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Emergence of a field-driven U(1) spin liquid in the
Kitaev honeycomb model
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In the field of quantum magnetism, the exactly solvable Kitaev honeycomb model serves as a

paradigm for the fractionalization of spin degrees of freedom and the formation of Z2

quantum spin liquids. An intense experimental search has led to the discovery of a number of

spin-orbit entangled Mott insulators that realize its characteristic bond-directional interac-

tions and, in the presence of magnetic fields, exhibit no indications of long-range order. Here,

we map out the complete phase diagram of the Kitaev model in tilted magnetic fields and

report the emergence of a distinct gapless quantum spin liquid at intermediate field strengths.

Analyzing a number of static, dynamical, and finite temperature quantities using numerical

exact diagonalization techniques, we find strong evidence that this phase exhibits gapless

fermions coupled to a massless U(1) gauge field. We discuss its stability in the presence of

perturbations that naturally arise in spin-orbit entangled candidate materials.
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Quantum spin liquids are highly entangled quantum states
of matter that exhibit fractionalized excitations1. A
principle example for such a fractionalization are the

spinon excitations of a resonating valence bond (RVB) liquid2,
which carry spin-1/2 and arise only after breaking apart a spin-1
excitation originating from an elementary spin-flip process.
Crucially, once a pair of spinons has been created in an RVB
liquid, they can be separated to arbitrary distances at no energy
cost—the spinons are deconfined. This reveals the emergence of a
much larger underlying structure present in any quantum spin
liquid—a lattice gauge theory in its deconfined regime. The
interplay of fractionalization and lattice gauge theory can be
conceptualized by a parton construction3, which decomposes the
original spin degrees of freedom in terms of partons that repre-
sent the emergent fractional degrees of freedom. These partons
can be chosen to be complex Abrikosov fermions4, real Majorana
fermions5,6, or bosons. Concomitantly, the system is found to be
enriched by an emergent gauge structure, with examples includ-
ing continuous U(1) or discrete Z2 gauge symmetry7,8. One of the
most beautiful examples of a parton construction has been
introduced by Kitaev, who was able to devise an exactly solvable
spin-1/2 model on the honeycomb lattice with several quantum
spin liquid ground states6. Here, the fractionalization of the ori-
ginal spin degrees of freedom into Majorana fermions and an
emergent Z2 gauge structure naturally appear in the framework of
Kitaev’s exact solution, which has led to a plethora of theoretical
investigations and deep analytical insights into spin liquid
physics9.

On a microscopic level, the key ingredients of the Kitaev model
are its bond-directional Ising-type exchange interactions.
Remarkably, these seemingly unusual interactions are found to be
realized via an intricate interplay of spin–orbit coupling, crystal
field effects, and strong interactions10,11 in a variety of 4d and 5d
materials12. However, these spin–orbit entangled Mott insulators
are typically found to exhibit ordered states at low temperatures
in lieu of the sought-after spin liquid physics, consistent with a
theoretical analysis of perturbed Kitaev magnets that exhibit more
conventional types of exchanges beyond a dominant bond-
directional interaction13–20.

Recently considerable excitement has arose due to the fact that
in one of these materials, RuCl3, the magnetic order can be
suppressed with an in-plane magnetic field21–28. Probably the
most spectacular result is a report29 for tilted field directions,
which suggests that a phase, intermediate between the magneti-
cally ordered state at low fields and the high-field polarized state,
exhibits a half-quantized thermal Hall conductance—a unique
signature for a gapped topological spin liquid. The precise nature
of the putative quantum spin liquid regime and its microscopic
description, however, still remain open.

Here, motivated by these observations, we return to the ori-
ginal Kitaev model and explore its phase diagram in the presence
of tilted magnetic fields using numerical exact diagonalization
(ED) techniques. As we report in this Article, there are two dis-
tinct spin liquid regimes already present in this model. For small
magnetic field strengths, there is a gapped spin liquid phase
whose non-Abelian topological nature has first been rationalized
by Kitaev using perturbative arguments for a field pointing along
the out-of-plane [111] direction6. Here we demonstrate that this
phase is stable when tilting the magnetic field to generic direc-
tions and well beyond the perturbative regime by explicitly cal-
culating the modular S-matrix from its (quasi-)degenerate ground
states, which unambiguously confirms that its inherent topolo-
gical nature is indeed given by the Ising topological quantum field
theory (TQFT). The second spin liquid, on which we focus in this
Article, is both manifestly distinct from the gapped topological
spin liquid and at the same time can be considered, in many ways,

to be a descendent of it. One key distinction between the two
phases is their underlying gauge structure. While the Kitaev spin
liquid is accompanied by a Z2 gauge structure with gapped vison
excitations in the gauge sector, the second spin liquid is found to
exhibit the gapless gauge structure typically associated with a U(1)
spin liquid.

