and such that whenever |� − �′| � O(1), the
product O�O−1

�′ is a product of at most O(1) operators, which
are all (weakly) range r and are not necessarily the same, for
some r which is O(1). An example of a local normalizer is
a finite-depth quantum circuit of invertible (not necessarily

unitary) local operators. An example of a uniform family of
local normalizers is a family of finite-depth quantum circuits
of invertible local operators, such that an O(1) change in the
parameter changes only O(1) different operators in the circuit;
for the applications we have in mind, one should imagine that
the parameter � refers to different anyon positions and that
changing � changes the circuit only near the anyon positions.

In the definition of weakly local normalizer, it will be
important to define how we quantify the error term in the
approximation by a bounded range operator. The natural
way to do this would be to require that the error term
be small in operator norm compared to the operator norm
of OLO−1. However, for technical reasons, for use later
we will be interested in what we call a g.s. weakly local
normalizer (g.s. stands for ground state). In this case, we
consider certain operators M(i), which have the property that
M(i) is bounded range and exactly maps the ground-state
subspace of some non-Hermitian Hamiltonian to the ground-
state subspace of some other non-Hermitian Hamiltonian, with
M(i)†M(i) exactly preserving the ground-state subspace of the
first non-Hermitian Hamiltonian and having its ground-state
expectation value equal to its norm. Then, we require that the
error term be small in operator norm compared to the norm
|O�(i+1)M(i)O−1

�(i)ψ | for ψ in the ground state of some other
Hermitian Hamiltonian (this ground-state subspace is obtained
by applying O to the ground-state subspace of the Hermitian
Hamiltonian). Note that if O were an isometry, then the norm
|O�(i+1)M(i)O−1

�(i)ψ | would equal the norm of M and so this
would reduce to the more natural definition. Note also that any
local normalizer is a g.s. weakly local normalizer.

Theorem IV.5. Fixing the number n � 5 and particle type
τ ⊗ τ of DFib anyons on S2 and any vertex normalization f ,
there can be no continuous uniform � family of (g.s. weakly)
local normalizer operators O�: H → H, so that O�GG

n,�,f

is, for all anyon positions �, the ground-state manifold of
a uniformly Lieb-Robinson and uniformly gapped family of
Hermitian Hamiltonians H (�) defining a topological phase
[see Eq. (1)].

Proof. The theorem uses the notation of Ref. 21 to
describe the anyons in DFib. For now, fix the algebraic vertex
normalization λ = f . Below, we may suppress � and f from
the notation when they play no role. �

Suppose O� exists, then O�GG
� is a family of code

subspaces, and for � near �′, the subspaces are connected up to
exponentially small discrepancy by a local unitary U�,�′ (these

are the Us of Lemma IV.3). Writing DFibGf ∼= FibGf ⊗ Fib
G
f

(one may think DFib describes a bilayer), let us recall a
theorem stated in Ref. 23 for the right-hand factor FibG

f ,

where f is the algebraic normalization. (Note: While DFibG
f

is a theory of string nets on the surface S2, with boundary
conditions at anyons, FibG

f is the corresponding string-net
theory28 in the 3-ball with boundary S2. Thus, the function
f gauging vertices acts compatibly in both theories.)

Now, according to Ref. 23, Corollaries 1.2.4 and 1.2.6, for
n � 5, the Jones representation ρ on the topologically defined
Hilbert space VR of ground states for FibG is (analytically)
dense in a noncompact special unitary group (preserving
a Hermitian metric of mixed signs) SU(p,q) := SU[(X,n ·
1,0,e

4πi
5 )] ∼= SU[(X,n · 2,0,e4πi/5)].
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Recall that in Sec. IV A we confirmed that the loop value
for a closed string in DFibG

f was − 1
φ

and that with the algebraic

vertex normalization the signs of the Bn-invariant ground-state
“Hilbert” spaces are indeed mixed: p > 0 and q > 0.

We need to formulate a lemma regarding the following
concept.

Definition IV.6. An ambient groupoid representation is a
functor from a groupoid to the category of subspaces of a
fixed Hilbert space, and linear transformations on H carrying
one image subspace to another.

Thus, to objects a,b of the groupoid we assign spaces A ⊂
H,B ⊂ H and to a morphism a → b a unitary map H →
H carrying A to B. In our case, the groupoid is Bn with �

being the objects and motions of anyons being the morphisms.
The subspaces are the respective ground states for H G

LW,alg,
the Galois-conjugated Levin-Wen Hamiltonian with algebraic
vertex normalization.

Lemma IV.7. Let {Ai},i ∈ � be the set of code subspaces of
fixed Hilbert space H and B = {�,{→}} a groupoid. Suppose

for a generating set of morphisms in B, a
θ→ b, there are

invertible local operators Lθ : H → H with LA = B (A =
image a and B = image b). Then, these data determine a
unique projective ambient groupoid representation. That is, all
compositions commute with the functor up to multiplication
by a nonzero scalar.

Proof. Consider A
Lθ |A−→ B

Lφ |B−→ C, Lθ and Lφ : H → H

being the local operators carrying A to B and B to C,
respectively. The composition Lφ · Lθ is local and Lφ ·
Lθ (A) = C. By the code property, there is a scalar λ so
that �A(Lφ · Lθ )−1 · (Lφ · Lθ ) · incA = λ · Id, where λ 	= 0
since all morphisms L in the representation are invertible.
(�A denotes the appropriate projection to A corresponding
to its code property.) Thus, (projectively) the homomorphic
property, restricted to the subspaces {Ai},i ∈ �, is redundant
when these subspaces have the code property.

For uniqueness, consider two possible representations L(θ )
and L′(θ ). (L′)−1L : H → H is local and carrying A to itself.
Thus, �A(L′

θ )−1Lθ · incA : A → A is multiplication by some
scalar λ, which, again by the invertibility of Lθ and L′

θ , is
nonzero. �

By assumption, the collection {O(GG
�)} is a code with

respect to the usual Hermitian projection. Using the Us of
Lemma IV.3 as the generating set of morphisms, Lemma IV.7
builds a projective representation ρ : Bn × H → H of DFib
up to exponentially small errors, which we can neglect for
the moment but return to shortly. We may think of this
representation as the result of (quasi)adiabatic evolution of
GG

� inside the finite-dimensional microscopic Hilbert space
H . Intuitively, braiding might be realized by building and
slowly moving a potential trap term added to the Hamiltonian.
For plaquette excitations (e.g., τ ⊗ τ ), such a trap could have
the rough form Htrap = arctan(δt)Bp + [π − arctan(δt)Bp′ +
εσ z

i ] for plaquettes p and p′ separated by edge. Such a family
of Hamiltonians will adiabatically braid the anyons. Formally,
however, we have posited, for contradiction, the family H (�),
and this is all we need.

Lemma IV.3. provides local unitaries intertwining GG
�1

and

GG
�2

, and so ρ is obviously a (projective) unitary representa-

tion with respect to the standard positive-definite Hermitian
structure on the space H of microscopic degrees of freedom.
Thus, ρ preserves ordinary lengths and angles (as measured
in H ) and the complex structure (multiplication by i) of H

as well. So this ρ manufactured from Lemma IV.7 looks
geometrically quite distinct from a second representation
of Bn, ρ ′ := O(ρ ⊗ ρ∗)O−1. As explained above (also see
Ref. 28), ρ and ρ∗ also act on the same collection of string-net
spaces as ρ, and the uniqueness clause of Lemma IV.7 yields

projective isomorphisms ρ
proj∼= ρ ′.

We learned from Ref. 23 that ρ is dense in SU(p,q),p >

0,q > 0, and that X(n · 2,0,e
4πi

5 ) is the fundamental represen-
tation ω1 of SU(p,q). ω1 preserves a form of mixed signs and
thus will distort not only Euclidean length but Euclidean angles
as well by an unbounded amount [for example, consider the
effect of boosts in O(1,1) ⊂ U (1,1) on Euclidean angle]. This
difference, that ρ and ρ ′ preserve forms of different signatures,
excludes the existence of a (g.s. weakly) local normalizer O
transforming {GG

�} to the ground-state spaces of H (�).
We now consider in more detail the exponentially small

errors that we have neglected. The representation ρ gives a
mapping from braids to matrices. We will use M to refer to such
a matrix. We can also construct a matrix U by taking the Us of
Lemma IV.3 for the corresponding braid and projecting into
the ground-state subspace. So long as the length of the braid
is smaller than some quantity growing exponentially with the
linear size of the system, the matrix U will be approximately
unitary (the error arises from leakage out of the ground-state
subspace in Lemma IV.3). We claim the following:

Lemma IV.8.

‖U − zOMO−1‖ � 1 (18)

for such braids for some scalar z. Indeed, the difference in
norms is exponentially small in system size.