Results
Overview. In what follows, we provide multi-faceted evidence
that the phase transition between the two spin liquids at finite
field strengths is driven by the closing of the gap for vison exci-
tations of the Z2 spin liquid and that the emergent gapless spin
liquid is a U(1) spin liquid with a spinon Fermi surface, by
investigating the evolution of the energy spectrum, the dynamical
structure factor, and thermodynamic signatures in the specific
heat. We discuss aspects of the underlying field theory governing
this phase transition at the end of the Article.

It should be noted that the occurrence of two stable spin
liquid regimes in the Kitaev model exposed to a (tilted)
magnetic field is closely linked to whether the applied field
matches the underlying antiferromagnetic (AFM) or ferro-
magnetic (FM) spin correlations, with an order of magnitude
difference in the critical fields between the two cases. Only for
AFM Kitaev couplings and a uniform magnetic field, do we
observe the two spin liquids discussed above. For FM Kitaev
couplings the gapped Kitaev spin liquid is found to be
considerably less stable than in the AFM case, consistent with
a number of recent numerical studies30–32 (with ref. 31 also the
first to report the existence of an intermediate phase for an
AFM coupling). Notably, this situation can be reversed by
staggering the magnetic field, which dramatically increases the
stability of the FM Kitaev phase, while the AFM spin liquid
then covers a significantly smaller parameter space. To round
off our discussion, we demonstrate the stability of the emergent
gapless spin liquid when perturbing the Kitaev model with a
conventional Heisenberg interaction or an off-diagonal Γ-
exchange, which constitute further ingredients of the micro-
scopic description of Kitaev materials17.

Model. We start our discussion by considering the pure Kitaev
honeycomb model in the presence of a uniform magnetic field of
arbitrary orientation, defined by the Hamiltonian

H± ¼ ±K
X
i;jh i 2 γ

Sγi S
γ
j �

X
i

h � Si ; ð1Þ

where H± indicates an AFM/FM Kitaev coupling and the bond
directions are denoted by γ ∈ {x, y, z}. We parametrize the
orientation of the magnetic field as h ¼ h sin θbh111 þ h cos θbh?,
where the unit vectors bh111 and bh? point along the [111] and
either [112̄] or [1̄10] directions. For materials such as (Na,
Li)2IrO3 and RuCl3 these directions correspond to the out-of
plane, c-axis, and in-plane, a or b-axes, respectively. The angle θ
thus measures the tilt away from the honeycomb planes.

Phase diagrams. The phase diagram of the model for various tilt
angles of a uniform external magnetic field is presented in Fig. 1
for both the AFM and FM Kitaev cases. The phase boundaries,
presented in this Figure, are based on a number of different
signatures, including the second derivative of the ground-state
energy and the ground-state fidelity (see Methods for more
details). There are certain limits which have previously been
discussed:

(i) h= 0. In the case of zero magnetic field the Kitaev
Hamiltonian is exactly solvable6. Following Kitaev’s
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original solution, each spin-1/2 can be split into four
Majorana fermions, three are associated with the adjacent
bonds and one with the original site. The bond Majoranas
can be recombined to form a static Z2 gauge field, leaving
us with a single free Majorana fermion moving in a
background field. Its spectrum is gapless, with Dirac points
located at the corners of the Brillouin zone, while the vison
excitations of the gauge field remain gapped6,9. The net
result is a gapless Z2 spin liquid.