Proof. The proof of this lemma is given in Appendix B.
We can find a braid such that the corresponding matrix M

is diagonalizable, and with the ratio between its largest and
smallest eigenvalue being at least 2 in absolute value.29 This
means that the ratio between the largest and smallest eigen-
value of zOMO−1 is at least 2 in absolute value. However,
zOMO−1 is close to a unitary matrix. All eigenvalues of a
unitary matrix are on the unit circle in the complex plane.
Further, a small perturbation of a unitary matrix leaves all of
its eigenvalues close to the unit circle, so zOMO−1 must have
all of its eigenvalues close to the unit circle contradicting the
assumption on the ratio of eigenvalues.

Now, we remove the condition on the vertex normalization
or choice of gauge. As noted above, the gauge choice is a
function f : L3 → C\0. Although this is not crucial, it is
pleasant that in the Fib case, f is identically 1 except for taking
value f (τ,τ,τ ) = λ on the essential trivalent vertex. Recalling
the Av and Bp terms in the Levin-Wen model Hamiltonian,
the fusion rule terms Av commute with and do not depend
on f . The effect of f on Bp may be computed (using the
compatibility of gauge choice and the F matrices used to
construct Bp):

Bp,λ = Fλ · Bp,alg · F−1
λ , (19)
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where Fλ is the “relative fugacity matrix,” Fλ : H → H . Fλ is
diagonal in the string-net basis {k} and the entry Fk,k is simply
λ#(k), where #(k) denotes the number of (τ,τ,τ ) vertices in the
kth string net.

As a concrete example of the above gauge dependence of
Bp in the Fib case,

F τττ
τ ;sym =

(
1 0

0 λ−2

)
F τττ

τ ;alg

(
1 0

0 λ2

)
. (20)

By inspecting the two F matrices in the two normalizations,
we have λ2 = iφ5/2. Given a trivalent graph γ , and a labeling
of its edges kγ , let {�alg,kγ

} and {�sym,kγ
} be the two bases of

the Hilbert space ⊗e∈γC#(L) of labeled graphs. Then �sym,kγ
=

λ#(kγ )�alg,kγ
. Suppose

Bp,alg�alg,kγ
=

∑
k′
γ

Bp,alg,k′
γ ,kγ

�alg,k′
γ
. (21)

Noting that gauge change and recoupling are commutative, we
obtain

Bp,symλ−#(kγ )�sym,kγ
=

∑
k′
γ

Bp,alg,k′
γ ,kγ

λ−#(k′
γ )�sym,k′

γ
. (22)

Thus, B�,sym has the claimed conjugated form. Similarly for
any vertex fugacity λ, Eq. (19) holds. Thus, for a general
relative fugacity λ, G�,λ = FλG�,alg.

Observe that, while Fλ is not local (in the sense of
having support on a disk of bounded radius), both Fλ and
F−1

λ are implemented by a depth-1 invertible circuit Fλ =∏
sites[λ�τττ + (1 − �τττ )]. Thus, the general local normal-

izer operator O may be written as O = O′ ◦ Fλ, where O′ is
also local normalizer; given λ,O and O′ determine each other
uniquely, we have just shown that for all local normalizers O,
there is a local L so that L acts on OGG

alg, i.e., that

inc†
GG

alg
◦ O† ◦ L ◦ O ◦ incGG

alg
	= scalar. (23)

It follows that for all O′ there is an L (identical to L above) so
that incGG

alg
◦ F

†
λ ◦ O′† ◦ L ◦ O′ ◦ Fλ ◦ incGG

alg
	= scalar. But,

incGG
alg

◦ F
†
λ ◦ O′† ◦ L ◦ O′ ◦ Fλ ◦ incGG

alg

= incGG
λ
◦ O′† ◦ L ◦ O′ ◦ incGG

λ
. (24)

So, we find that for the change of variables O′, L acts on
O′ ◦ incGG

λ
. Varying O over all local normalizer operators

produces a local normalizer O′ = O ◦ F−1
λ . Thus, for every

possible local normalizer operatorO′, there is a localL : H →
H acting on O′GG

λ .
This completes the proof of Theorem IV.5 by removing the

hypothesis of algebraic vertex normalization. �
Theorem IV.5 immediately implies the following corollary.
Corollary IV.9. Let {GG