(ii) hjj½111�; h � K . In the presence of a magnetic field along
the [111] direction, Kitaev showed, using perturbation
theory, that a small field opens up a gap in the Majorana
spectrum. Furthermore, the resulting Majorana insulator
has a non-trivial band structure, with a Chern number C=
1 for the lower, fully filled band. This corresponds to a
gapped non-Abelian spin liquid with Ising anyon topolo-
gical order, which we will refer to as the Kitaev spin liquid
(KSL). The gapped flux excitations (visons) now bind a
Majorana fermion and there is a single chiral gapless
Majorana edge mode, which gives rise to a quantized
thermal quantum Hall effect. Our numerical data confirms
that this scenario remains true away from the perturbative
limit, for generic field directions, and applies to both the
AFM and FM cases. Technically, we do so by calculating33

the modular S-matrix from the three (quasi-)degenerate

ground states in the KSL phase for various parameters of
Fig. 1. The entries Sab encode the braiding properties of
quasiparticles a and b in the underlying TQFT (fixing the
entries to certain universal values) and thereby allow for its
unambiguous identification. Numerically, we find, e.g., the
following S-matrix

SED ¼
0:46 0:74 0:47

0:71 0:04e�0:91i � 0:70

0:49 � 0:67e0:02i 0:58e�0:13i

0
B@

1
CA; ð2Þ

computed for a [111] field of magnitude h � hcritKSL=2. For
the Ising TQFT the expected S-matrix has corner entries
+1/2, a middle entry of zero, and the remaining four
entries ± 1=

ffiffiffi
2

p
. We see that, even for the N= 24 site

cluster at hand, we are able to numerically resolve this
structure, confirming that the KSL is indeed a non-Abelian
quantum spin liquid described by an Ising TQFT.

(iii) h � K . For sufficiently large magnetic field the system will
clearly become polarized along the axis of the external field.
In this polarized phase (PL) the ground state is a trivial
product state and the lowest energy excitations are
conventional magnon modes.

The phase diagrams of Fig. 1 expand this perspective by
providing the critical field strengths, at which the KSL is
destroyed, for tilted field setups. As can be seen in Fig. 1, the
critical field does not depend sensitively on the field direction
(though in real materials anisotropic g-factors need to be
considered that will distort the phase diagram). What is strikingly
evident, however, is that there is a marked contrast in the stability
of the KSL in the case of AFM versus FM coupling, with an order
of magnitude difference in the critical fields. To investigate the
source of this difference we show in Fig. 2 the phase diagrams for
a staggered external field, with + h applied on one sublattice and
−h on the other sublattice of the honeycomb lattice. We see that,
in this case, there is still an order of magnitude difference in the
critical fields but now the situation has been reversed. The AFM
KSL is significantly less stable in a staggered field compared to a
uniform one, while the FM KSL is less stable in a uniform field
and significantly more stable in a staggered one. The stability of
the KSL thus crucially depends on whether the applied field
matches the underlying spin correlations or not. We expect this
observation to generically hold and to also apply to the three-
dimensional generalizations of the Kitaev model34 under an
external field. Though it is experimentally not possible to generate
a staggered field using conventional magnets, it may be possible
to realize the desired effect by placing thin samples of a Kitaev
material on a substrate which is a trivial honeycomb antiferro-
magnet, producing a staggered field by proximity, and thereby
allowing to probe this effect.

Intermediate gapless phase. Beyond the KSL there is, for a wide
range of field angles in the case of AFM Kitaev couplings, an
intermediate phase before entering the high-field PL state. To
investigate the properties of this phase we focus on two generic
cuts away from any high-symmetry directions, shown by the
dashed (red) lines in Fig. 1, one close to the in-plane [1̄10]
direction at θ= 7.5° (π/24) and the other close to the out-of-plane
[111] direction at θ= 82.5° (11π/24) (for an example of a cut in
which there is a single, direct KSL-PL transition see Supple-
mentary Note 2).

One striking signature for the transition from the KSL to this
intermediate phase is a dramatic increase in the density of states
at low energies. This is illustrated in Fig. 3a, b, which show the full
low-energy spectrum as a function of increasing field magnitude
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Fig. 1 Phase diagrams in a uniform magnetic field. a The pure AFM Kitaev
model and b the pure FM Kitaev model for various tilt angles. For AFM
couplings the gapped Kitaev spin liquid (KSL) is surrounded, for a wide
range of tilt angles, by a gapless spin liquid (GSL) before giving way to a
trivial polarized state (PL). For FM couplings, in contrast, the KSL is found to
cover a considerably smaller parameter region with no intermediate GSL
(see Supplementary Note 1 for a zoomed-in view of the FM phase diagram).
The two (purple) points in (a) mark the parameters at which the dynamical
structure factor in Fig. 4b, c is plotted
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(obtained from numerical exact diagonalization) for the two cuts,
with states labeled by their momentum quantum number. Indeed,
for the energy window shown here there are more than 10 times
as many states within the intermediate phase as there are in the
zero-field Kitaev limit. This increase of the low-energy density of
states by more than an order of magnitude (in combination with
no degenerate ground-state manifold) is a strong indication that
the intermediate phase is in fact a gapless phase with considerably
more low-energy modes than the gapless KSL in the vanishing
field limit. This incredible density of states at low energies is
supported by finite-size scaling, shown in the Methods section,
making it a robust feature of the intermediate phase. Beyond the
intermediate phase, we see that this plethora of low-lying states
quickly get pushed up linearly, consistent with the notion that a
spin gap begins to open upon the transition to the PL state.

To probe the magnetic nature of this intermediate gapless
phase, we turn to the static spin structure factor of the ground

state, SðqÞ ¼ 1
N

P
i;j Si � Sj
D E

eiq� ri�rjð Þ, which is plotted in Fig. 3c, d

for the two cuts. There are no clear signs of any magnetic
ordering, with only the Γ point intensity (i.e., the magnetization)
significantly changing as the transition from the KSL to the
intermediate phase is crossed. The flat, rather featureless structure
factor of the intermediate phase is indicative of a quantum spin
liquid phase. We also show the flux of the Z2 gauge field through

the plaquettes of the honeycomb lattice, Wh iP¼ Sxi S
y
j S

z
kS

x
l S

y
mSzn

D E
,

in Fig. 3e, f. This quantity does not show visible signatures of the
transitions. The flux 〈W〉P ≈ 1 in the KSL phase and 〈W〉P ≈ 0 in
the PL phase. In the intermediate phase it takes a range of

intermediate values, interpolating between these two limits. This
indicates that the plaquette flux is heavily fluctuating in the
intermediate phase. Taken together, all of these results are
consistent with a gapless, disordered state, allowing us to identify
the intermediate phase as a gapless spin liquid (GSL).

This immediately raises the question about the origin and
nature of the gapless degrees of freedom. To answer this question
it has proved particularly insightful to look at the the dynamical
spin structure factor, which provides strong indications that it is
the vison gap which closes at the transition to the intermediate
gapless phase. The dynamical spin structure can be written in
Lehmann representation as

Sαα Q;ωð Þ ¼
X
n

jhnjSαQj0ij2δ ω� ðEn � E0Þð Þ; ð3Þ

where we note that the n= 0 contribution, which, for Q= Γ, is
simply Sαtotal

� ��� ��2, the magnetization induced by the external field,
is not included in the following discussion. Furthermore, from
now on, we will focus on the sum S Q;ωð Þ ¼ P

α S
αα Q;ωð Þ. At

zero field there is, despite the system being gapless in this limit, a
distinct gap to physical spin excitations as these involve the
creation of gapped Z2 flux excitations

35,36. This flux gap is clearly
visible in Fig. 4a, with its uniformity across momenta reflecting
the static nature of the flux excitations. Note that the flux gap is
absent at the Γ point for the AFM Kitaev model due to the AFM
correlations of the ground state. Upon applying the magnetic
field, this uniform flux gap breaks apart and a significant portion
of the spin spectral weight is pushed to zero energy across the
whole Brillouin zone as illustrated in Fig. 4b for a point midway
in the KSL phase along the cut at θ= 82.5°. These states are
further pushed down in energy as the transition to the
intermediate phase is crossed, with Fig. 4c showing results for a
point in the middle of the intermediate phase. The overall spin
spectral weight of these low-energy states makes up a significant
part (~40%) of the zero-field flux gap. This is strong evidence that
the transition from the KSL to the intermediate phase is thus
marked by the closure of the flux gap (see Supplementary Note 3
for further discussion of the flux gap closure for the cut at θ=
7.5°). In the intermediate phase the dynamical structure factor at
higher energies remains featureless, with weight distributed across
all energies. There are no signatures of pseudo-Goldstone modes
or any kind of conventional magnon excitations. These features
support the case for a gapless quantum spin liquid arising from
the closing of the Z2 flux gap.