�,f } be the ground-state manifolds

for the Galois-conjugated Levin-Wen Hamiltonian H G
�,f for

n � 5 τ ⊗ τ anyons on the two-sphere S2 with positions �

and any vertex normalization f , within a larger Hilbert space
H of microscopic (lattice) degrees of freedom. There can be
no continuous uniform family of local normalizer operators
O� so that {O�H G

�,fO−1
� } are uniformly gapped uniformly

Lieb-Robinson Hamiltonians determining topological ground

states {O�GG
�,f }, in the sense of TQO-114 [i.e., satisfying the

code property (1)].
Although we have concentrated the discussion on the Fib

TQFT, its quantum double, and their Galois conjugates, the
proof requires only two ingredients: (1) finding pairs of Galois-
conjugate theories (with choice of vertex gauge), one of which
is unitary (for the Hilbert space of a sphere or plane with fixed
anyon content) and one of which is unitary with respect to
a Hermitian metric of mixed signs (p,q),p > 0,q > 0, and
(2) establishing denseness of the braid group representations
in SU(p,q). Using just the results for SU(2) theories obtained
in Ref. 23, infinitely many other unitary theories arise, which
have Galois conjugates satisfying Theorem IV.5.

V. COMMENTS ON NON-HERMITIAN HAMILTONIANS

While the bulk of our paper is devoted to showing that
certain wave functions can not be the ground states of gapped
Hermitian Lieb-Robinson Hamiltonians, it is worth briefly
discussing what is known about non-Hermitian Hamiltonians.
For non-Hermitian Hamiltonians, many of the technical tools
involving Lieb-Robinson bounds are unavailable, and so many
results that we know in the Hermitian case are not known here.

The first major difficulty in the non-Hermitian case is that
even if the Hamiltonian is a sum of terms HZ which obey
Eq. (15), if the Hamiltonian is not Hermitian, then we do
not know if the Lieb-Robinson bound holds. Similarly, for a
Hermitian Hamiltonian, the Lieb-Robinson bound might not
hold for evolution in imaginary time. Given that the Lieb-
Robinson bound fails, we are also unable to prove locality of
correlation functions in a non-Hermitian Hamiltonian even if
there is a gap in the spectrum.

The fact that we can not prove locality of correlation
functions is relevant to the following application of the disk
axiom. Suppose we have a Hermitian Hamiltonian that obeys
the disk axiom with P being the projector into the ground-state
subspace. Suppose operators OX and OY are supported on
small disks X and Y such that the disk axiom implies that
POXP and POY P are both close to scalar multiples of P .
Now, let us ask whether the operator POXOY P is also close
to a scalar multiple of P . Consider the case in which the disks X

and Y are far separated such that the smallest disk containing
both X and Y is too large to directly apply the disk axiom
to OXOY . Thus, the disk axiom alone does not tell us that
OXOY is close to a scalar when projected into the ground-state
subspace. However, if we have a gapped, Hermitian, Lieb-
Robinson Hamiltonian, then correlations decay exponentially
in any ground state, so that POXOY P is close to POXPOY P ,
and then applying the disk axiom to POXP and POY P implies
that POXOY P is close to a scalar multiple of P . Unfortunately,
though, in the non-Hermitian case, we do not know that there
is exponential decay of correlation functions, and so even if we
assume the disk axiom for small disks, we do not see how to
prove that OXOY is also close to a scalar when projected into
the ground-state subspace of a non-Hermitian Hamiltonian
obeying the disk axiom. In fact, suppose we consider two states
ψ1,ψ2 such that any operator supported on a small disk is equal
to a scalar when projected into the space spanned by ψ1,ψ2.
Let us relax any requirement that ψ1,ψ2 be ground states of a
Hamiltonian, whether Hermitian or not, and simply take them
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to be arbitrary states. Then, we can give an example in which
product operators of the form OXOY given above are not close
to a scalar when projected into the ground-state subspace, even
though both OX,OY are close to scalars when projected into
this subspace, by considering a quantum error-correcting code
on a small number of qubits, and defining the two states ψ1,ψ2

on the large lattice by placing the qubits defining the code on
far separated sites of the lattice, and placing all other qubits in
a product state.