The key role played by the flux excitations is also visible at
finite temperatures. In Fig. 5 we show the specific heat as a
function of increasing field, calculated using the method of
thermal pure quantum states37,38. At zero field, it has been
established through numerical exact Monte Carlo simulations39

that there are two finite temperature crossovers, a high-
temperature one associated with the itinerant Majorana fermions
indicating the fractionalization of the original spins and a low-
temperature one associated with the Z2 gauge field, at which it
orders into its ground-state configuration. The location of these
peaks is correlated to the bandwidth of the fermion hopping and
the vison gap in the gauge sector respectively. As one approaches
the transition to the intermediate phase the low-T peak starts to
drift to lower and lower temperatures. This is another telling sign
that the energy scale associated with the gauge field is lowered as
the field increases. Interestingly, the high-T peak does not show
any notable changes as the transition to the intermediate phase is
crossed. This would seem to suggest that the itinerant Majoranas
are not affected by the transition, with all of the action occurring
only in the gauge sector. Once the PL phase is entered a single
peak develops, as expected since fractionalization is lost.
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Fig. 2 Phase diagrams in a staggered magnetic field. a The pure AFM Kitaev
model and b the pure FM Kitaev model. The pink shading marks a region of
potential interest (not explored here)
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Beyond the Kitaev model. Before turning to a discussion of the
nature of the intermediate gapless spin liquid phase, we round off
our numerical results with a study of its stability in the presence
of microscopic perturbations. In any Kitaev material, the bond-
directional exchanges of the Kitaev model are accompanied by
other, more conventional, interactions such as symmetric off-
diagonal exchange terms (Γ-interactions) along with an isotropic
Heisenberg coupling12,17,19. In Fig. 6, we illustrate phase dia-
grams elucidating the effects of these additional couplings in the
vicinity of the pure Kitaev model for various tilt angles of the
magnetic field. It is clear that the intermediate GSL is stable under
both kinds of perturbations. Indeed the stability of the GSL
mirrors that of the KSL, always sitting above it in these phase
diagrams. This suggests that the intermediate phase is in fact a
descendent of the KSL, resulting from an instability of the gapped
Ising anyon phase.

Discussion
To summarize our key results, we have established that the Kitaev
honeycomb model contains another phase exhibiting

unconventional magnetism alongside its already well-known
gapless and gapped Z2 spin liquid phases. This additional phase is
gapless with a dense continuum of excitations, featureless struc-
ture factor (both static and dynamic), fluctuating Z2 fluxes, and
low-energy spin spectral weight.

To reveal the precise nature of this phase the central question is
what its gapless degrees of freedom are—matter or gauge fields or
both? Though this question is difficult to answer definitively, we
interpret our results as providing multi-faceted evidence for the
emergence of a U(1) spin liquid, in which gapless fermions are
coupled to a massless gauge field. Our conclusion is guided by the
following observations.

First, the energy spectrum shows that the transition from the
KSL to the GSL occurs through the dramatic shift of a large
density of states to low energies, forming a dense continuum of
gapless excitations. The dynamical structure factor reveals that
these states carry with them physical spin spectral weight at all
momenta. Since we know from exact studies at zero field that
only the vison excitations of the KSL (but not the Majorana
fermions) carry spin spectral weight, this indicates, supported also
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by the thermodynamic signatures in the specific heat, that this
transition is marked by the closing of the vison gap, resulting in a
massively fluctuating gauge field. Naively, one could identify this
gap closing with vison condensation which in turn should lead to
confinement and a trivial, magnetically ordered phase (such as
the transition from the KSL to zig-zag magnetic ordering in the
presence of additional Heisenberg interactions16). However, in
the KSL, the visons carry a Majorana zero mode (which is the
hallmark of its topological order) and so cannot condense by
themselves. If the visons indeed avoid condensation at the gap
closing transition, this leads to an intriguing scenario in which
their associated Majorana fermions form a gapless Fermi surface
coupled to a massless gauge field.

Second, a particularly enlightening and intuitive perspective on
the transition to the GSL can be gained by considering an alter-
native Abrikosov fermionic parton decomposition of the spin
operators. Such partons naturally possess an accompanying U(1)
gauge structure. If we imagine starting from a phase in which the
fermionic partons, coupled to such a U(1) gauge field, form a
Fermi surface the KSL can naturally be accessed through a pairing
instability of the fermions40,41. The formation of a super-
conducting condensate Higgses the gapless U(1) gauge field down
to a gapped Z2 gauge field. In order to properly match the

topological properties of the KSL, the superconductor must be a
chiral p-wave superconductor, which ensures, for example, that
flux excitations can bind Majorana fermions42. Starting from zero
field, we see that, in this picture, the transition from the KSL to
the intermediate GSL can be understood as a transition from a
gapped chiral p-wave superconductor, coupled to a gapped Z2
gauge field, to a gapless spinon Fermi surface, coupled to an
emergent U(1) gauge field. The Fermi surface can be stabilized by
a lack of lattice symmetries and momentum conservation43.

The key to the realization of this scenario in the present context
is that we can have an emergent U(1) conservation of the fer-
mionic partons, with the closure of the vison gap thus related to
the emergence of this conservation law. The Majoranas remain
intact throughout the transition, with the only change being that,
in the GSL, the Majoranas can now be combined into complex
fermions with an emergent U(1) particle conservation. This
naturally explains why the Majorana peak in the specific heat is
relatively unaffected as the transition to the GSL is crossed.

The transition from the GSL to the PL phase can be similarly
understood within this framework, corresponding to a transition
from a gapless Fermi surface to a gapped trivial insulator. With
the fermions completely gapped, they can be integrated out to
produce a low-energy theory of a pure compact U(1) gauge
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theory. However, such a theory is well-known to be unstable to
confinement via monopole proliferation[50], resulting in a
completely trivial gapped phase, the PL phase. The complex
Abrikosov fermion perspective thus naturally gives an intuitive
and unified description of all of the numerical data at hand. This
is summarized in Fig. 7 in which the behavior of the gauge field
and fermionic partons in the KSL, GSL and PL phases is detailed.

This parton perspective also motivates a natural field theory
description of the transition from the KSL to the GSL in terms of
a Fermi surface of partons coupled to a dynamical U(1) gauge
field

L ¼ ψy Dt �
1
2m

D2
i � μ

� �
ψ þ g ψyΔψy þ h:c:

� 	þ ¼ ; ð4Þ

where ψ represent the low-energy fermionic parton modes near
the Fermi surface, Dμ= i∂μ+ aμ, Δ= |Δ|(∂x ± i∂y) corresponds to
a decoupling in the chiral p-wave channel of an attractive four-
fermion interaction of strength g and the higher order terms
include a kinetic term for the dynamical gauge field a. For Δ= 0
we have a Fermi surface of partons coupled to a dynamical U(1)
gauge field. This corresponds to the GSL phase. Though normally
one might expect such a Fermi surface to be immediately sus-
ceptible to a pairing instability, here we have an extended phase,
with the Fermi surface stable up to a finite critical strength of the
atttractive interaction40 and further stabilized by the lack of lattice
symmetries and momentum conservation discussed above (see
Supplementary Note 4 for further discussion). At the transition
pairing onsets, such that for Δ ≠ 0 the fermions become gapped

and can be integrated out. If the gapped fermions occupy a
topologically non-trivial band structure this will generate a
Chern-Simons term at level 1/2, ensuring that in vortex cores
(where the superconducting condensate vanishes) there is a
bound Majorana fermion42, and a mass term for the gauge field
generated by the Anderson-Higgs mechanism. This corresponds
to the KSL phase. This simple, minimal theory is thus able to
capture the physics either side of the transition.

Last, let us mention, for completeness, an alternative scenario
for the transition between the KSL and GSL. The scenario, which
we can definitively rule out based on our numerical data, starts
from the KSL and argues44,45 that instabilities of this topological
phase can be driven by the condensation of Ising anyons, which
are brought into close proximity with increasing field strength.
However, the ensuing phase is still a chiral spin liquid (albeit with
an Abelian topological order) which would reveal itself through a
ground-state degeneracy that we do not observe in our numerical
data for the GSL (in contrast to the KSL where the threefold
quasi-degenerate ground states strongly corroborate its topolo-
gical nature via the S-matrix calculation showcased above).

In conclusion, our numerical analysis of the complete phase
diagram of the Kitaev model in tilted magnetic fields has revealed
that this fundamental model harbors not only Z2 spin liquid
physics, but also exhibits an extended spin liquid regime with a
distinct U(1) gauge structure. Our numerical observation of the
phase transition between these two regimes at finite field
strengths provides a multi-faceted perspective of the accom-
panying signatures in static, dynamical, and finite temperature
quantities. It will be an interesting avenue for future theoretical
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studies to further investigate the field theory description for this
transition, which clearly lies beyond the standard
Landau–Ginzburg–Wilson paradigm. Though current Kitaev
materials are all believed to possess FM Kitaev couplings, the
possibility of an AFM coupling is not ruled out on any miscro-
scopic grounds (early reports suggested that RuCl3 possessed
exactly such an AFM coupling) and indeed there is recent work
suggesting that they may naturally appear in f-electron based
systems46. Future experimental studies on such Kitaev materials
might be able to probe the nature of the fractional excitations in
the gapless spin liquid regime and reveal the existence of a Fermi
surface.