VI. CONCLUSIONS

Our numerical study, described in Sec. III, used three differ-
ent attempts to construct a gapped local Hermitian Hamiltonian
whose ground state described a Galois-conjugated phase.
Each attempt failed. This failure was the motivation for
the mathematical results of Sec. IV. Theorem IV.5 in fact
suggests that all such attempts will be doomed to fail.
There is one possible technical loophole in Theorem IV.5
since it requires constructing a family of Hamiltonians that
describe different anyon positions, and so it is mathematically
conceivable that one might construct a gapped Hamiltonian
obeying a Lieb-Robinson bound whose ground state described
the Galois-conjugated state for a single, fixed position of
anyons, but that this Hamiltonian was not part of a family
describing different anyon positions. However, such a loophole
seems unlikely on physical grounds. Further, since such a
hypothetical Hamiltonian would not allow one to move the
anyons, it lacks one of the key features of a topological phase.

Thus, if we accept that for a Hamiltonian to describe a
topological phase it must be part of a family of Hamiltonians
allowing arbitrary braiding of a small number (5 in the
theory above) of anyons, then in Theorem IV.5, we have
shown that a large class of nonunitary topological quantum
field theories can not be realized as ground states of gapped
Hermitian (quantum mechanical) Hamiltonians that satisfy a
Lieb-Robinson bound. This includes, but is not limited to, local
and quasilocal (exponentially decaying) Hamiltonians. While
our proof has been formulated for quantum doubles of TQFTs,
it also rules out the realization of the constituent nondoubled
TQFT in a Hermitian system: If the latter were to exist, it
could be used to trivially construct a Hermitian model for the
corresponding quantum double.

The TQFTs covered by our proof include, in particular, the
Galois conjugates of Fib and su(2)k TQFTs for k = 3 and all
k � 5. Among these, one case of special recent interest is the
Yang-Lee TQFT (the Galois conjugate of Fib) underlying the
proposed Gaffnian quantum Hall wave function. Our argument
implies that this Gaffnian wave function can not occur as
a ground state of a gapped fractional quantum Hall state
(described by a Hermitian Hamiltonian), if one considers that
the screened Coulomb interaction satisfies a Lieb-Robinson
bound.

One potentially interesting further result in our work is
Lemma B.1, which provides a corollary of the disk axiom
which may be useful elsewhere. To put this lemma in physical
terms, suppose we have a system that obeys a soft form of the
disk axiom so that any local operator is close to the identity
when projected into the ground-state sector. Then, we show
that if there is a local operator O that is not exactly equal to

the identity when projected onto the ground-state sector, then
this operator O also has larger matrix elements coupling the
ground-state sector to the sector of excited states. This may
be understood in terms of quantum error-correcting codes as
follows: If a code has the property that all local operators have
only a small matrix element to create an undetected logical
error (moving between different ground states), then any local
operator that has some nonvanishing matrix element to create
an undetected logical error has a larger amplitude to create a
detectable error (leaving the ground-state sector).
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APPENDIX A: PROOF OF LEMMA IV.3

We define the “quasiadiabatic continuation operator” Ds by

iDs =
∫

dtF (t) exp(iHst)
(
∂sHs

)
exp(−iHst), (A1)

where the function F (t) is defined by [we follow Ref. 34,
while a more complicated choice of F (t) was used in Refs. 35
and 36]:

i

α
√

2π

∫ ∞

t

du exp(−u2/2α2) (A2)

for t > 0 and F (t) for t < 0 is defined by F (t) = −F (−t).
The quantity α in Eq. (A2) is some constant chosen below.

We now show that ∂sP (s) is close to i[Ds ,P (s)], and bound
the difference between the two expressions in operator norm.
Define F̃ (ω) to be the Fourier transform of F (t). One may
show that

|ω| � �E → |F̃ (ω) − 1/ω)|
� const. × (1/�E) exp(−α2ω2/2). (A3)

Let ψi(s) denote eigenvectors of Hs with eigenvalues Ei(s),
so P (s) = ∑n−1

i=0 |ψi(s)〉〈ψi(s)|. Then,

i[Ds ,P (s)] =
n−1∑
i=0

∑
j�n

∫
dtF (t)|�j (s)〉[〈�j (s)| exp(iHst)

× ∂sHs exp(−iHst)|�i(s)〉]〈�i(s)| + H.c.

=
n−1∑
i=0

∑
j�n

F̃ (Ei − Ej )|�j (s)〉

× [〈�j (s)|∂sHs |�i(s)〉]〈�i(s)| + H.c. (A4)

By linear perturbation theory,

∂sP (s) =
n−1∑
i=0

∑
j�n

1

Ei − Ej

|�j (s)〉

× [〈�j (s)|∂sHs |�i(s)〉]〈�i(s)| + H.c. (A5)
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Thus, by Eqs. (A3)–(A5),

‖∂sP (s) − [iDs ,P (s)]‖
� const. × (‖∂sHs‖/�E) exp(−α2�E2/2). (A6)

We also have a bound on the time decay of F (t):

|F (t)| � const. × exp(−t2/2α2). (A7)

We now define iDl
s to be an approximation to iDs supported

on the set of sites within distance l of X. To construct this
approximation, we use the Lieb-Robinson bound and set

iDl
s =

∫
|t |�l/vLR

dtF (t)(∂sHs)
l(t), (A8)

where (∂sHs)l(t) is supported on the set of sites
within distance l of X and is the approximation to
exp(iHst)(∂sHs) exp(−iHst) given by the Lieb-Robinson
bound. We now bound the difference ‖Ds − Dl

s‖. This dif-
ference is bounded by∫
|t |�l/vLR

dt |F (t)|‖(∂sHs)
l(t) − exp(iHst)

(
∂sHs

)
exp(−iHst)‖

+
∫

|t |�l/vLR

dt |F (t)|‖∂sHs‖. (A9)

Using the Lieb-Robinson bound and Eq. (A7), we arrive at∥∥Ds − Dl
s

∥∥ � const.‖∂sHs‖(vLRα2/l)

× [
exp

(− l2/2α2v2
LR

) + g(l)|X|]. (A10)

Combining Eqs. (A6) and (A10), and choosing α =√
l/vLR�E, we find that∥∥∂sP (s) − [

iDl
s ,P (s)

]∥∥
� const. × (‖∂sHs‖/�E)[exp(−l�E/2vLR) + g(l)].

(A11)

Finally, we define U (s) by U (0) = I , the identity op-
erator, and ∂sU (s) = iDsU (s). Since iDs is Hermitian by
construction, U (s) is unitary. Equation (17) follows from
Eq. (A11). �

APPENDIX B: PROOF OF LEMMA IV.8

In this Appendix, we prove Lemma IV.8, restated below as
Lemma B.2. However, first some preliminaries. We will need
the following lemma, which provides a useful corollary of the
disk axiom:

Lemma B.1. Let X be some set and P some projector such
that for any operator A supported on X there is a scalar z such
that

‖PAP − zP ‖ � ε‖A‖ (B1)

for some sufficiently small ε. (In typical applications, we have
in mind that P is the projector onto the ground-state subspace
of some system, X is some set of small diameter, and the above
equation encodes a soft form of the disk axiom for that theory.)
Then, for any operator O supported on set X, there is a scalar
w such that

‖POP − wP ‖ � C
√

ε‖(1 − P )OP ‖ ‖PO(1 − P )‖
(B2)

for some constant C of order unity (the constant C is
independent of ε, so long as ε is sufficiently small).

Proof. First, assume that O is Hermitian. Consider the
operator U = exp(itO) for t real. Since ‖U‖ = 1, ‖PUP −
zP ‖ � ε for some z. We can expand PUP in a power series
in (1 − P )OP giving

PUP = P exp(itPOP )P + O[t2‖PO(1 − P )‖2]. (B3)

Suppose POP = w + � for some traceless operator � and
scalar w. Pick t = 2ε/‖�‖. Then,

PUP = Pw + 2iεP
�

‖�‖P

+O[ε2 + ε2‖PO(1 − P )‖2/‖�‖2]. (B4)

So, the distance from PUP to the closest scalar multiple of
P is at least 2ε − O[ε2 + ε2‖PO(1 − P )‖2/‖�‖2]. If ‖�‖
is sufficiently large compared to

√
ε‖PO(1 − P )‖, then the

term O(. . .) is small compared to the leading term, assuming
ε is sufficiently small [we need ε sufficiently small compared
to unity so that term O(ε2) is small]. However, this contradicts
the assumption that PUP is within distance ε of some scalar
multiple of P .