Note added: During the review process for this manuscript
two preprints were posted47,48 that follow up on our work,
providing further evidence that the intermediate phase is
indeed a gapless U(1) spin liquid with a spinon Fermi surface,
as reported here.
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Methods
Exact diagonalization and finite-size scaling. The exact diagonalization results
were produced using the library ARPACK49, primarily on an N= 24 site cluster
with the full point group symmetry of the honeycomb lattice, and containing all the
high-symmetry points of the Brillouin zone. Additional calculations were done on
system sizes ranging from N= 18 to N= 32 sites, with qualitatively consistent
results.

For a point midway in the GSL phase, we show in Fig. 8a the energy
difference between the ground state and the lowest lying state from each
momentum sector for N= 18, 20, 24, 28, 30, and 32 site clusters. The N= 18,
24, and 32 site clusters are highlighted in red as these are are the only clusters
that have the full point group symmetry of the honeycomb lattice.
Unfortunately, unlike the N= 24 site system, the N= 18 and 32 site clusters do
not contain all of the high-symmetry points in the BZ, marking out the N=
24 site cluster as unique and why we chose to show data for this cluster in the
main manuscript. For the largest system sizes the density of states at low
energies increases with increasing system size, with the largest gap for any
momentum sector in the N= 32 site case being just 0.004K. We also use a solid
(red) line to indicate the gap to the first excited state for the symmetric clusters.
The finite-size scaling is clear evidence that the intermediate phase is gapless,
with an incredibly dense spectrum of excited states at low energies from all
momentum sectors (for a detailed comparison to other ED studies see
Supplementary Note 5).

We also show the spin spectral weight associated with the first excited state,P
α jh1jSαQj0ij2, in both the KSL and GSL phases for the three symmetric clusters in

Fig. 8b (for the KSL we choose the first excited state above the ground state
degenerate manifold). In the KSL phase, since all of the spectral weight is
concentrated above the finite flux gap the weight associated to the first excited state
is practically zero. On the other hand, at the same point midway in the GSL phase,
the flux gap has collapsed to zero with the first excited state now showing finite
spin spectral weight. This clearly demonstrates that the field-induced closure of the
flux gap, via the transfer of spin spectral weight to zero energy, is a robust feature of
the intermediate phase.

Finally we show the critical fields associated with the transition out of the KSL,
hKSLcrit , and the transition into the PL phase, hPLcrit , in Fig. 8c. This clearly indicates that
the intermediate phase is stable and its size is roughly ~0.2K for the cut shown.

Determination of the phase boundaries. The phase boundaries for the phase
diagrams presented in the main text were determined using a combination of the
second derivative of the ground state energy and the ground-state fidelity, taken
from a range of radial cuts (26 in angular spacings of π/100 and radial field spacing
of 0.01/0.001 for the AFM/FM cases, a total of 1976 points) for each of the three 2d
phase diagrams presented in Figs. 1 and 2 (i.e., a total of 6000 parameter points
were computed for each of Fig. 1a, b, Fig. 2a, b). For the ground-state energy, it is a
peak in its second derivative which indicates the presence of a phase transition. The
ground-state fidelity is defined as F(g)= 〈Ψ0(g)|Ψ0(g+ δg)〉 for some tuning
paramter g (in our case the magnitude of the magnetic field h). A first order
transition, i.e., a level crossing, is signified by a discontinuity in the fidelity, while a
second order transition results in a smooth dip. For the two cuts focused on in the
main text, θ= 7.5° and 82.5° in the c–b plane, we show in Fig. 9 these two
quantities as a function of field magnitude. Two transitions can clearly be resolved,

with excellent agreement between the two distinct quantities. Finally, we note that
we also find excellent agreement between the phase boundaries computed for our
N= 24 site cluster and the phase boundaries reported in a recent infinite density
matrix renormalization group study of the Kitaev model in a [111] magnetic
field32.

Code availability. The code used to generate the data used in this study is available
from the corresponding author upon reasonable request.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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