Now, consider the general case that O need not be
Hermitian. Add an additional spin-1/2 degree of freedom to
the system and consider the Hermitian operator Õ = (O −
w) ⊗ σ+ + (O† − w) ⊗ σ−, where σ+,σ− are the raising and
lowering operators for that spin and w is chosen so that
P (O − w)P is traceless. The assumption (B1) for the original
theory implies that, for the system with the additional spin-1/2,
for any operator A acting on set X and on the additional
spin-1/2 that

‖PAP − P ⊗ Q‖ � 4ε‖A‖, (B5)

for some 2 × 2 matrix Q acting on the additional spin [to show
the above equation, expand PAP as a sum of four product
operators, one operator in the product acting on X and the
other on the added spin, and apply Eq. (B1) to each term in
the product]. Construct U = exp(itÕ). Perturbatively expand
the σ+ component of PUP for the same t as before. This is

2iεP
�

‖�‖ ⊗ σ+

+O[ε3 + ε2‖PO(1 − P )‖‖(1 − P )OP ‖/‖�‖2]. (B6)

We again get a contradiction as in the Hermitian case. �
Lemma B.2

‖U − zOMO−1‖ � 1 (B7)

for such braids for some scalar z. Indeed, the difference in
norms is exponentially small in system size.

Proof. This difference follows from the disk axiom: we
decompose the braid into n segments; taking n of order L,
each segment moves the anyons only a short distance. In
the nonunitary theory, we can construct short-range operators,
which move the ground-state subspace before the i segment
to the ground-state subspace after that segment. Call these
operators M(i), so that M is equal to the projection of
M(n) . . .M(1) into the ground-state subspace. This operator
M(n) . . .M(1) exactly preserves the ground-state subspace of
the Galois-conjugated theory and OMO−1 exactly preserves
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the ground-state subspace of the unitary theory. We use P (i)
to denote the projector onto the ground-state subspace after
the ith segment, and we use

M ′(i) = O�(i)M(i)O−1
�(i−1), (B8)

where O�(i) is the operator O� corresponding to the position
of the anyons after the ith segment, so that M(i)P (i − 1) =

P (i)M(i) and P (n) = P (0). In the unitary theory, let U (i)
denote the unitary matrices from Lemma IV.3 for the motion
along the ith segment, so that U is equal to the projection
into the ground-state subspace of U (n) . . . U (2)U (1). Note
that U (n) . . . U (1) preserves the ground-state subspace up to
exponentially small error and the matrices U (i) are bounded
range. Thus,

‖U − zOMO−1‖ = ‖P (0)U (n)U (n − 1) . . . U (1)P (0) − zP (0)M ′(n)M ′(n − 1) . . . M ′(1)P (0)‖
≈ ‖P (0)U (n)P (n − 1)U (n − 1)P (n − 2) . . . U (1)P (0) − zP (0)M ′(n)P (n − 1)

×M ′(n − 1)P (n − 2) . . . M ′(1)P (0)‖, (B9)

where the left side of this approximate equality differs from the right by inserting additional factors of P (i − 1) after every
occurrence of U (i) or M ′(i) on the right-hand side. We have P (0)M ′(n)M ′(n − 1) . . . M ′(1)P (0) = P (0)M ′(n)P (n − 1)M ′(n −
1)P (n − 2) . . . M ′(1)P (0), but the error in Eq. (B9) occurs because U (i)P (i − 1) is only approximately equal to P (i)U (i − 1)
(the difference is exponentially small in system size). Note that on the right-hand side of this equation, the matrices act in the
ground-state Hilbert space, while on the left-hand side, they act in the full Hilbert space. To bound the right-hand side of Eq. (B9),
it suffices to show that, for all i,

‖P (i)U (i)P (i − 1) − z(i)P (i)M ′(i)P (i − 1)‖ (B10)

is exponentially small for some scalar z(i). To see this, set

z =
∏

i

z(i) (B11)

and

N (i) = z(i)M ′(i). (B12)

So,

‖P (0)U (n)P (n− 1)U (n− 1)P (n− 2) . . . U (1)P (0) − zP (0)M ′(n)P (n− 1)M ′(n− 1)P (n− 2) . . . M ′(1)P (0)‖
= ‖P (0)U (n)P (n − 1)U (n − 1)P (n − 2) . . . U (1)P (0) − P (0)N (n)P (n − 1)N (n − 1)P (n − 2) . . . N(1)P (0)‖
� ‖P (0)U (n)P (n − 1)U (n − 1)P (n − 2) . . . U (1)P (0) − P (0)U (n)P (n − 1)N (n − 1)P (n − 2) . . . N(1)P (0)‖

+‖P (0)U (n)P (n − 1) − P (0)N (n)P (n − 1)‖
n−1∏
i=1

‖P (i)N (i)P (i − 1)‖

� ‖P (n − 1)U (n − 1)P (n − 2) . . . U (1)P (0) − P (n − 1)N (n − 1)P (n − 2) . . . N(1)P (0)‖

+‖P (0)U (n)P (n − 1) − P (0)N (n)P (n − 1)‖
n−1∏
i=1

‖P (i)N (i)P (i − 1)‖, (B13)

where the first inequality uses a triangle inequality and the inequality that

‖P (0)U (n)P (n − 1)U (n − 1)P (n − 2) . . . U (1)P (0) − P (0)N (n)P (n − 1)U (n − 1)P (n − 2)U (n − 2)P (n − 3) . . . U (1)P (0)‖

� ‖P (0)U (n)P (n− 1) − P (0)N (n)P (n− 1)‖
n−1∏
i=1

‖P (i)N (i)P (i − 1)‖.

We then apply a similar inequality to the first term on the last line of Eq. (B13), getting

‖P (n − 1)U (n − 1)P (n − 2) . . . U (1)P (0) − P (n − 1)N (n − 1)P (n − 2) . . . N(1)P (0)‖
� ‖P (n − 2)U (n − 2)P (n − 3) . . . U (1)P (0) − P (n − 2)N (n − 2)P (n − 3) . . . N(1)P (0)‖

+‖P (n − 1)U (n − 1)P (n − 2) − P (n − 1)N (n − 1)P (n − 2)‖
n−2∏
i=1

‖P (i)N (i)P (i − 1)‖. (B14)

Given this norm estimate (B10), then, since P (i)U (i)P (i − 1) is an approximate isometry from the range of P (i − 1) to the range
of P (i), the matrix P (i)z(i)M ′(i)P (i − 1) is also such an approximate isometry, so the product of norms ‖P (i)M ′(i)P (i − 1)‖ in
Eqs. (B13) and (B14) is bounded. Note that Eq. (B14) holds with n replaced by any integer i � n, so we can repeat this estimate
[i.e., apply this inequality with n replaced by n − 1 to the first term of the last line of Eq. (B14), then apply the inequality with n
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replaced by n − 2 to the first term of that estimate, and so on, shortening the product of operators at each step until we arrive at
a trivial estimate], until we find that

‖P (0)U (n)P (n − 1)U (n − 1)P (n − 2) . . . U (1)P (0) − zP (0)M ′(n)P (n − 1)M ′(n − 1)P (n − 2) . . . M ′(1)P (0)‖

� const.
n∑

i=1

‖P (i)U (i)P (i − 1) − z(i)P (i)M ′(i)P (i − 1)‖, (B15)

where the constant is the bound on the product of norms
‖P (i)M ′(i)P (i − 1)‖.

So, we must bound Eq. (B10). Since U (i) is an ap-
proximate isometry, it suffices to bound ‖P (i − 1) − P (i −
1)U (i)†z(i)M ′(i)P (i − 1)‖. At first sight, this seems to follow
immediately from the disk axiom: since U (i)†M ′(i) is short
range, or at least approximately short range [note that for
M ′(i) this follows by the definition of a family of local
normalizers, but see the next paragraph for a more careful
treatment of error terms], by the disk axiom it is close to a
scalar when projected into the ground-state subspace. Hence,
choosing z(i) to be the inverse of this scalar, the desired result
seems to follow. However, there is a complication: suppose
P (i − 1)U (i)†M ′(i)P (i − 1) is within some distance ε of
z(i)−1P (i − 1) for some z(i); then, we bound ‖P (i − 1) −
P (i − 1)U (i)†z(i)M ′(i)P (i − 1)‖ � ε|z(i)|. Hence, if z(i) is

large, the resulting error can be large even if ε is small. This
is why we will need the Lemma (B.1) above.

By definition of g.s. weakly local normalizer, the operators
M ′(i) can be approximated by operators that are short range, up
to an error that is small compared to |M ′(i)ψ | for all ψ in the
ground-state subspace P (i − 1) with |ψ | = 1. Since U (i) is
approximately unitary and an approximate isometry between
two ground-state subspaces, this means that U (i)†M ′(i) can
be approximated by an operator O(i) that is short range, up
to an error that is small compared to |U (i)†M ′(i)ψ | for ψ in
P (i − 1). [Note that if O is a local normalizer, then M ′(i)
already is short range so we can take O(i) = U (i)†M ′(i) in
that case.] So, for the O(i), ‖[1 − P (i − 1)]O(i)P (i − 1)‖ is
small compared to |O(i)ψ | for all ψ . Applying Lemma (B.1),
this means that P (i − 1)O(i)P (i − 1) is close to z(i)P (i − 1),
for some z(i) up to an error that is small compared to z(i). �
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